
NOTES ON MÖBIUS TRANSFORMATIONS

ANGEL MONTESINOS-AMILIBIA

1. Preliminary concepts

Let us work in the plane with all the machinery of the complex field C. Then

Definition 1.1. A Möbius transformation of the plane f : C → C is a map given
by

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C are such that ad− bc 6= 0.

We see that if c 6= 0 and z = −dc , then f(z) is not defined. Also, that a Möbius
transformation has the form of a homography. In fact, the appropriate treatment
of those transformations is to consider them as chart presentations of homographies
of PC1. Let us detail this.

Definition 1.2. The one-dimensional complex projective space PC1 is the quotient
of C2\{0} by the equivalence relation that makes equivalent z, w ∈ C2\{0} whenever
there is some non-zero λ ∈ C such that w = λz. We denote by [z] or [z1, z2] the
equivalence class of z = (z1, z2) and by π : C2\{0} → PC1 the map given by
π(z) = [z].

Let U = {(z1, z2) ∈ C2\{0} : z2 6= 0}. Then, π(U) = {[z1, z2] ∈ PC1 : z2 6= 0}
and the map p1 : π(U) → C given by p1[z1, z2] = z1

z2
is bijective, with inverse

p−1
1 (z) = [z, 1]. Also, any non-vanishing point (z1, 0) /∈ U is equivalent to (1, 0).

Hence, we can see PC1 as C completed with one point, [1, 0], frequently called the
point at infinity.

Definition 1.3. If A ∈ Gl(2; C), that is A : C2 → C2 is a C-linear automorphism,
it defines a map Ã : PC1 → PC1 by

Ã[z] = [Az].

In fact, if λ 6= 0 and z ∈ PC1, we will have [A(λz)] = [λAz] = [Az] = Ã[z], that is,
Ã is well defined and we have Ã ◦ π = π ◦A. Such a map Ã is called a homography
or a projective transformation of PC1.

Thus, let A ∈ Gl(2; C) be such that Aei = ejAji, where (ei, e2) is the canonical
basis of C2, and where we use the Einstein summation convention over repeated
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indexes. Then, if z ∈ C, we have

(p1◦Ã ◦ p−1
1 )(z) = (p1 ◦ Ã)[z, 1] = p1[zAe1 +Ae2]

= p1[A11z +A12, A21z +A22] =
A11z +A12

A21z +A22
.

Therefore, (p1 ◦ Ã ◦ p−1
1 )(z) is a Möbius transformation.

Note that if A ∈ Gl(2; C) and λ 6= 0, then λA ∈ Gl(2; C) defines the same
homography Ã. Thus, it is frequent to normalize A such that its determinant be
one.

2. Determination of a Möbius transformation

We want to prove here the following well known proposition(see [1] and [2]):

Proposition 2.1. Let z1, z2, z3 ∈ C2\{0} be such that the [zi] are different from
each other, and let w1, w2, w3 ∈ C2\{0} be such that the [wi] are different from
each other. Then, there is a unique homography Ã : PC1 → PC1 such that Ã[zi] =
[wi], i = 1, 2, 3.

Proof. Let zi = (ui, vi), i = 1, . . . , 3, and suppose that there are a, b ∈ C, not both
zero, such that az1 + bz2 = 0. Then, if for instance a 6= 0, we have z1 = − b

az2,

whence [z1] = [z2], against the hypotheses. Therefore, (z1, z2) is a basis of C2.
Hence, we can put z3 = az1 + bz2, and, as before, a 6= 0 and b 6= 0. Hence, let us
put

z̃1 = az1, z̃2 = bz2, z̃3 = z3.

Then we have z̃3 = z̃1 + z̃2 and [z̃i] = [zi], i = 1, 2, 3. Note that (z̃1, z̃2) is also a
basis because a 6= 0 and b 6= 0. We do the same with the wi to get w̃i with the same
respective properties. Now, since (z̃1, z̃2) and (w̃1, w̃2) are bases of C2, there is a
unique automorphism A of C2 such that Az̃i = w̃i, i = 1, 2, and, as a consequence,
Az̃3 = A(z̃i + z̃2) = w̃1 + w̃2 = w̃3. Therefore

Ã[zi] = Ã[z̃i] = [w̃i] = [wi], i = 1, 2, 3.

Now, suppose that B ∈ Gl(2; C) is such that B̃[zi] = [Bzi] = [wi]. Then Bzi =
λiwi, i = 1, . . . , 3, for some non-zero λi, i = 1, . . . , 3. Since the same occurs with
A, we see that there are three non-zero numbers µi such that Azi = µiBzi. Since
z3 = az1 + bz2, we have Az3 = µ3Bz3 = aµ1Bz1 + bµ2Bz2 = aµ3Bz1 + bµ3Bz2.
Since (Bz1, Bz2) is a basis, we get aµ1 = aµ3, and bµ2 = bµ3, and since a and b do
not vanish we conclude that µ1 = µ2 = µ3, and from this that Ã = B̃. �

Let us examine now how the calculation of A can be done. For i = 1, . . . , 3, let
us put zi = (ui, vi) with ui, vi ∈ C, and denote by di = ujvk−ukvj the determinant
of (zj , zk), where j := i mod 3 + 1 and k := j mod 3 + 1. Then, we determine
a, b ∈ C defined by z3 = az1 + bz2,

a = −d1

d3
, b = −d2

d3
.
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Let z̃1 := (ũ1, ṽ1) = az1, z̃2 := (ũ2, ṽ2) = bz2. Then, we have

Az̃1 = A(ũ1e1 + ṽ1e2) = ũ1(A11e1 +A21e2) + ṽ1(A12e1 +A22e2)

= (ũ1A11 + ṽ1A12)e1 + (ũ1A21 + ṽ1A22)e2,

Az̃2 = A(ũ2e1 + ṽ2e2) = ũ2(A11e1 +A21e2) + ṽ2(A12e1 +A22e2)

= (ũ2A11 + ṽ2A12)e1 + (ũ2A21 + ṽ2A22)e2.

We do the same with the wi = (pi, qi). Therefore, we must solve the equations:

ũ1A11 + ṽ1A12 = p̃1, ũ1A21 + ṽ1A22 = q̃1,

ũ2A11 + ṽ2A12 = p̃2, ũ2A21 + ṽ2A22 = q̃2.

These equations can be written in matrix form as follows:(
A11 A12

A21 A22

)(
ũ1 ũ2

ṽ1 ṽ2

)
=
(
p̃1 p̃2

q̃1 q̃2

)
.

Therefore we have:(
A11 A12

A21 A22

)
=

1
ũ1ṽ2 − ũ2ṽ1

(
ṽ2 −ũ2

−ṽ1 ũ1

)(
p̃1 p̃2

q̃1 q̃2

)
.

Thus, we have found A. Since the multiplication by a nonvanishing factor leaves Ã
invariant, we may dispense the division by the denominator in the right hand side
of the above expression.

3. Stereographic projection and its inverse. Elementary approach

For the computer visualization of stereographic projections of C to spheres, we
will use maps from C to R2 × {−1, 0,+1} that will be compositions of three maps.
The first one is a stereographic projection of C into a sphere of radius r centered at
the point c ∈ C ⊂ R3 with respect to its south pole, that is the point (c,−r) ∈ R3,
where the inclusion of C into R3 is given by z 7→ (z, 0). The next is a translation
of R3 given by the addition of (−c, 0) followed by a dilation of scale s. Finally, we
use an orthonormal basis of R3, (h, v, n), and we project R3 to R2 × {−1, 0,+1}
by putting p(x) = (x · h, x · v, sg(x · n)), where sg(a) is equal to −1 if a < 0, to 0 if
a = 0, and to +1 if a > 0.

We want to express this composition and its inverse R2 × {−1, 0,+1} → C.
Let us consider the line

t 7→ α(t) = (c,−r) + t
(
(z, 0)− (c,−r))

)
=
(
c+ t(z − c), r(t− 1)

)
.

The condition for the point α(t) to belong to the sphere is:

|
(
c+ t(z − c), r(t− 1)

)
− (c, 0)|2 − r2 = t2|z − c|2 + r2t2 − 2r2t = 0.

The value t = 0 means that α(t) is the south pole, and we discard it. Thus we have
the desired values of t and of t− 1.

t =
2r2

r2 + |z − c|2
, t− 1 =

r2 − |z − c|2

r2 + |z − c|2
.

Therefore the stereographic map sends z to(
c+

2r2(z − c)
r2 + |z − c|2

,
r(r2 − |z − c|2)
r2 + |z − c|2

)
.
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The composition of this with the translation by (−c, 0) and dilation by s gives

φ(z) =
s r
(
2r(z − c), r2 − |z − c|2

)
r2 + |z − c|2

.

Finally, the full composition ψ is given by

ψ(z) =
(
h · φ(z), v · φ(z), sg(n · φ(z))

)
.

We note that φ(z) ·φ(z) = s2r2. Therefore, if we write ψ(z) = (p, q, ε), we will have
p2+q2 = φ(z)·φ(z)−(n·φ(z))2 = s2r2−(n·φ(z))2, that is (n·φ(z))2 = s2r2−p2−q2.
Thus we see that (p, q) belongs to the closed disk D(sr) of radius sr centered at
the origin or R2, and that if p2 + q2 = s2r2, that is if (p, q) belongs to the sphere
S(sr) of radius sr centered at the origin of R2, then ε = 0.

Let us compute ψ−1(p, q, ε), where p, q ∈ D(sr) and ε ∈ {−1, 0,+1} is zero iff
(p, q) ∈ S(sr). We put

y = p h+ q v + ε
√
s2r2 − p2 − q2 n.

and it is clear that it is the unique point of the sphere of radius sr in R3 that by the
third map projects upon (p, q, ε). In other words, y = φ(z). Thus, if the components
of y in the canonical basis of R3 are (y1, y2, y3) and we put ỹ = (y1, y2) ∈ R2 = C,
we can write

φ(z) = (ỹ, y3) = s(t(z − c), r(t− 1)).
From this we conclude that sr(t− 1) = y3, that is t = y3+s r

s r and

ỹ = s(z − c)t =
(z − c)(y3 + s r)

r
,

and from this we get finally the inverse.

ψ−1(p, q, ε) = c+
rỹ

s r + y3

Therefore, we have formulas that enable us for passing between a point in screen
and the corresponding point in C and also its stereographic projection upon the
sphere.

4. Direct definition of the stereographic representation of PC1

We will use the following definition. An Hermitian form H in C2 is a map
H : C2 × C2 → C which is bilinear for the sum and such that H(λz, µw) =
λµH(z, w), H(z, w) = H(w, z) for any z, w ∈ C2 and λ, µ ∈ C. From this we get
H(z, w) = H(iz, iw). We denote by h : C2×C2 → R the R-bilinear symmetric form
given by h(z, w) = 1

2 (H(z, w) +H(w, z)) = Re(H(z, w)). Then, we have obviously
h(iz, iw) = h(z, w). Also

H(z, w) =
1
2

(H(z, w) +H(w, z)) +
1
2

(H(z, w)−H(w, z))

= h(z, w)− i

2
(iH(z, w)− iH(w, z)) = h(z, w)− i

2
(H(z, iw) +H(iw, z)),

= h(z, w)− ih(z, iw).

We shall put
K(H) = {z ∈ C2\{0} : H(z, z) = 0}.

If we add to the definition of H the property H(z, z) = h(z, z) > 0 if z 6= 0, we say
that H and h are positive definite (or negative definite if we change the inequality
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sense). Of course, then K(H) = {0}. In the following we will assume that we have
a positive definite Hermitian form H in C2. It could be the canonical one, that is

H(x, y) = x1y1 + x2y2, h(x, y) =
1
2

(x1y1 + x1y1 + x2y2 + x2y2),

for elements x = (x1, x2), y = (y1, y2) ∈ C2. However we will not require this in
what follows.

Let n ∈ C2 be a h-unit vector. Let T be the h-orthogonal complement of the
complex line generated by n. Then, T is also the H-orthogonal complement of that
complex line and is a complex line of C2.

We consider the real hyperplane Pn = Rn⊕T ⊂ C2 and in it the two-dimensional
sphere S2

n of radius 1 centered at n. More precisely, S2
1 = {z ∈ Pn : H(z, z) = 1}.

That sphere passes obviously by the origin of C2. Also, z ∈ Pn iff h(z, in) = 0.

Proposition 4.1. Let z ∈ C2. Then, if z ∈ T we have that C z ∩ S2
n = {0}; and if

z /∈ T then C z ∩ S2
n consists of the origin and another point that we shall denote

by pn(z), and call the stereographic projection of [z] ∈ PC1 to S2
n. We shall put

pn(z) = 0 if z ∈ T. Thus, the map pn : PC1 → S2
n is a bijection that we shall call

the stereographic projection.

Proof. Since the origin belongs to T and to S2
n, and T is h-orthogonal to n, it is

clear that T ∩ S2
n = {0}. So, let z /∈ T . First of all, we prove that if λ = H(z, n),

then h(λz, in) = 0. In fact, if λ = a+ ib, we have

H(λz, in) = iH(λz, n) = i(a− ib)H(z, n) = i(a− ib)(a+ ib) = i(a2 + b2).

Therefore h(λz, in) = Re(H(λz, in)) = 0. Thus, we only need to find a real number
p such that H(pλz − n, pλz − n)− 1 = 0. But

H(pλz − n, pλz − n)− 1 = p2λλH(z, z)− pH(λz, n)− pH(n, λz)

= p2λλH(z, z)− pλH(z, n)− pλH(n, z) = p2λλH(z, z)− 2pλλ

= λλp(pH(z, z)− 2).

Note that if λλ = 0, then H(z, n) = 0, so that z ∈ T against our hypothesis.
Therefore we have two solutions. The first one, p = 0, gives pλz = 0 and the other
is

p =
2

H(z, z)
that gives

pλz =
2H(z, n)
H(z, z)

z.

Note that H(z, z) > 0 because z 6= 0. Therefore the proposition is proved. �

Corollary 4.2. The stereographic projection pn : PC1 → S2
n is given by

pn([z]) =
2

h(z, z)
(
h(z, n)− ih(z, in)

)
z

or equivalently

pn([z]) =
2H(z, n)
H(z, z)

z,

for any [z] ∈ PC1 :
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Note that pn is defined here by a map from C2\{0} to S2
n that is invariant along

complex lines. We will denote that map also by pn.
This formula allows also to compute directly the action of a Möbius map on the

sphere S2
n. If A ∈ Gl(2; C) and Ã denotes the action of the corresponding Möbius

map on S2
n, then, if z ∈ S2

n, we will have:

Ã(z) =
2

h(Az,Az)
(
h(Az, n)− ih(Az, in)

)
Az =

2H(Az, n)
H(Az,Az)

Az.

A frequent chart of PC1 is given as follows. We consider the affine real plane B
in C2 given by B = {z ∈ C2 : H(n, z) = 1} and we choose a unit vector m ∈ T.
Then, (m,n) is a H-orthonormal basis of C2. We have B = Cm+ n. Now, for any
z ∈ C2 we can write that z = H(m, z)m + H(n, z)n. Hence, if ρ ∈ C\{0} and
ρz ∈ B we will have ρH(n, z) = 1. This is possible only if H(n, z) 6= 0, and in this
case we get

ρ =
1

H(n, z)
, ρz =

H(m, z)
H(n, z)

m+ n.

Then, if we consider the following open dense subset of PC1, U = {π(z) ∈
PC1 : H(n, z) 6= 0} ⊂ PC1, we have that there is one element of B in the class [z]
if π(z) ∈ U. It is given by wm + n for some uniquely defined w ∈ C that can be
written as

w =
H(m, z)
H(n, z)

.

We put fn([z]) = w. This establishes a bijection fn between U and C, and in the
following, whenever we use this chart we will identify w ∈ C with wm+ n ∈ B.

5. Circles

We keep here the notation of the preceding section. Our goal now is to prove the
following well-known theorem, along whose proof we shall obtain effective formulas
that may be used in computer calculations. Let us use the following notation

CG = pn(K(G)) ⊂ S2
n,

where G is a Hermitian form in C2.

Theorem 5.1. Let H and G be non-vanishing Hermitian forms in C2, the first one
positive (or negative) definite; let n ∈ C2 be a H-unit vector and S2

n be the 2-sphere
of unit radius with center n in the real hyperplane Pn = {z ∈ C2 : h(z, in) = 0}.
Let pn : PC1 → S2

n be the stereographic projection defined by n. Then:
(1) If G is positive or negative definite then CG = ∅. Otherwise CG is a circle

that may have zero radius. And conversely, every circle or point on S2
n can

be obtained in this manner.
(2) Let A ∈ Gl(2,C) and let G̃ be the pull-back of G by A, that is G̃(x, y) =

G(A−1x,A−1y). Then CG̃ = Ã(CG).

Proof. Without loss of generality, suppose that H is positive definite. Let g : C2 ×
C2 → R be the real form associated to G. It is well known that then there is a basis
(u, v) of C2 such that (u, iu, v, iv) is a real basis of C2 which is at the same time h
and g-orthogonal. Moreover, if we put G(u, u) = aH(u, u) and G(v, v) = −bH(v, v),
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the numbers a and b do not depend on the choice or such basis. Those bases are
not uniquely determined. In fact, if λ, µ are non-zero complex numbers, we may
substitute λu and µv for u and v respectively without losing their properties.

Let 0 6= z ∈ C2. Then, pn(z) ∈ CG iff G(z, z) = 0 and this is possible only if
G is not definite (positive or negative). Otherwise we may suppose that G(u, u) =
aH(u, u), G(v, v) = −bH(v, v) with a > 0, b ≥ 0. In the following we take this
assumption.

It is possible that G(z, z) = H(z, n) = 0, so that pn([z]) = 0 ∈ CG. In this case
the only complex multiple of z belonging to S2

n is the zero vector 0. In the remaining
cases, there is a nonvanishing complex multiple of z, namely pn(z) belonging both
to S2

n and K(G). Thus, we shall compute the nonvanishing vectors in S2
n ∩K(G).

We start by defining the following vector: ξ = pn([u])− n that is

ξ =
2H(u, n)
H(u, u)

u− n.

Note that ξ is a h-unit vector because pn([u]) ∈ S2
n. Any point c in S2

n may be
written as

c = n+ cos s ξ + sin s(cos t j + sin t k),

where sin s ≥ 0 and j, k is any fixed h-orthonormal set of vectors of Pn, both
h-orthogonal to ξ. We shall compute g(c, c).

By multiplying u and v, if it is necessary, by nonzero complex numbers, we may
assume that u and v are h-unit vectors and belong to the real hyperplane Pn, that
is h(u, in) = h(v, in) = 0. Hence in is a real linear combination of iu and iv, so
that n is a real linear combination of u and v. We can write thus

n = u cosα+ v sinα,

for some α ∈ R. Then, we will have

ξ = 2H(u, n)u− n = 2u cosα− u cosα− v sinα = u cosα− v sinα.

We choose for the vectors j and k the following values

k = −iu sinα+ iv cosα, j = u sinα+ v cosα.

One can easily verify that (ξ, j, k) is a h-orthonormal basis of Pn. For using them
in the following calculations we record these values:

g(n, n) = a cos2 α− b sin2 α,

g(ξ, ξ) = a cos2 α− b sin2 α,

g(k, k) = a sin2 α− b cos2 α,

g(j, j) = a sin2 α− b cos2 α,

g(ξ, j) = (a+ b) sinα cosα,

g(ξ, k) = g(j, k) = g(n, k) = 0,

g(n, ξ) = a cos2 α+ b sin2 α,

g(n, j) = (a− b) sinα cosα.
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Thus

g(c,c) = g(n, n) + cos2 s g(ξ, ξ) + sin2 s cos2 t g(j, j) + sin2 s sin2 t g(k, k)

+ 2 cos s g(n, ξ) + 2 sin s cos t g(n, j) + 2 sin s sin tg(n, k)

+ 2 cos s sin s cos t g(ξ, j) + 2 cos s sin s sin t g(ξ, k) + 2 sin2 s sin t cos tg(j, k)

=(1 + cos2 s)g(n, n) + sin2 s g(k, k) + 2 cos s g(n, ξ)

+ 2 sin s cos t
(
g(n, j) + cos sg(ξ, j)

)
.

Now, we have

2 sin s cos t
(
g(n, j) + cos sg(ξ, j)

)
=
(
a− b+ (a+ b) cos s

)
sin s cos t sin 2α

and

(1 + cos2 s)g(n, n) + sin2 s g(k, k) + 2 cos s g(n, ξ)

=(1 + cos2 s)g(n, n) + (1− cos2 s)g(k, k) + 2 cos s g(n, ξ)

=a− b+ (a+ b) cos2 s cos 2α+ 2 cos s(a cos2 α+ b sin2 α)

=a− b+ (a+ b) cos2 s cos 2α+ cos s
(
a(1 + cos 2α) + b(1− cos 2α)

)
=
(
a− b+ (a+ b) cos s

)
(1 + cos s cos 2α).

Therefore

g(c, c) =
(
a− b+ (a+ b) cos s

)
(1 + cos s cos 2α+ sin s cos t sin 2α).

Assume that c 6= 0 and that the second factor vanishes. We can put cos s =
r cosβ, sin s cos t = r sinβ, for some β ∈ [0, 2π), and r =

√
cos2 s+ cos2 t sin2 s ≤ 1.

Then the second factor in the above expression for g(c, c) is 0 = 1 + r cos(β − 2α).
Therefore cos t = 1 and then β = s and s = 2α ± π, or cos t = −1 and then
β = −s and s = −2α ± π. In all these cases we get c = 0, as one verifies by direct
computation, but this is against our hypothesis. Therefore g(c, c) = 0 implies that
the first factor vanishes, that is

cos s =
b− a
a+ b

, sin s =
2
√
ab

a+ b
.

The corresponding points of S2
n are exactly those of the circle

c(t) = n+
b− a
a+ b

ξ +
2
√
ab

a+ b
(cos t j + sin t k),

which has center

n+
b− a
a+ b

ξ

and radius
2
√
ab

a+ b
.

If that circle passes by the origin, then by the compactness of CG and the con-
tinuity of the map pn we conclude that there is a vector z ∈ K(G) such that
pn(z) = 0. Therefore, in all cases when G is not definite, CG is a circle that may
pass by the origin or have zero radius.
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Let us see now the converse. We can write the points z(t) of any circle in S2
n as

z(t) = n+µξ+ ρ(cos t j+ sin t k), where µ2 + ρ2 = 1, where the vectors ξ, j, k ∈ Pn
are an orthonormal basis and where h(n, k) = 0. We put

cos 2α = h(n, ξ), sin 2α = h(n, j),

from which we obtain α up to the addition of an integer multiple of π. Then we
define

u = ξ cosα+ j sinα, v = −ξ sinα+ j cosα.

vectors that are defined up to their simultaneous multiplication by -1. Since
h(n, k) = 0, we have n = h(n, u)u+ h(n, v)v. Thus

n =
(
h(n, ξ) cosα+ h(n, j) sinα

)
u+

(
− h(n, ξ) sinα+ h(n, j) cosα

)
v

=(cos 2α cosα+ sin 2α sinα
)
u+ (− cos 2α sinα+ sin 2α cosα)v

=u cosα+ v sinα,
ξ =u cosα− v sinα,
j =u sinα+ v cosα.

We consider the vectors u, v, iu, iv. We know already that

h(u, u) = h(v, v) = h(iu, iu) = h(iv, iv) = 1, h(u, v) = h(iv, iv) = 0.

We need to prove that h(u, iv) = 0 in order to conclude that (u, v, iu, iv) is an h-
orthonormal real basis of C2. We have

h(u, iv) = h(ξ cosα+ j sinα,−iξ sinα+ ij cosα) = h(ξ, ij).

But
0 = h(ξ, in) = −h(iξ, cos 2αξ + sin 2αj) = h(ξ, ij) sin 2α,

and in the same manner we obtain h(ξ, ij) cos 2α = 0. Hence h(ξ, ij) = h(u, iv) = 0.
Therefore, by using the same argument as before, we conclude that k = −iu sinα+
iv cosα. Finally, we put

a =
1− µ

2
, b =

1 + µ

2
,

and then we will have a+b = 1, µ = (b−a)/(b+a), ρ = 2
√
ab/(a+b). We complete

thus our task by defining g : C2 × C2 → R by

g(w, z) = a
(
h(w, u)h(z, u) + h(w, iu)h(z, iu)

)
− b
(
h(w, v)h(z, v) + h(w, iv)h(z, iv)

)
.

Then, it is evident that G, defined by G(z, w) = g(z, w)− ig(z, iw) is an Hermitian
form and that u, v, ξ, k, j are the vectors that define the circle determined by K(G)∩
S2
n. Thus (1) is proved.

As for (2), if 0 6= z ∈ C2 we have

G̃(Az,Az) = G(z, z).

Therefore, pn(z) ∈ CG iff Az ∈ K(G̃) and consequently iff Ã(pn(z)) = pn(Az) ∈
CG̃. �

The image of K(G) by the flat chart fn of PC1 is also a circle or one of its limits,
say a point or a straight line or the empty set. In fact, we have
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Theorem 5.2. Let H and G be non-vanishing Hermitian forms in C2, the first
one positive (or negative) definite; let (n,m) ∈ C2 be a H-orthonormal basis of C2.
We put B = Cm + n = {z ∈ C2 : H(n, z) = 1} and U = π(B). Let fn : U → C be
the chart defined by fn([z]) = H(m, z)/H(n, z) and put ĈG = fn(K(G)). Thus:

If G is positive or negative definite then ĈG = ∅. Otherwise it consists of a circle,
a straight line, a single point or the empty set. And conversely, every circle, straight
line, single point or the empty set in C can be obtained in this manner.

Proof. Let z ∈ B. ThenH(n, z) = 1. Therefore, ifG is definite (positive or negative)
we will have G(z, z) 6= 0, whence z /∈ K(G). Let us assume that G is not definite
and z = wm+n for some w ∈ C. We will have G(z, z) = |w|2G(m,m)+w̄G(m,n)+
wG(m,n) + G(n, n). Let a, b, c, d, x, y ∈ R be such that w = x + iy, G(m,m) =
a, G(n, n) = b, G(m,n) = c+ id. Then z ∈ K(G) iff

(x2 + y2)a+ 2(cx+ dy) + b = 0.

Assume that a = 0. Then (x, y) must satisfy 2(cx + by) + b = 0, and this is the
equation of a straight line unless c = d = 0; if c = d = 0, then there is no solution
for (x, y) because b 6= 0 since G 6= 0. If a 6= 0, then we can write the equation as(

x+
c

a

)2

+
(
y +

d

a

)2

=
c2 + d2 − ab

a2
.

If the right hand side is negative this has no solutions. Otherwise it is the equation
of a circle centered at (− c

a ,−
d
a ) with radius

√
c2+d2−ab
|a| . Note that if the radius is

zero the circle reduces to a single point. It is also clear now that the second part of
the first claim is true. Note also that c2 +d2−ab is equal to minus the determinant
of the matrix of G in the basis (m,n). �

A proposition analogous to Theorem 5.1 is true, but some easy modifications are
needed to account for the case when there are elements z ∈ B such that H(n,Az) =
0.

6. Effective calculation of Circles

Assume that H is the canonical Hermitian form and that we know G. Let us put
g11 = G(e1, e1), g12 = G(e1, e2) = G(e2, e1), g22 = G(e2, e2), where g11, g22 ∈ R
and g12 ∈ C and where (e1, e2) denotes the canonical basis of C2.

We look for a nonvanishing vector z = z1e1 + z2e2 ∈ C2 and a number λ ∈ C
such that G(z, w)−λH(z, w) = 0 for any w ∈ C2. This happens iff the same occurs
for w = e1 and for w = e2. that is if

(g11 − λ)z1 + g21z2 = 0, g12z1 + (g22 − λ)z2 = 0.

If g12 = 0, then we will have the solutions

λ = a = g11, λ = −b = g22

z = ũ1 = e1, z = ũ2 = e2.

If g12 6= 0, the determinant of that linear system must be zero, and this leads to
the following equation

λ2 − (g11 + g22)λ+ g11g22 − g12g12 = 0.
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whose solutions are the following

a =
1
2

(
g11 + g22 +

√
(g11 − g22)2 + 4g12g12,

)
,

−b =
1
2

(
g11 + g22 −

√
(g11 − g22)2 + 4g12g12,

)
.

Then if ab ≥ 0, we put

µ =
b− a
b+ a

, ρ =
2
√
ab

a+ b
,

and define the vector ũ = g12e1 + (a − g11)e2. Then we have (G − aH)(ũ, w) = 0
for any w ∈ C2. In this manner, ũ should be part of an h-orthogonal basis of C2

that is also g-orthogonal.
Then, we will put

ξ =
2H(ũ, n)ũ
H(ũ, ũ)

− n.

The circle is thus given by t 7→ n + µξ + ρ(cos tj + sin tk), where j, k is a h-
orthonormal set of vectors of Pn, both h-orthogonal to ξ.

7. The principal bundle P = (C2\{0}, π, PC1,C\{0})

As before let us denote by π : C2\{0} → PC1 the natural projection. This
defines a principal bundle P = (C2\{0}, π, PC1,C\{0}) whose right action is given
by Rρz = ρz for z ∈ C2\{0} and ρ ∈ C\{0}.

The fundamental vector field µ∗ generated on C2\{0} by the element µ ∈ C ≡
T1C\{0} of the Lie algebra of C\{0} has Rexp(µt) as one-parameter subgroup.
Therefore, its value at z is the tangent at t = 0 to the curve Rexp(µt)z = eµtz.

That is µ∗z = µz. In particular we see that the vertical subspace Vz of C2\{0} at z
is given by Vz = C z and also we see that 1∗z = z, that is 1∗ is the “radius vector”.

Let H : C2×C2 → C be a positive (or negative) definite Hermitian form. Then,
it is possible to define a horizontal distribution Q in C2\{0}, invariant under right
translations, by

Qz = {X ∈ TzC2\{0} : H(X, z) = 0}.
In other words, a vector field X ∈ X(C2\{0}) is horizontal iff H(X, 1∗) = 0.
The invariance of Q is proved as follows. Let X ∈ Tz(C2\{0}) be horizontal,
that is H(X, z) = 0, and let ρ ∈ C\{0}. Then H(dRρX, ρz) = H(ρX, ρz) =
ρρH(X, z) = 0, so that dRρ(Qz) ⊂ Qρz. Since dRρ is an isomorphism, we con-
clude that dRρ(Qz) = Qρz. Also, it is evident that being H definite, we have
Qz ⊕ Vz = Tz(C2\{0}).

This horizontal distribution defines a connection in the principal bundle P. Let
us calculate its connection form. If z ∈ C2\{0}, and X ∈ TzC2\{0}, we put
X = XV +XH , where

XV =
H(z,X)z
H(z, z)

, XH = X − H(z,X)z
H(z, z)

.

Then, H(XH , z) = 0, whence H(XH , iz) = 0. In particular, we get that h(XH , z)
= h(XH , iz) = 0. Therefore, XH is the h-orthogonal projection of X into the
h-orthogonal complement of the real plane generated by z and iz.
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Now,
H(z, µ∗z)
H(z, z)

=
H(z, µz)
H(z, z)

= µ.

Therefore, the connection form ω of P with values in C, determined by Q is given
by ωz(X) = H(z,X)/H(z, z), that is

ω(X) =
H(1∗, X)
H(1∗, 1∗)

.

Let us compute its curvature. Let X,Y ∈ X(C2\{0}) be two constant fields and
denote by XH , Y H their respective horizontal components, that obviously are not
constant. Then having in mind that 1∗ is the radius vector and that X,Y are
constant we have [X, 1∗] = X and [Y, 1∗] = Y. Also, since ω(X) is homogeneous
of degree -1, we will have 1∗(ω(X)) = −ω(X). Also, by the properties of the Lie
derivative we have

X(ω(Y )) = X

(
H(1∗, Y )
H(1∗, 1∗)

)
=

H(X,Y )
H(1∗, 1∗)

− H(1∗, Y )(H(X, 1∗) +H(1∗, X))
H(1∗, 1∗)2

=
H(X,Y )− ω(Y )H(X, 1∗)

H(1∗, 1∗)
− ω(Y )ω(X) =

H(X,Y H)
H(1∗, 1∗)

− ω(X)ω(Y )

=
H(XH , Y H)
H(1∗, 1∗)

− ω(X)ω(Y ).

Thus

Ω(X,Y ) = dω(XH , Y H) = dω(X − ω(X)1∗, Y − ω(Y )1∗)

= dω(X,Y )− ω(Y )dω(X, 1∗)− ω(X)dω(1∗, Y )

=
H(XH , Y H)−H(Y H , XH)

H(1∗, 1∗)
+ ω(Y )dω(1∗, X)− ω(X)dω(1∗, Y ).

But

dω(1∗, X) = 1∗(ω(X))−X(ω(1∗))− ω([1∗, X]) = −ω(X) + ω(X) = 0.

Therefore

Ω(X,Y ) =
H(XH , Y H)−H(Y H , XH)

H(1∗, 1∗)
=
−2i h(XH , iY H)

h(1∗, 1∗)
.

8. The Fubini-Study metric in PC1

The Hermitian form H defines a C\{0}-invariant Hermitian form field H in
C2\{0} by H = H/H(1∗, 1∗), that is, if z ∈ C2\{0} and X,Y ∈ TzC2\{0} we have

Hz(X,Y ) =
H(X,Y )
H(z, z)

.

In fact, if ρ ∈ C\{0} we have

(R∗ρH)z(X,Y ) = Hρz(dRρX, dRρY ) =
H(ρX, ρY )
H(ρz, ρz)

= Hz(X,Y ).

Thus, R∗ρH = H. Note that the Riemannian metric defined by Re(H) is also C\{0}-
invariant. This allows for the construction of a Riemannian metric in PC1, the
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Fubini-Study metric γ, that makes of the bundle P a Riemannian bundle. It is
enough to put, for X̃, Ỹ ∈ Tπ(z)PC1 :

γπ(z)(X̃, Ỹ ) = Re(H)z(XH
z , Y

H
z ),

where XH
z and Y Hz are the horizontal lift of X̃ and Ỹ , respectively, to z. The proof

that this definition is consistent is immediate. We will have that if X,Y ∈ TzC2\{0}
are such that dπ(X) = X̃ and dπ(Y ) = Ỹ , then

XH
z = X − H(z,X)z

h(z, z)
, Y Hz = Y − H(z,X)z

h(z, z)
.

Thus

H(XH
z , Y

H
z ) =

1
h(z, z)

H
(
X − H(z,X)z

h(z, z)
, Y − H(z, Y )z

h(z, z)

)
=

1
h(z, z)

H
(
X,Y − H(z, Y )z

h(z, z)

)
=
H(X,Y )h(z, z)−H(X, z)H(z, Y )

h(z, z)2

Now,

Re
(
H(X, z)H(z, Y )

)
= Re

((
h(X, z)− ih(X, iz)

)(
h(z, Y )− ih(z, iY )

))
= h(X, z)h(Y, z)− h(X, iz)h(iY, z) = h(X, z)h(Y, z) + h(X, iz)h(Y, iz).

Therefore

γπ(z)(X̃, Ỹ ) =
h(X,Y )h(z, z)− h(X, z)h(Y, z)− h(X, iz)h(Y, iz)

h(z, z)2
.

Let us see how is the Fubini-Study metric in the stereographic image of PC1

described in section 4. We take a h-unit vector m such that H(m,n) = 0. In partic-
ular we see that H(m, in) = H(im, in) = 0, and as a consequence that h(m,n) =
h(m, in) = h(im, in) = h(im, n) = 0. Thus, (m, im, n) is a h-orthonormal basis of
Pn. The sphere S2

n can thus be parameterized in usual spherical coordinates as

ψ(θ, φ) = n(1 + cos θ) + sin θ(m cosφ+ im sinφ).

Therefore

ψθ = cos θ(m cosφ+ im sinφ)− n sin θ, ψφ = sin θ(−m sinφ+ im cosφ).

Thus

h(ψ(θ, φ), ψ(θ, φ)) = 2(1 + cos θ),

h(ψθ, ψθ) = 1,

h(ψ(θ, φ), ψθ) = − sin θ,

h(ψ(θ, φ), iψθ) = h(ψ(θ, φ), cos θ(im cosφ−m sinφ)− in sin θ) = 0,

γ(ψθ, ψθ) =
2(1 + cos θ)− sin2 θ

4(1 + cos θ)2
=

1
4
.
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In the same manner we have

h(ψφ, ψφ) = sin2 θ,

h(ψ(θ, φ), ψφ) = 0,

h(ψ(θ, φ), iψφ) = − sin2 θ,

γ(ψφ, ψφ) =
2(1 + cos θ) sin2 θ − sin4 θ

4(1 + cos θ)2
=

1
4

sin2 θ,

and

h(ψθ, ψφ) = 0,

γ(ψθ, ψφ) = 0.

Thus, γ = 1
4 (dθ ⊗ dθ + sin2 θdφ⊗ dφ), which is 1

4 times the usual metric of S2,
or also the metric of a sphere of radius 1/2. Its curvature is constant and equal
to 4. We conclude that the conformal structure defined by γ in PC1 is the same
structure preserved for PC1 under the action of elements of Gl(2; C).

Now, we describe the same Fubini-Study metric when we use the “flat” presen-
tation of PC1. By putting x(w) = Re(w), y(w) = Im(w), we have the coordinate
functions (x, y) that we shall use for B. Then if ∂x, ∂y are the coordinate vec-
tor fields corresponding to x and y, the inclusion B into PC1 gives the following
parameterization B :

Φ(x, y) = xm+ y im+ n,

After an easy calculation, this gives the following metric that can be identified with
the metric of U in the chart Φ :

γ(Φx,Φx) =
1

(1 + x2 + y2)2
,

γ(Φx,Φy) = 0,

γ(Φy,Φy) =
1

(1 + x2 + y2)2
,

Hence, we have

γ =
dx2 + dy2

(1 + x2 + y2)2
,

Theorem 8.1. Let U(H) be the unitary group defined by H, that is U(H) = {A ∈
Gl(2; C) : H(Ax,Ay) = H(x, y),∀x, y ∈ C2}, and let A ∈ U(H). Then γ is invari-
ant by Ã.

Proof. Let 0 6= z ∈ C2 and X̃, Ỹ ∈ Tπ(z)PC1. We want to compute the pull-back
of γ by Ã : PC1 → PC1. We have

(Ã∗γ)π(z)(X̃, Ỹ ) = γÃ(π(z))

(
dÃ(X̃), dÃ(Ỹ )

)
.
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Let X,Y ∈ Tz(C2) be such that dπ(X) = X̃, dπ(Y ) = Ỹ . Then dπ
(
dA(X)

)
=

d(π ◦A)(X) = dÃ(dπ(X)) = dÃ(X̃) and dA(X) = AX. Therefore we have

(Ã∗γ)π(z)(X̃, Ỹ )

=
h(AX,AY )h(Az,Az)− h(AX,Az)h(AY,Az)− h(AX, iAz)h(AY, iAz)

h(Az,Az)2

=
h(X,Y )h(z, z)− h(X, z)h(Y, z)− h(X, iz)h(Y, iz)

h(z, z)2
= γπ(z)(X̃, Ỹ ).

�

9. The intrinsic isometric circle

Let A ∈ Gl(2; C). We have seen in section 4 that it induces a transformation
Ã in PC1 and, consequently in S2

n. We study now the subset of PC1 where that
transformation preserves the inner product γ. Let Am = am+cn and An = bm+dn.
If z ∈ C2, we have z = H(m, z)m+H(n, z)n. Hence

Az =H(m, z)Am+H(n, z)An = H(m, z)(am+ cn) +H(n, z)(bm+ dn)

=(aH(m, z) + bH(n, z))m+ (cH(m, z) + dH(n, z))n.

for some well defined complex numbers a, b, c, d such that ad − bc 6= 0. Then, the
image of Az in the “flat” presentation will be

Ã(p(z)) :=
aH(m, z) + bH(n, z)
cH(m, z) + dH(n, z)

=
aw + b

cw + d
,

where w = H(m, z)/H(n, z) is the image of z in the same presentation. Therefore,
the map Ã in Ã−1(U) is seen in the flat presentation as the complex function

f(w) =
aw + b

cw + d
.

Let us denote by w′ a vector tangent to B at w. Then

df(w′) =
acw + ad− caw − cb

(cw + d)2
w′ =

ad− bc
(cw + d)2

w′.

let us put ∆ = ad− bc, q = cw + d, r = aw + b. Then df(w′) = ∆w′/q2. Also

1 + |f(w)|2 = 1 +
|r|2

|q|2
.

The squared length of df(w′) will be thus

γz(w)(dÃ(w′), dÃ(w′)) =
|∆|2|w′|2

|q|4
(
1 + |r|2

|q|2
)2 =

|∆|2|w′|2

(|q|2 + |r|2)2
.

Since

γw(w′, w′) =
|w′|2

(1 + |w|2)2
,

we see that the points w where the map Ã preserves the inner product of tangent
vectors are those that satisfy the equation:

|q|2 + |r|2 − |∆|(1 + |w|2) = 0.

After calculation we get the equation:

(|a|2 + |c|2 − |∆|)|w|2 + (cd+ ab)w + (cd+ ab)w + |b|2 + |d|2 − |∆| = 0,
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which is the equation of a circle in B. I shall call it the intrinsic isometric circle
because it is defined through the natural Fubini-Study metric of PC1.

One sees by an easy calculation that if we put G(u, v) = H(Au,Av)−|∆|H(u, v),
then

G(wm+ n,wm+ n) = |q|2 + |r|2 − |∆|(1 + |w|2).
Therefore, we have proved the following result (cfr. section 5):

Theorem 9.1. The intrinsic isometric circle in B (resp. S2
n) defined by the

Hermitian form H and the automorphism A ∈ GL(2; C) is the intersection of B
(resp. S2

n) with K(G), where G is the Hermitian form in C2 given by G(u, v) =
H(Au,Av)− | detA|H(u, v).

Note that when A ∈ U(H) we obtain G(u, v) = 0 because then ∆2 = 1. Then
K(G) = C2\{0}, so that the isometric circle degenerates to all of PC1.

Usually by isometric circle is understood the locus of points of B where the map
induced by A is an isometry with respect to the Euclidean metric of B. We compute
now the Hermitian form associated with the usual isometric circle. If instead of
the metric γ for B as isometric to PC1 with the Fubini-Study metric, we use the
metric induced in B by h, then it is clear that a point w is in the isometric circle iff∣∣∣∣ ad− bc(cw + d)2

∣∣∣∣ = 1,

that is iff |cw + d|2 − |∆| = |c|2|w|2 + |d|2 + cdw + cdw − |∆| = 0. Then, that
Hermitian metric G is given by the following matrix coefficients:

G(m,m) = |c|2, G(n, n) = |d|2 − |∆|, G(m,n) = cd, G(n,m) = cd.

The ugliness of those formulas, that is their lack of symmetry, reflects their hybrid
character.
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