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Abstract. The only surface whose level curves of the Gauss curvature
are nongeodesic biharmonic curves and such that the gradient lines are
geodesics is, up to local isometries, the revolution surface defined by
Caddeo-Montaldo-Piu.

Riassunto: L’unica superficie di cui le curve livellate della curvatura
di Gauss sono curve biarmoniche nongeodetiche e tale che le linee di
pendenza sono geodetiche è, a meno di isometrie locali, la superficie di
rivoluzione definita da Caddeo-Montaldo-Piu.

1. Introduction

In a recent paper ([2]) the authors study the notion of biharmonic curves
on surfaces. If we consider isometric immersions γ : I → S from an interval
I to a surface S, then the bienergy functional is defined by

E2(γ) =
1
2

∫

S
|τγ |2 dv,

where τγ = ∇γ̇ γ̇ is the tension field associated to the curve γ. A curve is
called biharmonic if it is a critical point of the bienergy functional.

In the cited paper it is proved that along a nongeodesic biharmonic curve
the Gauss curvature is constant and equal to the square of the geodesic
curvature. Therefore, nongeodesic biharmonic curves are level curves of the
Gauss curvature.

Moreover, biharmonic curves on revolution surfaces also are therein stud-
ied. In particular the unique revolution surfaces with all parallels nongeo-
desic biharmonic curves are determined.

The two conditions: nonvanishing constant geodesic curvature and Gauss
curvature equal to the square of the geodesic curvature along level curves
seem to be hard conditions. Apart from the previously cited revolution
surface, the authors in [2] are able to find just some few such curves in, for
instance, revolution surfaces with constant Gauss curvature.

In this note, we first determine the local expression of the metric tensor
of a two-dimensional Riemannian manifold whose level curves of the Gauss
curvature are nongeodesic biharmonic curves.
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The coefficients of the metric only depend on the function which assigns
to each level curve its constant geodesic curvature and on another function
on the same parameter transversal to the level curves.

Since the Gauss curvature is positive, then the two-dimensional Riemann-
ian manifolds can be locally realized as regular surfaces (see [4]). If in ad-
dition we ask for the gradient lines of the Gauss curvature to be geodesics,
then the only surface, up to local isometries, is the revolution surface defined
in [2]. A final example shows that this last condition, orthogonal lines are
geodesics, is necessary.

2. Surfaces of revolution for which all parallels are
biharmonic curves

Proposition 1. (See [2]) Let γ : I → (M2, g) be a differentiable curve in
a surface M2. Then, if γ is a nongeodesic biharmonic curve, along γ the
Gauss curvature is constant, positive and equal to the square of the geodesic
curvature of γ.

So, a nongeodesic biharmonic curve, γ, is characterized by



kg(t) = constant 6= 0,

k2
g(t) = K(γ(t)),

for all t ∈ I and where kg denotes the geodesic curvature of γ and K denotes
the Gauss curvature.

Theorem 1. (See [2]) Let M2 ⊂ R3 be a surface of revolution obtained
by rotating the arc length parametrized curve α(v) = (f(v), 0, g(v)) in the
xz-plane around the z-axis. Then all parallels of M are biharmonic curves
if and only if either

(1) f is constant and M is a right circular cylinder or
(2) f(v) = ±c

√
v and

g(v) = v

√
4v − c2

4v
− c2

8
ln

(
8v + 8v

√
4v − c2

4v
− c2

)
+ c1,

where c and c1 are positive constants.

Remark 1. The surfaces introduced in Th. 1, (2), will be called CMP-
revolution surfaces. If we consider the parametrization

−→x (u, v) = (f(v) cos
u

c
, f(v) sin

u

c
, g(v)),

then, a simple computation shows that the coefficients of the metric are
independent of the values of the two constants c and c1:

g11(u, v) = v, g12(u, v) = 0, g22(u, v) = 1.

Therefore any pair of CMP-revolution surfaces are isometrics.
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Figure 1. Plot of a piece of the unique revolution surface with nongeodesic
biharmonic parallel lines, for c = 1 and c1 = 0.

Let us consider the parallel generated by (f(v), 0, g(v)). The geodesic
curvature of the parallel is − 1

2v , the sign depends on the orientation, and
the Gauss curvature is 1

4v2 .
Another parametrization of the revolution surface can be obtained by

changing v = c2

4 cosh2(t) and modifying the constants c =
√

2a, c1 = c2( c2
8 +

1
4 ln c). The new parametrization of the generating curve is

f(t) = ±a2 cosh t, g(t) = −a2

2
(t− 2 sinh(2t)) + c2.

3. Two-dimensional Riemannian manifolds with a family of
nongeodesic biharmonic curves

The surface in Fig. 1 is the only surface of revolution with nongeodesic
biharmonic parallel lines. The natural question is to ask if there are more
surfaces, obviously not of revolution, with a family of coordinate lines which
are nongeodesic biharmonic curves.

In any surface the level curves of the Gauss curvature define a foliation,
maybe degenerated, on it. At same time, the integral curves of the gradient
vector field are orthogonal to the level curves. We are interested in studying
the case when the level curves are curves with non zero constant geodesic
curvature whose square is the value of the Gauss curvature.

We will use the notation , i to denote partial derivatives with respect to
the variable ui. Thus, g12,1 denotes ∂g12

∂u1
.

Proposition 2. Let (M2, g) be a two-dimensional Riemannian manifold
such that the level curves of the Gauss curvature are nongeodesic biharmonic
curves. Then, for any p ∈ M , regular point of the Gauss curvature, there
exists a parametrization of a neighborhood of p, V ⊂ M , −→x : U → V ⊂
M , such that all the coordinate lines v = v0, v0 constant, are nongeodesic
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biharmonic curves, and the coefficients of the metric are

(3.1)

g11 ≡ 1,

g12(u, v) =
√

2m(v)(sin(
√

2k(v)(u−n(v)))+sin(
√

2 n(v)k(v)))
2 + uk′(v)

2k(v) ,

g22(u, v) = g2
12(u, v) +

(
g12,1(u,v)

k(v)

)2
,

where m(v) = sec(
√

2k(v)n(v))
(
1− k′(v)

2k2(v)

)
and where k(v0) is the geodesic

curvature of the coordinate line v = v0.

Reciprocally, if a metric is of the kind 3.1, then the level curves of the
Gauss curvature are nongeodesic biharmonic curves.

Proof. Let α : I → S be the gradient line of the Gauss curvature passing
trough the point p, and let us suppose that it is parametrized by arc-length.
Since p is a regular point for the Gauss curvature, there is a neighborhood of
p, V , such that all points q ∈ V are also regular. For each point α(v) ∈ V , let
σv be the level curve passing trough α(v) and parametrized by arc-length.

Finally, let us consider −→x : U → M defined by −→x (u, v) = σv(u).

k   =  ct.,
g

g    =  1.
11

g    (0,v) = 0,
12

g    (0,v) = 1.
22

x(t,v  )
0

x(0,v)

Figure 2. Schematic description of the definition of the parametrization.

Since all the coordinate lines v = v0 are parametrized by arc-length, then
the coefficient g11 of the metric is equal to 1.

The geodesic curvature of a curve −→x (u1(t), u2(t)), not necessarily parame-
trized by the arc-length, can be computed from the formula (see [3], formula
(49.7))

kg = 1
||α′||3 < Dα′

dt , α′ ∧ (N ◦ α) >

=
√

g11g22−g2
12

||α′||3
(
(u′′1 +

∑2
j,k=1 Γ1

jku
′
ju
′
k)u

′
2 − (u′′2 +

∑2
j,k=1 Γ2

jku
′
ju
′
k)u

′
1

)
.

Therefore, the geodesic curvature of a coordinate line t → −→x (t, v0) reduces
to
(3.2)

kg(t) = −Γ2
11(t, v0)

√
g22(t, v0)− g2

12(t, v0) = − g12,1(t, v0)√
g22(t, v0)− g2

12(t, v0)
.

Since we are supposing that the geodesic curvature of a coordinate line
v = v0 is constant, then kg(t) = k(v0), where k is the function assigning to
each coordinate line v = v0 its geodesic curvature.
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From Eq. 3.2 we get

(3.3) g22(t, v) = g2
12(t, v) +

(
g12,1(t, v)

k(v)

)2

.

Note that the area element reduces to

(3.4) σ :=
√

g11g22 − g2
12 =

g12,1(t, v)
k(v)

.

The computation of the Gauss curvature by the Gauss formula

(3.5) K = − 1
g11

((Γ2
12)1 − (Γ2

11)2 + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ1

11Γ
2
12 − Γ2

11Γ
2
22),

gives a simple expression:

K = −g12,111(t, v) + k2(v)g12,1(t, v)− k(v)k′(v)
g12,1(t, v)

.

Condition K(t, v) = k2(v) implies

(3.6) g12,111(t, v) + k(v)
(
2k(v)g12,1(t, v)− k′(v)

)
= 0.

From Eq. 3.4, Eq. 3.6 can be rewritten in terms of the area element σ as

(3.7)
∂2σ

∂t2
(t, v) + 2k2(v)σ(t, v)− k′(v) = 0.

Note that the differential equation is of the kind f ′′ + a2f = b whose
general solution can be written as f(t) = C1 cos (at− C2) + b

a2 . Therefore,
the general solution of Eq. 3.7 is

σ(t, v) = m(v) cos
(√

2 k(v) (t− n(v))
)

+
k′(v)

2k2(v)
,

for some functions m(v) and n(v).
Along the curve v → −→x (0, v) the area element, σ(0, v), is equal to 1,

therefore,

m(v) = sec
(√

2k(v)n(v)
)(

1− k′(v)
2k2(v)

)
.

Therefore, from Eq. 3.4,

g12(t, v) =
√

2k(v)m(v) sin(
√

2k(v)(t− n(v))) + tk′(v)
2k(v)

+ c(v),

for some functions n(v) and c(v).
Since the curve v → −→x (0, v) is orthogonal to all coordinate lines v = v0,

then g12(0, v) = 0. This implies that

c(v) =
m(v) sin(

√
2 n(v)k(v))√
2

.

Reciprocally, note that if the coefficients of a metric are of the kind 3.1,
then the Gauss curvature is K(t, v) = k2(v). Therefore, the coordinate
curves t → −→x (t, v0) are level curves of the Gauss curvature. Moreover, since



6 J. MONTERDE

the geodesic curvature of the curves t → −→x (t, v0) is k(v0), then they are
nongeodesic biharmonic curves. ¤
Remark 2. In the case k′ ≡ 0, then the Gauss curvature is constant. Mind-
ing’s theorem states that, up to local isometries, the models for surfaces with
constant Gauss curvature are the revolution surfaces with constant Gauss
curvature. It is possible to obtain parametrizations with coefficients of the
metric like in the statement of Prop. 2. See the final example 3.1.

Remark 3. Note that in the CMP-revolution surfaces, the gradient lines
of the Gauss curvature, ie., the meridian curves, are geodesic curves. So,
we shall ask for all gradient lines being geodesic curves, i.e., gradK

|gradK| is a
geodesic vector field. As it is pointed out in [1], section 3, this condition is
equivalent to the assertion that the regular levels of K are parallel, or to the
eiconal equation for K: grad(|gradK|) is a multiple of gradK.

Theorem 2. Let (M2, g) be a two-dimensional manifold with |gradK|(p) 6=
0 for all p ∈ M and such that the level curves of the Gauss curvature are non-
geodesic biharmonic curves, then (M2, g) is locally isometric to the CMP-
revolution surface if and only if gradK

|gradK| is a geodesic vector field.

Proof. In the CMP-revolution surface the gradient lines of the Gaussian
curvature are the meridian lines and they are geodesics, so, grad(|gradK|)
is a geodesic vector field.

Reciprocally, let us consider one of the parametrizations, −→x , given by
Prop. 2. Gradient lines are orthogonal to level curves, ie., to the co-
ordinate lines with −→x 1 as tangent vector. Therefore, any gradient line,
β(t) = −→x (u(t), v(t)), parametrized by arc-length, has as tangent vector

k

g12,1

(−g12
−→x 1 +−→x 2

)
.

An straightforward computation of its geodesic curvature using Eq. 3.2
with

u′(t) = −k(v(t))g12(u(t), v(t))
g12,1(u(t), v(t))

, v′(t) =
k(v(t))

g12,1(u(t), v(t))
,

gives us
kβ

g (t) =
g12,11

g12,1
(u(t), v(t)).

Now, by Eq. 3.1, kβ
g (t) ≡ 0 if and only if

− 1√
2

cos(
√

2 k(v(t)) (u(t)− n(v(t))))
sin(

√
2 k(v(t)) n(v(t)))

(
2k2(v(t))− k′(v(t))

)
= 0.

If all the gradient lines are geodesics, then 2k2(v) − k′(v) = 0 for all v.
Therefore,

k(v) = − 1
2v + a

.
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A simple change of parameter v allows to put

k(v) =
1
2v

.

Now, the coefficients of the metric are

g11 = 1, g12(u, v) = − u

2v
, g22(u, v) = 1 +

u2

4v2
.

A change of parameter u → u
√

v transform them into

g11 = v, g12 = 0, g22 = 1,

the same coefficients than the ones of the CMP-revolution surface. Therefore
both surfaces are locally isometric. ¤

3.1. Necessary condition. The condition: “orthogonal lines to the non-
geodesic biharmonic curves are geodesics” is necessary. Let us show an
example where the orthogonal lines are not geodesic curves.

The example can be built using the sphere and the parallel of latitude
π
4 . It is already known that it is a nongeodesic biharmonic curve on the
sphere. The image of this parallel under a rotation around the y-axis, an
isometry, gives another nongeodesic biharmonic curve. So, we can construct
a uniparametric family of nongeodesic biharmonic curves on the sphere.

Let us denote by Ry
θ : R3 → R3 the rotation with y-axis and angle θ. The

parametrization
−→x (u, v) = Ry

v(
√

2
2 (cos(u), sin(u), 1))

=
√

2
2 (cos(u) cos(v) + sin(v), sin(u), cos(v)− cos(u) sin(v)),

for u ∈ ]π2 ,−π
2 [, and v ∈ R, verifies that the coordinate lines t → −→x (t, v) are

nongeodesic biharmonic curves. (See Fig. 3)

Figure 3. The parametrization of the central section of the sphere with
nongeodesic biharmonic curves as coordinate lines.
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Of course, in this example we can not talk about gradient lines of the
Gauss curvature because it is a constant function. Instead, we can study
orthogonal curves to the coordinate lines. Since the geodesics in the sphere
are great circles and they are not orthogonal to the coordinate lines of the
parametrization −→x , then the family of orthogonal lines to the nongeodesic
biharmonic curves is not made of geodesic curves.
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