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ANGEL MONTESINOS-AMILIBIA

1. The Veronese of curvature

In the following, M will be a smooth k−dimensional manifold immersed in Rk+n.
However, since all our study will be local, we shall suppose without loss of generality
that M is a regular submanifold of Rk+n. Over M we have the tangent bundle
π : TM →M, and the normal bundle given by

NM = ∪p∈M (TpM)⊥, πN : NM →M,

where (TpM)⊥ denotes the subspace of TpRk+n orthogonal to TpM. Its fiber over
p ∈ M will be denoted by NpM = (TpM)⊥. The usual inner product will be
denoted by a dot. If X ∈ TpRk+n, we will have the decomposition X = X> +X⊥,
with X> ∈ TpM, X⊥ ∈ NpM. For Xp ∈ TpRk+n we shall denote by DXp :
C∞(Rk+n,Rm) (with arbitrary m ∈ Z+) the ordinary directional derivative. For
this matter, all vectors of TpM and of NpM are considered as elements of TpRk+n.

X(M) will denote the Lie algebra of smooth vector fields on the manifold M ,
and if E is the total space of a vector bundle over M we shall denote by ΓE the
C∞(M)-module of its smooth sections.

Let p ∈ M, Xp, Yp ∈ TpM and up ∈ NpM. Let u ∈ ΓNM and Y ∈ X(M) be
extensions of up and Yp, respectively. Then we have

up ·DXp
Y = DXp

(u · Y )− (DXp
u) · Yp = −(DXp

u) · Yp.
The left-hand side says that the expression does not depend on the chosen exten-
sion u and the right-hand one that it does not depend on the extension Y. It is
clearly linear in the three arguments up, Xp and Yp. This leads to define the second
fundamental form αp : TpM × TpM → NpM by

αp(Xp, Yp) = (DXp
Y )⊥

and also to the map A : NpM × TpM → TpM given by Aup(Xp) = (DXpu)>, so
that up · α(Xp, Yp) = −Aup(Xp) · Yp. The map α : p 7→ αp defines an element of
Γ(NM ⊗ T ∗M ⊗ T ∗M). Then, for any sections u ∈ ΓNM and X,Y ∈ X(M) we
have u · α(X,Y ) = u ·DXY = −(DXu) · Y.

Let PTpM be the projective space of directions in TpM. The second fundamental
form defines a map ηp : PTpM → NpM, which we call the Veronese of curvature,
by

ηp([t]) = ηp(t) =
αp(t, t)
t · t

, t ∈ TpM\{0}.

I shall describe in this note the relations between the Veronese of curvature and
the focal set of the immersion M.
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2. The focal set

A useful definition of the focal set of M goes as follows. Let ζ : NM → Rk+n
be the map given by ζ(u) = p + u if u ∈ NpM, that is ζ(u) = πN (u) + u. The
focal set of M, denoted here by F(M), is defined as the set of critical points of
ζ. That is by the equation det(dζ) = 0 whose solutions in NpM can be obtained
using arbitrary bases of TuNM and of Tp+uRk+n for expressing det(dζp) = 0. Let
wi, i = 1, . . . , n, be a local orthonormal frame of NM in a neighborhood U of
p ∈ M and let ti, i = 1, · · · , k, be an orthonormal frame of TM in U. By means
of the first of those frames we can work with a trivialization of NM on U given by
u ≈ (πN (u), x1, . . . , xn), where the xi are such that u =

∑
i xiwip, being p = πN (u).

Thus the map ζ can be expressed as ζ(p, x1, . . . , xn) = p+
∑
i xiwip.

Let X ∈ TpM. Then

dζ(X, 0) = X +
∑

xidwi(X) = X +
∑

xiDXwi,

and dζ(0, ∂xi
) = wi. Since the wi are orthonormal, the vanishing of det(dζ) is

equivalent ot the vanishing of the determinant of the projection of dζ
∣∣
TpM

into
TpM, that is to the vanishing of the determinant of the endomorphism of TpM
given by

X → (dζ(X, 0))> = X +
∑

xi(DXwi)>.

The component in tjp of (dζ(tip, 0))> is thus

tip · tjp +
∑
b

xb(Dtip
wb) · tjp = tip · tjp − up · αp(tip, tjp),

where u =
∑
b xbwbp. That is, the condition is equivalent to the vanishing at p of

the matrix with coefficients δij − u · α(ti, tj) = (g − u · α)(ti, tj).
We have proved thus:

Proposition 2.1. The focal set M is given by

F(M) = {u ∈ NM : det(gπN (u) − u · απN (u)) = 0},

where g is the first fundamental form of M and u ·αp is the u−second fundamental
form of M at p ∈M.

We shall put Fp(M) = Fp(M) ∩NpM. The next properties will be useful:

Proposition 2.2. (1) Let u : M → NM be a local section in a neighborhood
of p ∈M. Then

det(gp − up · αp) = det(d(ζ ◦ u)>p ).

(2) Let u ∈ Fp(M). Then there is t ∈ TpM\{0} such that gp(t) = u · αp(t) ∈
T ∗pM ; in the remaining of the statement of this proposition, t will have this
property.

(3) u · ηp(t) = 1. In particular, u 6= 0, ηp(t) 6= 0.
(4) ηp(t) /∈ (dηp)(TtTpM) ⊂ Tηp(t)NpM, under the usual identification of NpM

with Tηp(t)NpM.

Proof. 1) If, as before, we take a local frame wi of NM in a neighborhood U of p,
we can write u as u =

∑
i u

iwi, u
i ∈ C∞(U). Thus, ζ ◦ u = id +

∑
i u

iwi, whence
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if X ∈ TpM, we will have

d(ζ ◦ u)>p (X) =
(
X +

∑
i

(
(DXu

i)wip + uipDXwi
))>

= X +Aup(X).

Therefore, the determinant of d(ζ ◦ u)>p is that of the matrix d(ζ ◦ u)(ta) · tb =
δab − up · αp(ta, tb).

2) We can look at gp − u · αp as a linear map from TpM to T ∗pM. Since it maps
linearly a vector space into other of same dimension and has zero determinant, we
conclude that there is some non-zero t ∈ TpM such that (gp − u · αp)(t) = 0.

3) If the 1-form (gp−u·αp)(t) acts upon the vector t itself, we get t·t−u·αp(t, t) =
0, whence, by dividing by t · t 6= 0, we obtain the claim.

4) For making the calculations easier we can assume that t · t = 1. Then, if
X ∈ TtTpM, we have

dηp(X) =
2

(t · t)2
((t · t)αp(t,X)− (t ·X)αp(t, t)) = 2(αp(t,X)− (t ·X)ηp(t)).

Suppose that this is equal to ηp(t). By inner multiplication of this with u we get
u · ηp(t) = t · t = 1, while the same multiplication with dηp(X) yields 2(u · αp(t)−
gp(t))(X) = 0, which is absurd. �

In general, F(M) will be a hypersurface, possibly with singularities, of NM,
whose intersection with each fiber NpM will be an algebraic hypersurface of degree
k. Thus, in the case of a surface M ∈ R2+n, the intersection Fp(M) of F(M) with
NpM will be a quadric.

3. Inverted pedal

In this section we are interested solely in the study of Fp(M). This justifies the
use of the following simplified notation:

T = TpM, N = NpM = T⊥, α = αp, η(t) =
α(t, t)
t · t

, F = Fp(M), g = gp.

Definition 3.1. Let P be a smooth manifold, µ : P → Rn a smooth map, and
F ∈ Rn. For each p ∈ P, let pedµ(p) be the nearest point to F from among those
of the affine subspace tangent to µ(P ) at µ(p),

{µ(p) + dµ(X) : X ∈ TpP}.

The map thus obtained pedµ : P → Rn is called the pedal map of µ with pedal point
F. Let P̃µ = {p ∈ P : pedµ(p) 6= F}. If R : Rn\{F} → Rn\{F} is the inversion
with respect to the hypersphere with center F and unit radius, the composition
R ◦ pedµ : P̃ → Rn\{F} (and sometimes, also its image) will be called the inverted
pedal of µ with pedal point F. If F is the origin, we will drop the specification of the
pedal point.

Let us show the relation between the focal set of M and the inverted pedal
of η, that is the pedal point will be the origin of N. Let 0 6= t ∈ T and let
0 6= z = η(t) + dη(X), with X ∈ Tt(PT ), a point in the pedal of η. We exclude
z = 0 because we will need to apply to it the inversion R. Then z is the point
nearest to the origin in the affine tangent space to η(PT ) at η(t). Therefore we
must have z · dη(TtPT ) = d(z · η)(TtPT ) = 0. In particular, z · dη(t) = 0, whence
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z · z = z · η(t) 6= 0. Also, d(z · η)t = 0. Hence t is a critical point of the map
t 7→ z · η(t). But one sees easily that this entails

g(t, t)z · α(t, t′)− (t · t′)z · α(t, t) = 0

for any t′ ∈ TtT, i.e. (z · α − z · η(t)g)(t) = 0, and this requires the vanishing of
det(z ·α− z · η(t)g). By dividing that determinant by (−z · η(t))k, we conclude that

det(g − z

z · η(t)
· α) = 0,

that is
z

z · η(t)
=

z

z · z
= R(z) ∈ F .

We have thus proved:

Proposition 3.2. Let z ∈ NpM a point in the inverted pedal of ηp. Then z ∈
Fp(M).

Let us see whether there is some form of converse of this.
Let x ∈ N be a point in F . Then det(g − x · α) = 0. Let t ∈ T, t · t = 1, be

such that g(t) = x ·α(t). We know that then x ·η(t) = 1 and ηp(t) /∈ (dηp)(TtTpM).
Let z = pedη(t); if z = 0 we would have η(t) ∈ (dηp)(TtTpM), which is absurd.
As we have see before we will have (z · z)g(t) = z · α(t), from which we obtain
g(t) = z

z·z · α(t). Therefore ( z
z·z − x) · α(t) = 0, that is z

z·z − x must be orthogonal
to the subspace of N generated by α(t), that is to the subspace α(t, T )⊥.

If dimα(t, T ) = r, the condition on z
z·z − x means that it should belong to an

(n− r)−dimensional affine subspace of N. We can write this in the form

x =
z

z · z
+ u = R(z) + u, u ∈ α(t, T )⊥.

As before, let P̃ T = {[t] ∈ PT : pedη(t) 6= 0}, so that R(pedη([t])) ∈ F . Let us
put Bt = R(pedη([t])) + α(t, T )⊥. We have proved thus

Theorem 3.3. F is the union of the inverted pedal of η with ∪
t∈P̃TBt.

This describes completely F(M). Note that dimα(t, T ) ≤ k. Hence, if for ex-
ample k = 2 (M is thus a surface) and n = 2 then generically the dimension
of Fp will be that of η(PTpM), that is one; thus, then Fp will be a conic. If
n = 3, it will be generically a ruled quadric surface, because, if R(z) ∈ Fp, then
R(z) + αp(t, TpM)⊥ ∈ Fp, and αp(t, TpM)⊥ will have generically dimension equal
to one.

4. Focal set at a semiumbilic point of a surface in R4.

From now on, M will be a surface immersed in R4, that is k, n = 2. If p ∈ M
and (t1, t2) is an orthonormal basis of TpM, le us put b1 = ηp(t1) = αp(t1, t1), b2 =
ηp(t2) = αp(t2, t2), b3 = αp(t1, t2). If t = t1 cos θ+ t2 sin θ, we will have t · t = 1 and
ηp(t) = b1 cos2 θ + b2 sin2 θ + b3 sin 2θ = H +B cos 2θ + C sin 2θ, where

H =
1
2

(b1 + b2), B =
1
2

(b1 − b2), C = b3.

The image of the map ηp is thus an ellipse in NpM centered in H called curvature
ellipse. That ellipse can degenerate to a segment or to a point. The vector H,
which does not depend on the choice of the orthonormal basis (t1, t2), is called
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mean curvature vector. The other two, B and C, depend on that choice.The point
p is said to be semiumbilic if the curvature ellipse at p degenerates to a segment,
that is if B and C are linearly dependent. If in addition the straight line containing
that segment passes by the origin, p is said to be an inflection point. If the curvature
ellipse degenerates to a point the p is called umbilic. Let us see how is the focal set
Fp(M) at a semiumbilic point p.

Assume that B 6= 0. Then, we can put C = qB and the ellipse is written as
ηp(t) = H + (cos 2θ+ q sin 2θ)B. The end points of this segment are obtained when
the derivative of this function with respect to θ vanishes, that is when − sin 2θ +
q cos 2θ = 0, that is when tan 2θ = q. Therefore when

cos 2θ =
1√

1 + q2
, sin 2θ =

q√
1 + q2

,

or their opposites. The extreme points of the ellipse are thus

H ±
√

1 + q2B = H ±
√
B ·B + C · C B√

B ·B
= H ±

√
B ·B + C · C n,

where n is any unit vector parallel to the segment that is the ellipse. This formula
does not depend on the choice between B and C. We put v1 = H +

√
1 + q2 n and

v2 = H−
√

1 + q2 n. We have found unit vectors s1, s2 ∈ TpM such that ηp(s1) = v1
and ηp(s2) = v2. Then pedηp

(s1) is the point nearest to the origin among those of
the set

{ηp(s1) + (dηp)s1(t′) : t′ ∈ R} = {v1}.
There is only one point in that set. Moreover, we have αp(s1, t′) = 0 when t′ is
tangent at s1 to the unit circle in TpM, that is αp(s1, Js1) = 0. Since we know
that αp(s1, s1) = v1, we conclude that αp(s1, TpM) = Rv1 and from this that
αp(s1, TpM)⊥ = RJv1. In the same manner, we get αp(s2, TpM)⊥ = RJv2. There-
fore, we have two straight lines in Fp given by

λ 7→ v1
v1 · v1

+ λJv1, λ 7→ v2
v2 · v2

+ λJv2.

If tan 2θ 6= q then the affine straight line tangent to the curve ηp(t) is constant.
Therefore, the point nearest to the origin in that line is always the same, and by
continuity this implies that that point is the intersection of the two straight lines
that we have just computed. Therefore we have:

Proposition 4.1. Let p be a non-of-inflection umbilic point in the surface M im-
mersed in R4. Then

Fp(M) =
{

v1
v1 · v1

+ λJv1 : λ ∈ R
}
∪
{

v2
v2 · v2

+ λJv2 : λ ∈ R
}
.

If p is an inflection point then the vectors v1 and v2 are linearly dependent.
Therefore, Fp(M) consists of two parallel straigh lines. Finally, if p is umbilic then
v1 = v2, so that both lines coincide.
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