
COMPUTATIONS ON SURFACES

ANGEL MONTESINOS-AMILIBIA

1. Preliminary concepts

Let A and B be real vector spaces of finite dimensions a and b. We denote
by S(A) the subspace of A ⊗ A of symmetric tensors, that is S(A) is generated
by the elements as v ⊗ v, v ∈ A. Note that if w is another element of A, then
(v + w) ⊗ (v + w) − v ⊗ v − w ⊗ w = v ⊗ w + w ⊗ v. In the following, suppose
that A and B are Euclidean vector spaces with inner product denoted by a dot.
If (u1, . . . , ua) is an orthonormal basis of A and β, γ ∈ A∗, then we can define the
inner product of β and γ by

β · γ =
a∑
i=1

β(ui)γ(ui).

In fact, as it is easily proved, the result does not depend on the chosen orthonormal
basis. This may be generalized for generalizing the inner product to elements of⊗
A∗. In fact, if for example g, h ∈ A∗⊗A∗ is a bilinear form on A, we define g ·h =∑a
i,j=1 g(ui, uj)h(ui, uj), and as before this does not depend on the orthonormal

basis. Let (u1, . . . , ua) be the dual basis of (u1, . . . , ua). Then the elements ui ⊗
uj , i, j = 1, . . . , a, are an orthonormal basis of A∗ ⊗A∗. In fact,

(ui ⊗ uj) · (uk ⊗ ul) =
a∑

p,q=1

(ui ⊗ uj)(up, uq)(uk ⊗ ul)(up, uq) = δkiδlj ,

as required. In the same manner we may define the inner product in, say
⊗r

s A by
declaring the the elements

ui1 ⊗ · · · ⊗ uir ⊗ uj1 ⊗ · · · ⊗ ujs , i1, . . . , ir, j1, . . . , js = 1, . . . , a

are an orthonormal basis of
⊗r

s A. With that definition it is easy to prove that if for
instance we have the tensors m = β⊗v, n = γ⊗w ∈ A∗⊗A, then m·n = (β·γ)(v·w).

Let us show that the elements si = ui ⊗ ui, i = 1, . . . , a, and the elements
sij = 1√

2
(ui ⊗ uj + uj ⊗ ui), 1 ≤ i < j ≤ a, are an orthonormal basis of S(T ). It is

clear that they are a basis. Now,

si · sj = (ui · uj)2 = δ2ij = δij ,

si · sjk =
1√
2

((ui · uj)(ui · uk) + (ui · uk)(ui · uj)) =
√

2δijδik = 0,

sjk · spq =
1
2

(2δjpδkq + 2δjqδkp) = δjpδkq,
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because the second term is zero since j < k and p < q. Hence, the affirmation is
true.

We introduce another notation. If A is an Euclidean vector space we put SA =
{u ∈ A : u · u = 1} to denote the sphere in A.

Let now h : A → B be a homomorphism. Then, we can define the pull-back of
the inner product of B as the symmetric bilinear form h2 : A × A → R given by
h2(u, v) = h(u)·h(v). It is well known that there is an orthonormal basis (u1, . . . , ua)
of A and unique real numbers µ1 ≥ · · · ≥ µa ≥ 0 such that h2(ui, uj) = 0 if i 6= j
and h2(ui, ui) = µi. Let c ≤ Min(a, b) be the number of non zero elements µi.
If we call λi =

√
µi for 1 ≤ i ≤ a, and wi = h(ui)/λ, for 1 ≤ i ≤ c, we will

have wi · wi = h2(ui, ui) = 1, and wi · wj = 0, i 6= j. Also, if µi = 0, then
h2(ui, ui) = h(ui) · h(ui) = 0, whence h(ui) = 0. Therefore the kernel of h is
generated by the vectors u1, . . . , uc. We will assume that we are completed the
vectors wi to form an orthonormal basis of B. and that (wi) denotes the dual basis.
It is clear that h(ui) = λiwi, for 1 ≤ i ≤ a. Using the Einstein convention, we will
have

h = wi(h(uj))wi ⊗ uj = (wi · λjwj)wi ⊗ uj =
c∑
j=1

λjwj ⊗ uj .

Since h is lineal, h(SA) must be a compact quadric, that is an ellipsoid that may
be degenerate. In other words, it consists in the intersection of a solid ellipsoid
centered at the origin with a subspace of B. Its axes are determined by the vectors
v ∈ SA such that the function f(u) = h(u) · h(u), u ∈ A, when restricted to SA, is
extremal at v. This means that the 1-form dfv annihilates the subspace orthogonal
to v. So, dfv must be a multiple of dr2v, say dfv = µdr2v, where r2 : A→ R is given
by r2(u) = u · u. If t 7→ γ(t) ∈ A is a smooth curve such that γ(0) = v and we put
u = γ′(0), then

(dfv − dr2v)(u) =
(
f(γ, γ)− µr2(γ, γ)

)′(0) = 2(h(v) · h(u)− µv · u) = 0

Suppose that v = ui, µ = µi and u = uj . Then

h(v) · h(u)− λv · u = h2(ui, uj)− µiδij = 0.

Therefore, wi = h(ui) determines an axis of the ellipsoid and
√
µi is the half-axis

corresponding to it.
We may define the adjoint h∗ : B → A of h by saying that h∗(w) is the

unique element of A such that h∗(w) · u = w · h(u), for any u. We will have
h∗ = uj(h∗(wi))uj ⊗ wi, where we use the Einstein convention, and where (wi)
is the basis dual to (wi). Then

h∗ = uj · h∗(wi)uj ⊗wi = (h(uj) ·wi)uj ⊗wi = (λjwj ·wi)uj ⊗wi =
c∑
j=1

λjuj ⊗wj .

Hence, the half-axes of the corresponding ellipsoid in A are the same as those of
the ellipsoid in B, and the principal directions corresponding to non-zero half-axes
are images of each other.

Surfaces: notation and inventory of invariants

In the following, α will denote the value of the second fundamental form of a
surface S in R2+n at some point p. The tangent space to the surface at that point
will be denoted T and its orthogonal complement by N. Thus, dimN = n, and
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T ⊕ N = R2+n. The inner product will be denoted by a dot. We will denote by
(t1, t2) an orthonormal basis of T and by (u1, . . . , un) an orthonormal basis of N.
We shall put b1 = α(t1, t1), b2 = α(t2, t2), b3 = α(t1, t2).

Our computations will be realized by using a chart x : U ⊂ R2 → S, so that, if
(u, v) are the canonical coordinates in U, we will put

t1 =
xu
|xu|

, t2 =
guuxv − guvxu
|guuxv − guvxu|

,

where se have used the following notation: guu = xu · xu, guv = xu · xv and
gvv = xv · xv.

If A : V → V ∗ is a symmetric bilinear form in any Euclidean n-dimensional
vector space (V,g), we will call principal directions of A the non-vanishing vectors
v ∈ V such that (A − λg)(v) = 0 and the corresponding values λ ∈ R will be
called the eigenvalues of A; a unit vector v that defines a principal direction will
be called an eigenvector of A. This may also be expressed equivalently as follows.
Since g : V → V ∗ is an isomorphism, we can consider its inverse g−1 : V ∗ → V,
which is also a bilinear symmetric form on V ∗. Then Ã := g−1 ◦ A ∈ End(V ),
and the eigenvalues and eigenvectors of A are the eigenvalues and eigenvectors
of Ã in the usual sense. The trace or determinant of A will be defined as the
trace and determinant of Ã. The characteristic polynomial of Ã may be written as
(−1)n

(
λn− tr(A)λn−1 + c2(A)λn−2− · · ·+ (−1)n−1cn−1(A)λ+ (−1)n det(A)

)
, and

it is clear that the ci(A) are invariants of A.
The geometric interpretation of some formulas will be related to the interpreta-

tion of the second fundamental form. Let u ∈ N be a unit vector. Then, we can
orthogonally project the surface, in a neighborhood of p, to the 3-space Ru ⊕ T.
Thus we obtain a surface in a Euclidean 3-space, whose second fundamental form
at p is given by u · α. Thus, we will say that u · α is the u-second fundamental
form of the surface at p, or that u ·α(t, t), t ∈ ST , is the u-normal curvature of the
surface at p in the direction t, etc.

Now we describe some concomitants of α. By a concomitant we understand here
some mathematical object obtained by means of α using only the properties of α
and the Euclidean structure of T and N, including the use of orthonormal bases,
provided that the obtained object does not depend on the choice of those bases.
A concomitant that is a real number will be called an invariant. We have the
following concomitants:

Mean curvature vector:

H =
1
2

(α(t1, t1) + α(t2, t2)) =
1
2

(b1 + b2).

Interpretation: If u ∈ SN , u ·H is the u-mean curvature of the surface at p.

Gauss curvature form: the symmetric bilinear form K : N ×N → R defined
as the determinant of α, that is

K(u, u) = (u · α(t1, t1))(u · α(t2, t2))− (u · α(t1, t2))2 = (u · b1)(u · b2)− (u · b3)2.

Interpretation: If u ∈ SN , K(u, u) is the u-Gauss curvature of the surface. We
can immediately obtain an invariant from K, its mean value obtained through its
trace:
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Mean Gauss curvature:

KM =
1
n0

n∑
i=1

K(ui, ui),

where n0 = Min(n, 3). A standard calculation shows that KM is proportional to
the sectional curvature of the surface (as a Riemannian manifold) at p.

The ellipsoid: Let S(T ) be the subspace of symmetric elements of T ⊗ T . As
we know, the following elements of S(T ) are an orthonormal basis:

s1 = t1 ⊗ t1, s2 = t2 ⊗ t2, s3 =
1√
2

(t1 ⊗ t2 + t2 ⊗ t1).

Let SS(T ) = {s ∈ S(T ) : s · s = 1}. The ellipsoid of curvature is α(SS(T )) ⊂ N.
It is an ellipsoid that could be degenerate. Its axes are the images of the extremal
points of the real function in SS(T ) given by U 7→ α2(U,U) = α(U) · α(U), U ∈
SS(T ). That function is the restriction to SS(T ) of the quadratic form defined by
the bilinear form α2 in S(T ) given by α2(U, V ) = α(U) · α(V ). Then, the non-zero
vector U defines a principal direction or an axis iff there is a real number λ such
that α2(U, V ) = λU · V, ∀V ∈ S(T ). The half-axis corresponding to that principal
direction is

√
λ. The matrix of α2 in the orthonormal basis (s1, s2, s3) of S(T ) is

easily computed.

α2(s1, s1) = α(s1) · α(s1) = b1 · b1,
α2(s1, s2) = α2(s2, s1) = α(s1) · α(s2) = b1 · b2,

α2(s1, s3) = α2(s3, s1) = α(s1) · α(s3) =
√

2b1 · b3,
α2(s2, s2) = b2 · b2,

α2(s2, s3) =
√

2b2 · b3,
α2(s3, s3) = 2b3 · b3,

It is easy to show that the determinant of α2 is a multiple of the squared length of√
2b1∧b2∧b3. Therefore, the determinant of α2 vanishes iff the rank of α : S(T )→ N

is less than 3.

Curvature energy form: The symmetric bilinear form given by

E(u, u) = (u · α) · (u · α) = (u · b1)2 + (u · b2)2 + 2(u · b3)2,

Interpretation: If u ∈ SN , we could have chosen (t1, t2) to be an orthonormal
basis of eigenvectors of the u-second fundamental form, so that u·b1 = u·α(t1, t1) =
k1(u), u · b2 = k2(u), u · b3 = 0, where k1(u), k2(u) would be the u-principal normal
curvatures. Thus, E(u, u) = k1(u)2 + k2(u)2, and this explains the adopted name.

There is another interpretation of E. We can consider α as a linear map α : N →
S(T )∗, defined by u ∈ N 7→ u · α ∈ S(T )∗. Then, E is the pull-back by α of the
inner product in S(T )∗.

Let us consider the map α∗ : N → S(T ), adjoint to α : S(T ) → N. Thus, if
u ∈ N and s ∈ S(T ) we will have α∗(u) · s = u ·α(s). The unit sphere in N applies
now to some ellipsoid in S(T ) and we will have also its corresponding axes. Let us
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compute the action of α∗2 : N ×N → R. We will have

α∗2(u, u) = α∗(u) · α∗(u) =
3∑

i,j=1

(α∗(u) · si)(α∗(u) · sj)si · sj

=
3∑
i=1

(u · α(si))(u · α(si)) = (u · α) · (u · α)

=E(u, u),

that is we have E = α∗2. Therefore, the ellipsoid and E have the same information
about α.

The trace of E will give another invariant:
Mean curvature energy:

EM =
1
n0

n∑
i=1

E(ui, ui) =
1
n0

(b1 · b1 + b2 · b2 + 2b3 · b3)

Third fundamental form W in T given by

W (t, t) = α(t, .) · α(t, .) = α(t, t1) · α(t, t1) + α(t, t2) · α(t, t2).

Interpretations: For a fixed t ∈ T, let h := α(t, .) : T → N. For each s ∈
ST , we have that h(s) is the projection on N of the covariant derivative of (any
extension of) s with respect to t. Thus, it measures the extrinsic twist, along t,
of the tangent direction s of the surface. Hence, h(s) · h(s) is the squared length
(called also energy) of that twist, and as a consequence, up to a constant factor 1

2π ,
h(t1) · h(t1) + h(t2) · h(t2) is the average twisting energy along t.

We have also the classical interpretation as the form induced by pull-back of the
Riemannian meric of the Grassmannian G2,2+n by the map that sends each point
of the surface to its tangent plane considered as a point of G2,c.

Its trace:

Mean twist energy:

WM =
1
2

2∑
i=1

W (ti, ti).

Computation of the ellipse of curvature

It should be desirable to compare these invariants with the ones obtained through
the use of the ellipse of curvature. Let t(φ) = t1 cosφ+ t2 sinφ ∈ ST . Then

κ(φ) := α(t(φ/2), t(φ/2)) = b1 cos2
φ

2
+ b2 sin2 φ

2
+ b3 sinφ

=
b1
2

(1 + cosφ) +
b2
2

(1− cosφ) + b3 sinφ

=
1
2

(b1 + b2) +
1
2

(b1 − b2) cosφ+ b3 sinφ

= H +B cosφ+ C sinφ,

where H is the mean curvature vector, B := (b1− b2)/2 and C := b3. We have thus
b1 = H + B, b2 = H − B. The curve φ 7→ κ(φ), φ ∈ [0, 2π), is called the ellipse of
curvature; its center is the mean curvature vector. That ellipse may degenerate to a
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segment or to a point. Let t ∈ ST . Then t⊗ t ∈ SS(T ) and α(t, t) = α(t⊗ t) belongs
to the curvature ellipse. Hence, the curvature ellipse is a subset of the curvature
ellipsoid.

There are some obvious invariants of α obtained from the geometry of the ellipse.
For instance, the direction of its axes, its half-axes, the angle that H makes with
the plane of the ellipse (that is the plane generated by B and C), and the angle
that the major axis of the ellipse makes with H. We shall compute some of them.
In the following, we will put

hh = H ·H, bb = B ·B, cc = C · C, hb = H ·B, hc = H · C, bc = B · C.

Let us see how we can do the computation of these vectors and inner products. Let
∇ : X(S) × X(S) → X(S) be the Levi-Civita connection of S, so that if X,Y ∈
X(S), we will have ∇XY = (DXY )>, where the superscript > denotes orthogonal
projection on the tangent space to S and D denotes the directional derivative. Let
us put Gij = Dtitj , i = 1, 2. Since (t1, t2) is orthonormal we have

G11 · t1 = G21 · t1 = G12 · t2 = G22 · t2 = 0,
G11 · t2 = −G12 · t1, G21 · t2 = −G22 · t1.

Let us put m1 := G11 · t2 and m2 := G22 · t1. Now

m1 = G11 · t2 = (Dtit1) · t2 =
1
√
guu

(
Dxu

xu√
guu

)
· t2 =

xuu · t2
guu

.

Also

m2 = −G21 · t2 = −(Dt2t1) · t2 = −guuDxvxu − guvDxuxu
|guuxv − guvxu|

√
guu

· t2

=
guvxuu − guuxuv
|guuxv − guvxu|

√
guu
· t2.

Now,

b1 = α(t1, t1) = (Dt1t1)⊥ = G11 −G>11 = G11 − (G11 · t2)t2 = G11 −m1t2,

b2 = α(t2, t2) = G22 −G>22 = G22 − (G22 · t1)t1 = G22 −m2t1,

b3 = α(t1, t2) = G12 −G>12 = G12 − (G12 · t1)t1 = G12 +m1t1 = G21 +m2t2.

Therefore

H =
1
2

(G11 +G22 −m1t2 −m2t1),

B =
1
2

(G11 −G22 −m1t2 +m2t1),

C = G12 +m1t1.

From this, we obtain immediately all the inner products hh, hb, etc.
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Geometric properties of the ellipse of curvature

The ellipse axes will be given by the values of φ where (κ(φ) −H) · κ′(φ) = 0.
This is

0 = (B cosφ+ C sinφ) · (−B sinφ+ C cosφ)

= (cc− bb) sinφ cosφ+ bc(cos2 φ− sin2 φ)

= bc cos 2φ+
1
2

(cc− bb) sin 2φ

that is

cos 2φ = ± bb− cc√
(bb− cc)2 + 4bc2

, sin 2φ = ± 2bc√
(bb− cc)2 + 4bc2

.

where we must choose between the upper or the lower signs. Since (κ(φ) − H) ·
(κ(φ)−H) = 1

2 (bb+ cc) + 1
2 (bb− cc) cos 2φ+ bc sin 2φ, the square of the half-axes

will be:

1
2

(
bb+ cc± (bb− cc)2 + 4bc2√

(bb− cc)2 + 4bc2

)
=

1
2
(
bb+ cc±

√
(bb− cc)2 + 4bc2

)
.

Therefore:

major half-axis =

√
1
2
(
bb+ cc+

√
(bb− cc)2 + 4bc2

)
,

minor half-axis =

√
1
2
(
bb+ cc−

√
(bb− cc)2 + 4bc2

)
.

π times the product of the half-axes gives the ellipse area. Thus we have the
invariant

ellipse area = π
√
bb cc− bc2.

Let us compute the cosine of the angle ν that H makes with the least affine
subspace of N that contains the ellipse. That cosine is the length of the orthogonal
projection H ′ of H upon that subspace divided by the length of H. Let us write
H ′ = xB + yC, where x, y ∈ R. We will have H ′ · B = H · B and H ′ · C = H · C,
that is we have the linear system

bb x+ bc y = hb, bc x+ cc y = hc

If B and C are linearly independent, that is the curvature ellipse is not degenerate,
then that system has the unique solution

x =
hb cc− hc bc
bb cc− bc2

, y =
hc bb− hb bc
bb cc− bc2

.

Now

H ′·H ′ = x2 bb+ y2 cc+ 2x y bc

=
(hb cc− hc bc)2bb+ (hc bb− hb bc)2cc+ 2(hb cc− hc bc)(hc bb− hb bc)bc

(bb cc− bc2)2

=
cc hb2 − 2bc hb hc+ bb hc2

bb cc− bc2
,

as one may verify by direct computation. Hence

cos2 ν =
H ′ ·H ′

H ·H
=
cc hb2 − 2bc hb hc+ bb hc2

hh(bb cc− bc2)
,
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and from this we will have

sin2 ν =
hh bb cc+ 2bc hb hc− hh bc2 − cc hb2 − bb hc2

hh(bb cc− bc2)
.

Since we know that the denominator of these expression is an invariant, so are
their numerators. If the ellipse collapses to a segment, not to a point, then we will
have that B = mC, or that C = mB for some real number m. Thus we will have

cos2 ν =
hc2

hh cc
, cos2 ν =

hb2

hh bb
,

respectively. We can dispense the look for the vector that does not vanish by using
the following formula, that reduces to the previous ones in each case, as it is easily
verified:

cos2 ν =
hb2 + hc2

hh(bb+ cc)
The linear independency of the vectors H,B,C can be computed by means of

the following equality:

(H∧B∧C)·(H∧B∧C) =

∣∣∣∣∣∣
hh hb hc
hb bb bc
hc bc cc

∣∣∣∣∣∣ = hh bb cc+2hb hc bc−hc2bb−hb2cc−hh bc2,

which is precisely the numerator of the expression above for sin2 ν.
We can define the “depth” of H ′ in the ellipse, or better the depth of the orthogo-

nal projection of the origin of N on the ellipse plane. We can write H ′ = xB+y C =
r(B cosβ + C sinβ), where β is such that x = r cosβ, y = r sinβ, r =

√
x2 + y2.

Since B cosβ+C sinβ gives all points of the ellipse translated to the origin, we see
that the projection of the origin in inside the ellipse iff r < 1, outside if r > 1 and
on the ellipse if r = 1. So we can define the function

depth of H ′ = 1−
√
x2 + y2 = 1−

√
(hb cc− hc bc)2 + (hc bb− hb bc)2

bb cc− bc2
.

Another measure of depth that will have no “division by zero” problems consists
of multiplying by bb cc− bc2 the above equation, that is to use

depth of H ′ = bb cc− bc2 −
√

(hb cc− hc bc)2 + (hc bb− hb bc)2

instead.
Another property that may be of interest is the angle that H ′ forms with the

major axis of the ellipse. We have seen that the major axis of the ellipse is parallel
to the vector Ē = B cosφM + C sinφM , where

cos 2φM =
bb− cc√

(bb− cc)2 + 4bc2
, sin 2φM =

2bc√
(bb− cc)2 + 4bc2

.

Thus,

cosφM =

√
1
2

(1 + cos 2φM ), sinφM = sg(bc)

√
1
2

(1− cos 2φM ).

Then, the cosine of the angle that H ′ forms with the major axis is

|Ē ·H ′|
|E||H ′|

=
|Ē ·H|
|E||H ′|
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Invariants in terms of the ellipse parameters

The Gauss curvature and the energy forms will be given by

K(u, u) = (u · (H +B))(u · (H −B))− (u · C)2 = (u ·H)2 − (u ·B)2 − (u · C)2,

E(u, u) = ((u ·H) + (u ·B))2 + ((u ·H)− (u ·B))2 + 2(u · C)2

= 2
(
(u ·H)2 + (u ·B)2 + (u · C)2

)
.

Thus, if g is the inner product on N, we have K = g(H)⊗ g(H)− g(B)⊗ g(B)−
g(C) ⊗ g(C), so that K̃ = H ⊗ g(H) − B ⊗ g(B) − C ⊗ g(C). Therefore, K̃ is
an endomorphism of the subspace generated by H,B,C. Its matrix in the basis
H,B,C will be obviously:  hh hb hc

−hb −bb −bc
−hc −bc −cc

 .

The matrix of 1
2 Ẽ in the same basis ishh hb hc

hb bb bc
hc bc cc

 .

Thus

tr(K) = hh− bb− cc,
c2(K) = bb cc− bc2 − hh cc+ hc2 − hh bb+ hb2,

det(K) = hh bb cc+ 2bc hb hc− bb hc2 − cc hb2 − hh bc2.
In the same manner:

tr(E) = 2(hh+ bb+ cc),

c2(E) = 4(bb cc− bc2 + hh cc− hc2 + hh bb− hb2),

det(E) = 8 det(K)

If we sum and subtract both traces we get the invariants hh, bb+cc. If we sum and
subtract both coefficients c2 we have another two invariants bb cc− bc2, −hh(bb+
cc) + hb2 + hc2, but this last plus the product of the first two gives the invariant
hb2 + hc2.

As for the third fundamental form form W, if t = at1 + bt2 we will have:

W (t, t) = (ab1 + bb3) · (ab1 + bb3) + (ab3 + bb2) · (ab3 + bb2)

= (b1 · b1 + b3 · b3)a2 + (b2 · b2 + b3 · b3)b2 + b3 · (b1 + b2)2 a b

= (hh+ bb+ cc+ 2hb)a2 + (hh+ bb+ cc− 2hb)b2 + 4hc a b

=
1
2

tr(E)gT (t, t) + 2(hb a2 − hb b2 + 2hc a b),

where gT is the Euclidean product in T. Thus W minus its trivial part 1
2 tr(E)gT

will have zero trace and determinant equal to −4(hb2 + hc2). Since W is a bilinear
form on T it defines its principal directions. However, they will be the same as the
mean curvature directions that we will define below.

We observe that det(K) is the numerator of sin2(ν). Hence, we have the following
five invariants, that perhaps are the simplest: hh, the squared norm of H; bb+ cc,
the sum of the squared half-axes of the curvature ellipse; bb cc − bc2, which is a
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multiple of the squared ellipse area; hb2 +hc2 and det(K), which define the relative
position of H with respect to the ellipse.

Note that the first four invariants are clearly independent. The fifth has to do
with the question whether H belongs to the plane 〈B,C〉, whereas the first four do
not depend on it. Thus, they are independent. Now, the minimum number of a
complete set of invariants in this case (for n ≥ 3) is 5, so that we have completed
our search.

Another concomitant is the symmetric bilinear form on T given by F = H · α.
Since b1 = H +B, b2 = H −B and b3 = C, the matrix of F in the basis (t1, t2) is(

hh+ hb hc
hc hh− hb

)
.

Therefore F = (hh − 1
4 tr(E))gT + 1

2W . It defines its principal directions that
have merits enough to be called mean curvature directions of α. These directions
and those of W will be the same. Since the basis ti is orthonormal, we see that the
matrix of F − 1

2 tr(F ) gT will be (
hb hc
hc −hb

)
.

In the same manner, for each concomitant u ∈ N we have the symmetric bilinear
form u · α on T with its eigenvalues and eigenvectors.

Therefore, one has here a lot of possibilities. Each of the bilinear formsK,E, 1
2E−

K will have their eigenvectors in N and for each one of them, one can get prin-
cipal directions on T via α∗ as we have done with H. In addition, the form
K is not definite so that it has an isotropic cone {u ∈ N : K(u, u) = 0},
whose meaning may also be interesting. The easiest case is given by 1

2E − K =
2(g(B)⊗ g(B) + g(C)⊗ g(C)). In fact, it is easy to verify that one can choose the
orthonormal basis (t1, t2) of T so that B · C = 0. Then it is clear that the eigen-
vectors of 1

2E −K have directions parallel to the axes of the ellipse, and that they
determine directions in T given by pull-back of the vertexes of the ellipse.

Note also that F may have null directions.

It will be interesting to obtain a neat relation between the ellipsoid and the
ellipse of curvature. The first remark to do is that the ellipse contains all of the
information hidden in the second fundamental form (five invariants), whereas the
ellipsoid contains only (in general) the values of its half-axes (three invariant num-
bers). Therefore, we must go from the ellipse to the ellipsoid and not the other
way.

The ellipsoid is the image by the linear map α : S(T )→ N of the unit sphere of
S(T ), that is SS(T ) = {as1 + bs2 + cs3 ∈ S(T ) : a2 + b2 + c2 = 1}. The ellipse is the
image by α of the elements s of S(T ) that may be written as v ⊗ v, with v ∈ ST .
Since s · s = (v ⊗ v) · (v ⊗ v) = (v · v)2 = 1, we see that s ∈ SS(T ).

Then, we must find a characterization of such decomposable elements among
those of SS(T ). A such element s, as any other symmetric 2-tensor in an Euclidean
space, may be characterized by its eigenvalues; it is clear that in our case these
are 0, 1. The appearance of the zero eigenvalue is equivalent to the vanishing of the
determinant of s; once this has been verified, the appearance of the eigenvalue 1 is
equivalent to the condition s · s = 1 together with the condition that s be definite
non-negative.
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So, let s = as1 + bs2 + cs3. In the basis (t1, t2), s has the matrix:

a

(
1 0
0 0

)
+ b

(
0 0
0 1

)
+ c

(
0 1√

2
1√
2

0

)
=

(
a c√

2
c√
2

b

)
.

Therefore, (a, b, c) must satisfy s · s = a2 + b2 + c2 = 1 and c2 = 2ab. Carrying this
to the first equation we see that (a + b)2 = 1. Then a + b = ±1. Since s must be
non-negative we conclude that a, b ≥ 0, so that a+ b = 1. Therefore s ∈ S(T ) is a
decomposable element as v ⊗ v with v ∈ ST iff a2 + b2 + c2 = 1 and a+ b = 1.

But this is the intersection of a sphere with a plane, that is a circle, in the
Euclidean three-dimensional space S(T ). That circle has as center the point H̃ =
1
2 (s1 + s2) of coordinates (1

2 ,
1
2 , 0), and if we put B̃ = 1

2 (s1 − s2), which has co-
ordinates ( 1

2 ,−
1
2 , 0), and C̃ = 1√

2
s3, whose coordinates are (0, 0, 1√

2
), then that

circle can be parameterized as φ 7→ H̃ + B̃ cosφ + C̃ sinφ. Now, we can “recon-
struct” the whole unit sphere SS(T ) from that circle. To do this, it is enough
to make the union of the circles parallel to that one and centered on the line
RH̃. Those circles can be parameterized as rH̃ + t(B̃ cosφ + C̃ sinφ). But in or-
der that those circles lie in the unit sphere, we need only to guarantee that the
vector rH̃ + tC̃ is a unit vector. Hence 1

2r
2 + 1

2 t
2 = 1. Therefore we can put

r =
√

2 cosψ, t =
√

2 sinψ. Thus, we reconstruct the unit sphere from the circle by
the parametrization (φ, ψ) 7→

√
2
(
H̃ cosψ + (B̃ cosφ+ C̃ sinφ) sinψ

)
. By applying

α to this and taking account that α(H̃) = H, etc., we obtain finally the following
parametrization of the ellipsoid:

Y (φ, ψ) =
√

2
(
H cosψ + (B cosφ+ C sinφ) sinψ

)
, φ ∈ [0, 2π), ψ ∈ [0, π].

In this sense we can describe the ellipsoid by means of the vectors H,B and C
that determine the curvature ellipse. Note that the map φ 7→ Y (φ, π/4) parame-
terizes the ellipse of curvature.

Some computations

Assume that we are given a symmetric bilinear form L whose matrix in the
orthonormal basis ti is given by (

p r
r q

)
,

and we need to compute its principal and null directions, that is the angles that
those directions make with the first basis vector t1.

Let v = t1 cosφ+ t2 sinφ. Then

L(v, v) = p cos2 φ+ r sin 2φ+ q sin2 φ

=
1
2

((1 + cos 2φ)p+ 2r sin 2φ+ (1− cos 2φ)q)

=
1
2

(p+ q) +
1
2
(
(p− q) cos 2φ+ 2r sin 2φ

)
We see that if (p − q)2 + (2r)2 = 0 then L(v, v) is constant. In fact, L is a

multiple of the metric tensor. In this case, there are not preferred principal or null
directions. If it is not the case, let α ∈ (−π, π] be the unique angle such that

cosα =
p− q√

(p− q)2 + (2r)2
, sinα =

2r√
(p− q)2 + (2r)2

.
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Then

L(v, v) =

√
(p− q)2 + (2r)2

2
(

p+ q√
(p− q)2 + (2r)2

+ cos(2φ− α)).

Thus, L(v, v) = 0 iff |p+ q| ≤
√

(p− q)2 + (2r)2 and

φ =
α

2
+

1
2

arccos

(
− p+ q√

(p− q)2 + (2r)2

)
Let β ∈ [0, π] be the unique angle such that

cosβ = − p+ q√
(p− q)2 + (2r)2

.

Then φ = 1
2 (α±β) are the basic solutions; one can add to them any integer multiple

of π. Thus, we have the signed directions given by
1
2

(α+ β),
1
2

(α+ β) + π,
1
2

(α− β),
1
2

(α− β) + π.

As for the principal directions of L, we write down the equation for the extremal
points of L(v, v). We have:

sin(2φ− α) = 0.
Therefore we shall have the solutions:

φ =
α

2
, φ =

α

2
+
π

2
, φ =

α

2
+ π, φ =

α

2
+

3π
2
.

Drawing the ellipsoid and the ellipse

In the following we will assume that dimN ≥ 3. Let us denote by N1 := α(S(T )),
the sometimes called first-normal space, and put n1 = dimN1. We will have n1 ≤ 3.

Let us begin with the case n1 = 3. Then we can obtain an orthonormal basis
of N1 by the Gram-Schmidt algorithm based on H,B,C more easily than from
b1, b2, b3 because the inner products of those vectors will be already known. Thus,
we will put

u1 =
H

|H|
=

h

nh
,

where nh =
√
hh. Then we put

u2 = a
(
B − (B · u1)u1

)
= a

(
B − hb

nh
u1

)
.

We require 1 = u2 · u2 = a2
(
bb− hb2

hh

)
. Therefore

a =
nh√

hh bb− hb2
, u2 = a

(
B − hb

nh
u1

)
.

Now we put provisionally

u3 = C − (C · u1)u1 − (C · u2)u2,

and then normalize it.
Suppose that we project now N1 upon the plane orthogonal to some unit vector

pn ∈ N1. We extend pn to a orthonormal basis (ph, pv, pn) of N1 in the same manner
that we use for instance in the program Superficies. This projection gives us a
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linear map p : N1 → R2. Then, the drawn curvature ellipsoid is the composition
of two linear maps, namely p ◦ α : SS(T ) → R2. From that image we will draw
only the singular locus, that is its contour. Let i : S2 ≈ SS(T ) → S(T ) be the
inclusion of the unit sphere. We look for the singular locus of the map p ◦ α ◦ i.
A point x ∈ S2 is singular if there is some non-zero vector X ∈ TxS

2 such that
d(α ◦ i)(X) ∈ ker dp|α(x) = R pn. Therefore, there is some non-zero real number r
such that X = r(dα)−1(pn) = r α−1(pn). We see thus that the condition for x being
singular is x · α−1(pn) = 0. Therefore the singular locus is the image by p ◦ α ◦ i of
the circle t 7→ w1 cos t+ w2 sin t, where w1, w2 are orthonormal vectors orthogonal
to α−1(pn).

Thus, the contour of the projected ellipsoid is the curve

t 7→ (p ◦ α)(w1 cos t+ w2 sin t), where

|w1| = |w2| = 1, w1 · w2 = w1 · α−1(pn) = w2 · α−1(pn) = 0.

Let

e0 =
(

1
2
,

1
2
, 0
)
, e1 =

(
1
2
,−1

2
, 0
)
, e2 =

(
0, 0,

1√
2

)
,

where the components refer to the orthonormal basis s1, s2, s3. Then

t 7→ (p ◦ α)(e0 + e1 cos t+ e2 sin t)

is the curvature ellipse projected on R2. The set of points of SS(T ) whose images
are in the contour of the ellipsoid consists of the intersection of SS(T ) with the
plane of S(T ) orthogonal to α−1(pn). Therefore, the sign of the height function
f(x) := x · α−1(pn) tells us whether a point in the ellipsoid is in the near or rear
side of the ellipsoid as seen from the viewpoint.

We see that for drawing the ellipsoid and the ellipse it would be enough to know
the matrix of p ◦ α in the bases (s1, s2, s3) of S(T ) and (ph, pv) of R2. Since we
need to allow for changes in the viewpoint, we shall compute once and for all the
matrices of α and α−1 and then, in each case, that of p in the bases (u1, u2, u3) of
N1 and (ph, pv) of R2. Let us see this computation in detail. If a vector x ∈ S(T )
with components (x1, x2, x3) in the basis (s1, s2, s3) is given, its image by α will
have as components in the basis (u1, u2, u3) the following

α(x)i = α(x) · ui =
3∑
j=1

ui · α(xjsj) =
3∑
j=1

ui · α(sj)xj .

Thus we write αij = ui · α(sj), so that α(x) =
∑3
i,j=1 αijxjui.

Note that if we put αi =
∑3
j=1 αijsj , then α(x) =

∑3
j=1(αi · x)ui. The inverse

α−1 of α will act on a vector n =
∑3
j=1 njuj ∈ N1 and give

α−1(n) =
3∑
j=1

(
si · α−1(n)

)
si =

3∑
i,j=1

(
si · α−1(uj)

)
njsi.

So, we shall put α−1
ij = si ·α−1(uj), and it is easy to prove that

∑3
j=1 α

−1
ij αjk = δjk.

Let us see now the matrix of the composition p ◦ α. If as before x =
∑3
i=1 xisi,

we will have for a = u, v :

(p ◦ α)(x)a := pa · α(x) =
3∑
i=1

paiαijxj .
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Thus, we will define qaj :=
∑3
i=1 paiαij , a = u, v; j = 1, 2, 3. Therefore we will

have for a = u, v :

(p ◦ α)(x) =
( 3∑
i=1

quixi,

3∑
i=1

qvixi
)
.

Now we treat the case of n1 = dimN1 ≤ 2. We may build an orthonormal set
of three vectors of N such that the n1 first ones generate N1 and as a consequence
we can define a “camera” as before. Now we don’t need to compute a contour
because there is a natural contour given by the image of the singular locus L of the
map α restricted to SS(T ). Therefore, we only need to find L. It is given by those
x ∈ SS(T ) that admit some 0 6= X ∈ TxSS(T ) such that dα(X) = α(X) = 0. Let
K = kerα ⊂ S(T ). Then, x ∈ SS(T ) is singular iff there is 0 6= X ∈ K such that
x ·X = 0.

If dimK = 1, then x ∈ L iff x is orthogonal to K. Therefore, it is enough to
draw the image of the circle of points of SS(T ) orthogonal to K.

If dimK = 2, then all points of the sphere are singular and the ellipsoid degen-
erates to a segment. There are two points ±x that are 2-singular in the sense that
all the tangent vectors to the sphere at them belong to K. These points are he
unit vectors orthogonal to K. Its images are the ends of the segment into which the
ellipsoid degenerates. Thus it is enough to draw that segment.

If dimK = 3, there is nothing to draw because then α = 0.
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