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1 The Taylor expansion of the exponential map

Let M be a surface in Rn and let m ∈ M. We know that there is an open
neighborhood Um of 0 ∈ TmM such that the exponential map expm : Um → Rn

is an one-to-one immersion. We recall also that expm(x) = γx(1), where γx :
[0, 1] → Rn is the geodesic in M with initial condition γ(0) = m, γ′x(0) = x.
We shall consider the Taylor expansion of expm around the origin of TmM. It
will be written as

expm(x) = m+ Im(x) +
1
2
Qm(x) +

1
6
Km(x) + . . . ,

where Im, Qm,Km are respectively linear, quadratic and cubic forms in TmM
with values in Rn.

Our purpose is to write these forms in terms more familiar with the usual
techniques of differential geometry. Let x ∈ Um and put x = tv, where t ∈
R and v ∈ TmM is a unit vector. Then, as it is well known, expm(x) =
expm(tv) = γv(t). Therefore

γv(t) = m+ Im(v)t+
1
2
Qm(v)t2 +

1
6
Km(v)t3 +O(t4).

Hence, γ′v(0) = v = Im(v), so that Im : TmM → R5 is the inclusion. We also
have γ′′v (0) = Qm(v) and γ′′′v (0) = Km(v).

Now, γv is a geodesic in M and this implies that at every t we have
γ′′v (t) ∈ Nγv(t)M, where NpM denotes the subspace of Rn orthogonal to TpM.
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In fact, we have then γ′′v (t) = αγv(t)(γ′(t), γ′(t)), where α denotes the second
fundamental form of M. Hence,

Qm(v) = γ′′v (0) = αm(v, v).

Thus, it is clear that the second order geometry of M around m is deter-
mined by the value at m of the second fundamental form of M. Let us study
the third order geometry.

2 Third order geometry

Let ξ ∈ TmM. We may make the parallel transport of ξ along the geodesic γv
in order to have a parallel vector field X(t) along that geodesic. This means
that X(0) = ξ, X(t) ∈ Tγv(t)M and that X ′(t) ∈ Nγv(t)M. Then, we will have
X · γ′′v = 0. Differentiating, we get

X · γ′′′v = −X ′ · γ′′v = −X ′ · α(γ′v, γ
′
v) = −(Dγ′vX) · α(γ′v, γ

′
v)

= −α(X, γ′v) · α(γ′v, γ
′
v).

Hence, by evaluation at t = 0 we have

ξ ·Km(v) = ξ · γ′′′v (0) = −αm(ξ, v) · αm(v, v).

We observe thus that the tangential part of the third order geometry at m
depends only on the second order geometry at m.

Now, let ζ ∈ NmM. As before, we define the vector field Z(t) along the
curve γv as the parallel transport of ζ. Thus, for any t we will have Z(t) ∈
Nγv(t)M and Z ′(t) ∈ Tγv(t)M. Hence Z ′ · γ′′v = 0. Thus

Z · γ′′′v = (Z · γ′′v )′ = (Z · α(γ′v, γ
′
v))
′ = Z ·

(
∇γ′vα

)
(γ′v, γ

′
v),

where ∇ is the connection induced in the vector bundle NM⊗T ∗M⊗T ∗M →
M by the connection ∇> in the vector bundle TM and the connection ∇⊥
in the vector bundle NM. Let us explain this. Let β be a section of the
vector bundle NM ⊗ T ∗M ⊗ T ∗M → M. Then, β is completely determined
by its action upon any two sections of TM, namely X,Y, and any section of
NM, namely W, given by (W,X, Y ) 7→ W · β(X,Y ). Then, if A ∈ X(M), the
section ∇Aβ of NM ⊗ T ∗M ⊗ T ∗M →M is determined by the knowledge of
W ·

(
∇Aβ

)
(X,Y ) for any X,Y,W as before. Well then, we define

W ·
(
∇Aβ

)
(X,Y )

=DA

(
W · β(X,Y )

)
− (∇⊥AW ) · β(X,Y )−W · β(∇>AX,Y )−W · β(X,∇>AY ).
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It is now easy to prove that this defines a linear connection for sections of that
fibre bundle.

Our result follows once one takes account that Z and γ′v are parallel along
γv and that (Z · α(γ′v, γ

′
v))
′ = Dγ′v(Z · α(γ′v, γ

′
v)).

We have thus that ζ ·Km(v) = ζ ·
(
∇vα

)
(v, v). We conclude that, for any

u ∈ Rn and for any x ∈ Um, we have

u · expm(x) =u ·m+ u · x+
1
2
u · αm(x, x)

− 1
6
αm(u>, x) · αm(x, x) +

1
6
u⊥ · (∇xα)(x, x) +O(|x|4)

Note that we have not used anywhere the dimension of M. Thus all these
results are valid for any submanifold in Rn.

Below, we will denote by f3,u the third order approximation of the function
x ∈ TmM 7→ u · (expm(x)−m), that is

f3,u(x) = u · x+
1
2
u · αm(x, x)− 1

6
αm(u>, x) · αm(x, x) +

1
6
u⊥ · (∇xα)(x, x).

3 Application to the asymptotic directions for a
surface in IR5

Let M be a surface immersed in R5. Let us reword the characterization of
asymptotic directions at a point m ∈M given in [1], p. 1006.

Definition 3.1 Let 0 6= u ∈ R5. Then, u determines a binormal direction at
m iff the following conditions are true: (i) 0 is a singular point of f3,u; (ii)
there is a non-vanishing vector x ∈ TmM such that u · αm(x, y) = 0 for any
y ∈ TmM and such that f3,u(x) = 0. We say that such a vector x defines an
asymptotic direction at m.

Assume that 0 6= x ∈ TmM defines an asymptotic direction. Then there is
u ∈ R5 with the two properties of the above definition. These are equivalent
clearly to the requirements that u ∈ NmM, that u · αm(x, .) = 0 and that
u · (∇xα)(x, x) = 0. Now, let t1, t2 be any basis of TmM . Then the three
vectors αm(x, t1), αm(x, t2), (∇xα)(x, x) ∈ NmM must have a non-vanishing
vector u ∈ NmM orthogonal to them all. Since dimNmM = 3, we conclude
that the necessary and sufficient condition for x being an asymptotic direction
is that those three vectors be linearly dependent, that is

det
(
αm(x, t1), αm(x, t2), (∇xα)(x, x)

)
= 0. (1)
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This is a homogeneous polynomial of degree five in the (two) components
of x, that is, the asymptotic lines on the surface M immersed in R5 must
satisfy a homogeneous binary equation of degree 5.

Now, we are going to prepare this formula for the effective computation of
those asymptotic lines. Assume that (t1, t2) is an orthonormal reference of TM
in a neighborhood of m, and that we put b1 = α(t1, t1), b2 = α(t2, t2), b3 =
α(t1, t2). Then, α = b1 ⊗ t]1 ⊗ t

]
1 + b2 ⊗ t]2 ⊗ t

]
2 + b3 ⊗ (t]1 ⊗ t

]
2 + t]2 ⊗ t

]
1), where

t]i is the 1-form defined by t]i(z) = t1 · z.
We have ∇⊥x bi = (Dxbi)⊥ = Dxbi − (Dxbi · t1)t1 − (Dxbi · t2)t2. Now we

note that the equation 1 may be equivalently written as

det
(
t1, t2, αm(x, t1), αm(x, t2), (∇xα)(x, x)

)
= 0, (2)

and this means that in equation 2 we may replaceDxbi by∇⊥x bi.Also, (∇>x t
]
i)(x) =

Dx(t]i(x)) − t]i
(
(Dxti)>

)
= x(t]i(x)) − t]i(Dxti) = (Dxt

]
i)(x) = (Dxti) · x =

(tj · Dxti)(tj · x), where i = 1, 2 and i 6= j ∈ {1, 2}. Therefore, if we put
x = ct1 + dt2, we have(

Dx(t]1 ⊗ t
]
1)

)
(x, x)b1 = 2c(Dxt

]
1)(x)b1 = 2kcd b1,

where we have put

k = (t2 ·Dxt1) = −(t1 ·Dxt2) = c(t2 ·Dt1t1) + d(t2 ·Dt2t1).

In the same manner we have(
Dx(t]2 ⊗ t

]
2)

)
(x, x)b2 = −2kcd b2,

and (
Dx(t]1 ⊗ t

]
2)

)
(x, x)b3 =

(
Dx(t]2 ⊗ t

]
1)

)
(x, x)b3 = k(d2 − c2)b3.

Hence, for the computation of 2, instead of (∇xα)(x, x) we may write

c2Dxb1 + d2Dxb2 + 2cdDxb3 + 2kcd(b1 − b2) + 2k(d2 − c2)b3.

We compute first the part

det(αm(x, t1), αm(x, t2), 2kcd(b1 − b2) + 2k(d2 − c2)b3).

It is equal to

det
(
cb1 + db3, cb3 + db2, 2kcd b1 − 2kcd b2 + 2k(d2 − c2)b3

)
=2kcd3 det(b3, b2, b1)− 2kc3d det(b1, b3, b2) + 2kcd(d2 − c2) det(b1, b2, b3)

=(−2kcd3 + 2kc3d+ 2kcd3 − 2kc3d) det(b1, b2, b3)
=0.
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Therefore we may write the equation of asymptotic directions 2 as

det(t1, t2, cb1 + db3, cb3 + db2, c
2Dxb1 + d2Dxb2 + 2cdDxb3) = 0,

where every expression may be computed without special difficulty.

4 The equations in terms of a chart

Assume that M is parameterized by a chart X : R2 → R5 with coordinates
(u, v). Then, let x = aXu + bXv. The equation of asymtpotic lines may be
written as

det(Xu, Xv, α(x,Xu), α(x,Xv), (∇xα)(x.x)) = 0

For brevity, we shall use the following notation

det⊥(P, ..., Q) = det(Xu, Xv, P, ..., Q).

Now α(x,Xu) = (aXuu + bXvu)⊥ and an analogous formula for α(x,Xu).
Hence, the equation is

det⊥(aXuu + bXvu, aXuv + bXvv, (∇xα)(x.x)) = 0.

The last vector field in the determinant can be seen as a sum of terms like
a3(∇Xuα)(Xu, Xu), a2b(∇Xuα)(Xu, Xv), . . . . Let us express them in terms of
the derivatives of X. We have for the first one

(∇Xuα)(Xu, Xu) = ∇⊥Xu

(
α(Xu, Xu)

)
− 2α(X>uu, Xu)

=
(
DXuX

⊥
uu − 2DXuX

>
uu

)⊥
=

(
Xuuu − 3DXuX

>
uu

)⊥
.

This contributes to the determinant by the term

a3 det⊥(aXuu + bXvu, aXuv + bXvv, Xuuu − 3DXuX
>
uu).

Thus, we need to compute
(
DXuX

>
uu

)⊥
. Suppose that X>uu = puuXu + quuXv

for some functions puu, quu. Then,
(
DXuX

>
uu

)⊥ = (puuXuu+quuXuv)⊥. Hence,
the term of the determinant will be

a3 det⊥(aXuu + bXvu, aXuv + bXvv, Xuuu − 3(puuXuu + quuXuv)

=a5 det⊥(Xuu, Xuv, Xuuu) + a4bdet⊥(Xuu, Xvv, Xuuu − 3quuXuv)

+ a3b2 det⊥(Xuv, Xvv, Xuuu − 3puuXuu)
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We need to compute puu and quu. We will have the following linear system,
where E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv :

Epuu + Fquu = Xuu ·Xu

Fpuu +Gquu = Xuu ·Xv.

whose solution is puu = 1
S

(
(Xuu · Xu)G − (Xuu · Xv)F

)
and quu = 1

S

(
(Xuu ·

Xv)E − (Xuu ·Xu)F
)
, where S = EG− F 2.

For
(
DXvX

>
vv

)⊥ the computation is almost identical. That is, the contri-
bution to the determinant is

b3 det⊥(aXuu + bXvu, aXuv + bXvv, Xvvv − 3(pvvXuv + qvvXvv)

=a2b3 det⊥(Xuu, Xuv, Xvvv − 3qvvXvv) + ab4 det⊥(Xuu, Xvv, Xvvv − 3pvvXuv)

+ b5 det⊥(Xuv, Xvv, Xvvv),

where

pvv =
1
S

(
(Xvv ·Xu)G− (Xvv ·Xv)F

)
, qvv =

1
S

(
(Xvv ·Xv)E − (Xvv ·Xu)F

)
Let us study the part that depends on a2b(∇Xuα)(Xu, Xv). We have

(∇Xuα)(Xu, Xv) = ∇⊥Xu

(
α(Xu, Xv)

)
− α(Xu, X

>
uv)− α(X>uu, Xv)

=
(
DXuX

⊥
uv −DXuX

>
uv −DXvX

>
uu

)⊥
=

(
Xuuv − 2DXuX

>
uv −DXvX

>
uu

)⊥
.

We need to calculate the functions puv, quv such that X>uv = puvXu + quvXv.
They will be

puv =
1
S

(
(Xuv ·Xu)G− (Xuv ·Xv)F

)
, quv =

1
S

(
(Xuv ·Xv)E− (Xuv ·Xu)F

)
.

The contribution to the determinant will be

a2b det⊥(aXuu + bXvu, aXuv + bXvv, Xuuv − 2(puvXuu + quvXuv)− puuXuv − quuXvv)

=a4bdet⊥(Xuu, Xuv, Xuuv − quuXvv) + a3b2 det⊥(Xuu, Xvv, Xuuv − (2quv + puu)Xuv)

+ a2b3 det⊥(Xuv, Xvv, Xuuv − 2puvXuu)
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In the same manner we compute the term with ab2(∇Xvα)(Xu, Xv). We
will have

(∇Xvα)(Xu, Xv) =
(
Xuvv − 2DXvX

>
uv −DXuX

>
vv

)⊥
.

The contribution to the determinant will be

ab2 det⊥(aXuu + bXvu, aXuv + bXvv, Xuvv − 2(puvXuv + quvXvv)− pvvXuu − qvvXuv)

=a3b2 det⊥(Xuu, Xuv, Xuvv − 2quvXvv) + a2b3 det(Xuu, Xvv, Xuvv − (2puv + qvv)Xuv)

+ ab4 det⊥(Xuv, Xvv, Xuvv − pvvXuu)

We compute now the term with ab2(∇Xuα)(Xv, Xv). We will have

(∇Xuα)(Xv, Xv) = ∇⊥Xu

(
α(Xv, Xv)

)
− 2α(Xv, X

>
uv))

=
(
DXuX

⊥
vv − 2DXvX

>
uv

)⊥
=

(
Xuvv −DXuX

>
vv − 2DXvX

>
uv

)⊥
.

Its contribution to the determinant is the same as in the preceding case. In
the same manner we will get that the contribution corresponding to

a2b(∇Xvα)(Xu, Xu)

will be the same as that corresponding to

a2b(∇Xuα)(Xu, Xv),

which we already have computed.
Our task from now on will be to compute the coefficients on a5, a4b, . . . , b5

in the determinant. First, the coefficient of a5. It will be

det⊥(Xuu, Xuv, Xuuu).

That of b5 will be
det⊥(Xuv, Xvv, Xvvv).

The coefficient of a4b will be

det⊥(Xuu, Xvv, Xuuu − 3quuXuv)

+ 3 det⊥(Xuu, Xuv, Xuuv − quuXvv)

= det⊥(Xuu, Xvv, Xuuu) + 3 det⊥(Xuu, Xuv, Xuuv).

7



In the same manner, the coefficient of ab4 will be

det⊥(Xuu, Xvv, Xvvv) + 3 det⊥(Xuv, Xvv, Xuvv).

That of a3b2 will be

det⊥(Xuv, Xvv, Xuuu − 3puuXuu)

+ 3 det⊥(Xuu, Xuv, Xuvv − 2quvXvv)

+ 3 det⊥(Xuu, Xvv, Xuuv − (2quv + puu)Xuv)

= det⊥(Xuv, Xvv, Xuuu)

+ 3 det⊥(Xuu, Xuv, Xuvv)

+ 3 det⊥(Xuu, Xvv, Xuuv).

Finally, that of a2b3 will be

det⊥(Xuu, Xuv, Xvvv) + 3 det⊥(Xuv, Xvv, Xuuv) + 3 det⊥(Xuu, Xvv, Xuvv).

5 Strong principal directions of surfaces in R4

A study of these directions is given in [2] The equation to solve is now

det
(
α(x, Jx), (∇xα)(x, x)

)
= 0.

Let us use the same notation as in the preceding section. Then x = aXu+bXv.
Also

JXu =
−FXu + EXv

d
JXv =

FXv −GXu

d
,

where d =
√
EG− F 2. Therefore

α(x, Jx) =
α
(
aXu + bXv, a(−FXu + EXv) + b(FXv −GXu)

)
d

=
1
d

(
− (a2F + abG)Xuu + (a2E − b2G)Xuv + (abE + b2F )Xvv

)⊥
.

Thus an equivalent equation is given by

det⊥
(
raaa

2 + rabab+ rbbb
2, (∇xα)(x, x)

)
= 0,

where

raa = −FXuu + EXuv, rab = −GXuu + EXvv, rbb = FXvv −GXuv.
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Now, according with the results of the above section, we can write the left
hand side of the equation as

a3 det⊥(raaa2 + rabab+ rbbb
2, Yuuu)

+3a2bdet⊥(raaa2 + rabab+ rbbb
2, Yuuv)

+3ab2 det⊥(raaa2 + rabab+ rbbb
2, Yuvv)

+b3 det⊥(raaa2 + rabab+ rbbb
2, Yvvv),

where we have put

Yuuu = Xuuu − 3(puuXuu + quuXuv),
Yuuv = Xuuv − 2puvXuu − (2quv + puu)Xuv − quuXvv,

Yuvv = Xuvv − 2quvXvv − (2puv + qvv)Xuv − pvvXuu,

Yvvv = Xvvv − 3(qvvXvv + pvvXuv).

Then the coefficient in a5 in the equation will be

det⊥
(
raa, Xuuu − 3(puuXuu + quuXuv)

)
= det⊥(raa, Xuuu) + 3(Fquu + Epuu) det⊥(Xuu, Xuv).

The coefficient in a4b will be

det⊥(rab, Yuuu) + 3 det⊥(raa, Yuuv)

= det⊥(rab, Xuuu) + 3 det⊥(raa, Xuuv)

+ det⊥(−GXuu + EXvv,−3(puuXuu + quuXuv))

+ 3 det⊥(−FXuu + EXuv,−2puvXuu − (2quv + puu)Xuv − quuXvv)

= det⊥(rab, Xuuu) + 3 det⊥(raa, Xuuv)

+ 3
(
F (2quv + puu) + 2Epuv +Gquu

)
det⊥(Xuu, Xuv)

+ 3(Epuu + Fquu) det⊥(Xuu, Xvv).
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That of a3b2 will be:

det⊥(rbb, Yuuu) + 3 det⊥(rab, Yuuv) + 3 det⊥(raa, Yuvv)

= det⊥(rbb, Xuuu) + 3 det⊥(rab, Xuuv) + 3 det⊥(raa, Xuvv)

− 3 det⊥(FXvv −GXuv, puuXuu + quuXuv)

+ 3 det⊥(−GXuu + EXvv,−2puvXuu − (2quv + puu)Xuv − quuXvv)

+ 3 det⊥(−FXuu + EXuv,−2quvXvv − (2puv + qvv)Xuv − pvvXuu)

= det⊥(rbb, Xuuu) + 3 det⊥(rab, Xuuv) + 3 det⊥(raa, Xuvv)

+ 3
(
2Gquv + F (2puv + qvv) + Epvv

)
det⊥(Xuu, Xuv)

+ 3(Fpuu +Gquu + 2Epuv + 2Fquv) det⊥(Xuu, Xvv)

+ 3(Fquu + Epuu) det⊥(Xuv, Xvv)

That of a2b3 :

det⊥(raa, Yvvv) + 3 det⊥(rab, Yuvv) + 3 det⊥(rbb, Yuuv)

= det⊥(raa, Xvvv) + 3 det⊥(rab, Xuvv) + 3 det⊥(rbb, Xuuv)

− 3 det⊥(−FXuu + EXuv, qvvXvv + pvvXuv)

+ 3 det⊥(−GXuu + EXvv,−2quvXvv − (2puv + qvv)Xuv − pvvXuu)

+ 3 det⊥(FXvv −GXuv,−2puvXuu − (2quv + puu)Xuv − quuXvv)

= det⊥(raa, Xvvv) + 3 det⊥(rab, Xuvv) + 3 det⊥(rbb, Xuuv)

+ 3(Fpvv +Gqvv) det⊥(Xuu, Xuv)

+ 3(Fqvv + 2Gquv + Epvv + 2Fpuv) det⊥(Xuu, Xvv)

+ 3(2Epuv + F (2quv + puu) +Gquu) det⊥(Xuv, Xvv)

That of ab4 can be obtained by symmetry from that of a4b, so that it is

det⊥(rab, Xvvv) + 3 det⊥(rbb, Xuvv)

+ 3
(
F (2puv + qvv) + 2Gquv + Epvv

)
det⊥(Xuv, Xvv)

+ 3(Gqvv + Fpvv) det⊥(Xuu, Xvv).

And that of b5, from that of a5. It is

det⊥(rbb, Xvvv) + 3(Fpvv +Gqvv) det⊥(Xuv, Xvv).
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