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Schwarzschild Interior in Conformally Flat Form
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A unified conformally flat form of the static Schwarzschild interior space–times is
provided. A new parameter that allows us to analyze the symmetry (spherical, plane or
hyperbolic) of the three well known classes of metrics is introduced. In the spherically
symmetric case, this parameter is related to the historical limit value of the mass to
radius ratio found by Schwarzschild for a sphere of incompressible fluid.
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1. INTRODUCTION

As it has been well established, the Schwarzschild interior solution [1] is a con-
formally flat space–time because its Weyl tensor vanishes [2]. It has been mainly
considered as a simplified stellar model filled with an ideal fluid whose energy
density is a positive constant. Static conformally flat perfect fluid solutions having
non positive energy density also exist [3], [4]. In fact, the Schwarzschild inte-
rior metrics constitute a static family of conformally flat perfect fluid space–times
admitting a 4–dimensional group G4 = G1 × G3 of local isometries. Of course,
the conformal flatness of these solutions suggests the possibility of using them
as a curved background in Cosmology and in semi–classical or quantum gravity.
For simplicity, in the following, we shall refer them as the Schwarzschild interior
space–times (SIST). They have spherical, plane or hyperbolic symmetry depending
on the (constant) curvature of the G3 orbits [4, 5].
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Two invariant ways are known to distinguish geometrically these metrics
according to the sign of the constant curvature of (i) the 3-spaces orthogonal to the
privilegiated timelike Killing vector, or (ii) the spacelike 2-orbits of the isometry
subgroup G3. The former way is also dynamic because the corresponding curvature
gives the energy density of the perfect fluid that is the source of the metric. The
latest one is associated with a parameter that distinguishes among three different
types of (radial) timelike Killing fields, as we will shown in this paper. Both
characterizations are complementary.

The Schwarzschild interior solution and the Einstein universe were invari-
antly characterized by Shepley and Taub [6] as the only conformally flat static
solutions whose source is a perfect fluid with rest particle density conserved.
The uniqueness of the positive density conformally flat static perfect fluid solu-
tions was also independently stablished by Barnes [4]. Other characterizations
have been also discussed, [5, 7, 8], improving previous results by Collinson [9]
about stationary axisymmetric space–times. In the case of spherical symmetry,
the conformal uniqueness of the Schwarzschild interior and related metrics was
presented in [10]. In this last reference, several conformal factors relating these
metrics with Minkowski space-time and de Sitter and Einstein universes were also
provided starting from the metric in isotropic coordinates. Then, an essential ques-
tion follows: does it exist a procedure to obtain directly the whole SIST family in
conformally flat form?

In this paper, we obtain a unified conformally flat form for the SIST (see
expression (20)). The corresponding conformal factor is calculated by imposing
only geometrical conditions: vanishing expansion of a timelike radial conformal
field with orthogonal surfaces of constant curvature. Consequently, the energy
content is a perfect fluid with constant energy density and whose velocity is the
unit vector associated to the Killing field. Of course, we do not find a new family
of solutions because of the results about uniqueness quoted previously. In the
spherically symmetric case, expression (25) gives the reduced form associated
with the Schwarzschild interior solution and related metrics.

It should be noted that the geometrical conditions we have considered can
be also imposed on a spacelike radial conformal field. Then, an expression
for the conformal factor can be obtained which applies for conformally flat
space–times foliated by timelike hypersurfaces. However, we shall restrict here
to static metrics because our main interest is about the Schwarzschild interior
solution.

Next, we specify the terms we are using. A conformally flat space–time is
one in which the metric has the local form g = F2η, with F as a function of the
coordinates (F2 is the conformal factor) and η the flat metric. Then we shall start
with a conformally flat metric in polar spherical coordinates:

g = F2(t, r, θ, ϕ)(−dt ⊗ dt + dr ⊗ dr + r2h) (1)
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where h = dθ ⊗ dθ + sin2θdϕ ⊗ dϕ is the metric on the 2–sphere. A radial con-
formal field ξ of g has the form:

ξ = α
∂

∂t
+ β

∂

∂r
(2)

where α and β are functions of the coordinates. In [11] we have shown that these
functions are independent of the angular coordinates θ and ϕ and are given by:

α(t, r ) = a(t2 + r2) + bt + c, β(t, r ) = r (2at + b) (3)

with a, b and c as arbitrary constants. We will consider that ξ is timelike, then let
u be the unit vector associated with it, u = ξ/

√−g(ξ, ξ ), where

−g(ξ, ξ ) = F2{[a(t2 − r2) + bt + c]2 − r2�} > 0 (4)

with � ≡ b2 − 4ac. This parameter � provides an algebraic classification of the
radial conformal fields [12], and it will be used in order to simplify our expressions.
The meaning of � is attached to the space–time considered. In [11] we showed that
a Friedmann–Robertson–Walker space–time is an open, flat or closed universe if
� > 0, � = 0 or � < 0, respectively. For the SIST, � is related with the curvature
of the G3 orbits as it will be discussed in this paper.

This paper is organized as follows. In Section 2 we study the SIST, obtain-
ing their conformally flat form and analyzing their isometries in conformally flat
coordinates using the parameter �. Finally, in Section 3, we comment on the
Schwarzschild interior metric relating � to the mass to radius ratio admissible for
hydrostatic equilibrium.

2. SCHWARZSCHILD INTERIOR SPACE–TIMES

2.1. Conformally Flat Form of the SIST

We consider a timelike radial conformal field ξ in a conformally flat space–
time with metric g, then its associated unit vector u is shear–free and vorticity–free.
However, the expansion and the acceleration of u depend on the conformal factor
and its first derivatives. This fact provides a kinematical method to obtain conformal
factors. For example, the Robertson–Walker metrics are the conformally flat space–
times admitting a timelike geodesic radial conformal field, and the form of their
conformal factor is determined by these properties [11]. In order to obtain the SIST
in conformally flat form, we impose that ξ is a Killing field of g. The nullity of the
expansion leads to the following differential equation for the conformal factor:

α
∂ F

∂t
+ β

∂ F

∂r
+ β

r
F = 0. (5)



2066 Herrero and Morales

In order to solve this equation we introduce the function

ω(t, r ) = a(t2 − r2) + bt + c

r
, (6)

which satisfies that ω2 > � due to (4). Then, the equation (5) reduces to r ∂ F
∂r +

F = 0 and its general solution has the form:

F = 1

r f (ω, θ, ϕ)
, (7)

f (ω, θ, ϕ) being an arbitrary function.
The conformal factor becomes more determined if more conditions over ξ

are added. For instance, we can impose that the orthogonal surfaces to the field
have constant curvature. To do this we introduce the function s given by:

s(t, r ) =


b(t2 − r2) + 2ct if a = 0

a(t2 − r2) − c

2at + b
if a �= 0

(8)

in such a way that s is a potential of the 1–form ξ∗ associated with the field ξ

by the metric g (ξ∗ ∝ ds, with d the exterior derivative). Then, the 3–surfaces
�s = {(t, r, θ, ϕ) : s = constant} are orthogonal to the field.

Note that if we use {s, ω} as coordinates, the metric (1) has the expression:

g = F2r2

{
−ω2 − �

4S2
ds ⊗ ds + 1

ω2 − �
dω ⊗ dω + h

}
, (9)

where S is a function of s given by the expression:

S(s) =
{

bs + c2 if a = 0

as2 + bs + c if a �= 0
(10)

In consequence, the induced metric over the surfaces �s is given by γ̃ = F2γ , γ =
r2( dω ⊗ dω

ω2 − �
+ h) being a metric with constant curvature [11]. Then, the curvature

form of the metric γ̃ is:

R(γ̃ ) = F2 [R(γ ) + H ∧ γ ] (11)

where ∧ is the exterior product of double 1–forms and

H = F∇d F−1 − 1

2
γ̃ (d ln |F |, d ln |F |)γ̃ (12)

with ∇ as the Levi–Civita connection of the metric γ . So, the condition of constant
curvature over each hypersurface �s isH ∝ γ̃ . Taking into account expression (7),
this condition leads to the following system of differential equations:

f,ωθ = f,ωϕ = 0

f,θϕ = cot θ f,ϕ
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f,ϕϕ = sin θ (sin θ f,θθ − cos θ f,θ ) (13)

f,θθ = [(ω2 − �) f,ω − ω f ],ω

Its general solution is:

f (ω, θ, ϕ) = �σ · �r
r

+ ν(ω) (14)

where

�σ · �r = (σ1 cos ϕ + σ2 sin ϕ)r sin θ + σ3r cos θ (15)

and

ν(ω) =
 K1ω + K2

√
ω2 − � if � �= 0

K1ω + K2
ω if � = 0

(16)

with �σ ≡ (σ1, σ2, σ3), K1 and K2 as arbitrary constants. We can rewrite the function
ν(ω) as:

ν(ω) = k1(ω +
√

ω2 − �) + k2

ω + √
ω2 − �

, (17)

which includes both situations, � �= 0 and � = 0. Here, k1 and k2 are two new
arbitrary constants directly related to the arbitrary constants K1 and K2.

Consequently, the curvature of each surface �s results independent of s and
is the constant

K = 4k1k2 − σ 2 with σ 2 = σ 2
1 + σ 2

2 + σ 2
3 (18)

and the energy content is a perfect fluid, T = (µ + p)u ⊗ u + pg, with constant
energy density, µ = 3K , and pressure given by

p(ω, θ, ϕ) = −µ + 2 f√
ω2 − �

(k2 − k1�). (19)

We have taken the Einstein gravitational constant κ = 1 and to make clearer some
geometrical aspects, no energy conditions have been imposed on T .

So, we have obtained the whole family of static conformally flat perfect fluid
metrics with constant energy density, including its degenerations (Minkowski, de
Sitter and Einstein universes). More precisely:

The conformally flat space–times admitting a timelike radial Killing field
with orthogonal surfaces of constant curvature are locally isometric with the SIST.
Their conformally flat form has the expression:

g = 1

(�σ · �r + rν)2
η (20)
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where �σ · �r and ν(ω) are given in the form (15) and (17), respectively, and ω as
in (6).

In fact, Killing’s equations for this metric say that it admits a 4–dimensional
isometry group G4 = G1 × G3, with G1 generated by the timelike radial Killing
field and with G3 acting on spacelike 2–dimensional orbits with constant curvature
as we will see in the following subsection.

Note that, from expression (19), de Sitter space–times are recovered taking
k2 = k1�. To recover the Einstein universes we need to look at the expression of
the field acceleration. From (4) and (20), we get that g(ξ, ξ ) = −(ω2 − �)/ f 2,
which is a potential of the acceleration of u:

a = d ln
√

−g(ξ, ξ ) = 1

r f

{
A

ω2 − �
dω − (�σ · �r ),θdθ − (�σ · �r ),ϕdϕ

}
(21)

with

A = ω �σ · �r + r (k1� + k2).

Then, the condition of null acceleration necessarily implies �σ = 0 and the relation
k1� + k2 = 0, which corresponds to the Minkowski space-time and the Einstein
universes (µ = −3p) as it follows from expressions (14), (17), (18) and (19).

2.2. Isometries of the SIST

As we have mentioned in Section 1, the isometry group of the SIST has
been widely analyzed [4, 5] considering a coordinate system adapted to the time-
like Killing field. In this subsection we solve the Killing’s equations Lξ g = 0
to determine the groups of motions of a conformally flat space–time given by
(20), following closely the Levine’s method [13, 14] and using conformally flat
coordinates. It is convenient to consider that a t-independent rotation over the sur-
faces t = constant defines new conformally flat coordinates {t, x ′, y′z′} for which
�σ = (0, 0, σ ), then we can always take σ1 = σ2 = 0 without loss of generality.
Under these considerations, we arrive to the following expressions for a basis of
the Lie algebra:

ξ0 = ξ = [a(t2 + r2) + bt + c]
∂

∂t
+ [r (2at + b)]

∂

∂r
= 2S(s)

∂

∂s

ξ1 = σ (ω2 − �) sin θ sin ϕ
∂

∂ω
− (λ + σω cos θ ) sin ϕ

∂

∂θ

− (σω + λ cos θ )
cos ϕ

sin θ

∂

∂ϕ

ξ2 = σ (ω2 − �) sin θ cos ϕ
∂

∂ω
− (λ + σω cos θ ) cos ϕ

∂

∂θ
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+ (σω + λ cos θ )
sin ϕ

sin θ

∂

∂ϕ

ξ3 = ∂

∂ϕ

where S(s) is given by expression (10) and the parameter λ is defined as:

λ ≡ k1� + k2. (22)

Note that this parameter λ also appears in the acceleration of the Killing field
ξ . Then, these expressions for the Killing vectors stand when σ �= 0 or λ �= 0
because the case σ = λ = 0 corresponds to the Minkowski space–time or the
Einstein universes, as we have mentioned before.

So, we are going to analyze the generic cases. Clearly [ξ, ξ1] = [ξ, ξ2] =
[ξ, ξ3] = 0, and the G3 Lie subalgebra is given by

[ξ1, ξ2] = (λ2 − σ 2�)ξ3, [ξ1, ξ3] = −ξ2, [ξ2, ξ3] = ξ1. (23)

The structure constant λ2 − σ 2� is related to the curvature of the G3 orbits, giving
spherical, plane or hyperbolic symmetry according to λ2 > σ 2�, λ2 = σ 2� or
λ2 < σ 2�, respectively. The corresponding Bianchi types are IX, VII0 and VIII.

Next, we are going to study the relation between the symmetry type and the
parameters � and K associated with ξ . Clearly, if σ = 0 we only have spherical
symmetry. In the case σ �= 0, taking into account (22) and (23), we have to analyze
the sign of the polynomial function:

p(�) = k2
1�

2 + (2k1k2 − σ 2)� + k2
2, (24)

whose discriminant is −σ 2 K . The result of this analysis is summarized in Table I.
We observe that for � < 0 we only have spherical symmetry, as well as for

K > 0 and also, in the case � = K = 0.
As for the case � = 0 and K < 0, the constant k2 appearing in expression (17)

allows us to distinguish the type of symmetry, giving spherical or plane symmetry
according to k2 �= 0 or k2 = 0, respectively.

Table I. (S)pherical, (P)lane and (H)yperbolic Symmetry of
the SIST Depending on the � and K Parameters for σ �= 0

K < 0 K = 0 K > 0

� < 0 S S S
� = 0 S, P S S
� > 0 S, P, H S, P S
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The case � > 0 and K = 0 only needs the ratio k2/k1 to draw the distinc-
tion, having spherical or plane symmetry according to � �= k2/k1 or � = k2/k1,
respectively.

Finally, in the case � > 0 and K < 0 the three possible algebras are also
easily distinguished by the constants k1 and k2 in (17):

(i) If k1 = 0 we have spherical, plane or hyperbolic symmetry when � is
minor, equal or major than (k2/σ )2, respectively.

(ii) If k1 �= 0, let �± be the two real roots of (24). Then, the SIST have
spherical symmetry when � < �− or � > �+, plane symmetry when
� = �− or � = �+, and hyperbolic symmetry when �− < � < �+.

3. COMMENTS ON THE SCHWARZSCHILD INTERIOR SOLUTION

In this section we deal mainly with the Schwarzschild interior solution, which
is a special case of spherically symmetric SIST. For these metrics a reduced con-
formally flat form can be directly obtained from expression (20) taking �σ = 0. So,
one has

f = ν(ω), g(ξ, ξ ) = −ω2 − �

ν2
and a = k1� + k2

(ω2 − �)ν
dω.

Then, it results:
A reduced conformally flat form for the spherically symmetric SIST is:

g = η

r2 ν2
, (25)

ν(ω) being the function (17) with ω defined by (6). The function ω is a potential
of the acceleration of the timelike radial Killing field ξ , whose expression is given
by (2) and (3).

To interpret the parameter � for the case of Schwarzschild interior solution
we are going to recover this metric in curvature coordinates. So, we shall consider
a transformation from the conformally flat coordinates {t, r} to new coordinates
{τ, ρ}. We start with the metric (25) written in {s, ω} coordinates as in expression
(9). Then, the functions:

ρ = 1

ν(ω)
and τ =

∫
ds

S(s)
,

with S(s) given by (10), allow to write the metric in curvature coordinates as:

g = −ω2 − �

4ν2(ω)
dτ ⊗ dτ + ν2(ω)

(ω2 − �)ν ′2 (ω)
dρ ⊗ dρ + ρ2h.
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In the case K = 4k1k2 �= 0 this metric results in the Schwarzschild interior
form:

g = −(A + B
√

1 − Kρ2)2dτ ⊗ dτ + 1

1 − Kρ2
dρ ⊗ dρ + ρ2h, (26)

A and B being constants related to the constants k1 and k2 by the following
expressions:

A2 = 1

4K 2
(k1� − k2)2 and B2 = 1

4K 2
(k1� + k2)2.

We observe that � = 4K (B2 − A2). The case A = 0 gives k1� − k2 = 0, that is,
p = −µ (de Sitter metrics), and B = 0 is the geodesic case which corresponds to
the Einstein universes (� �= 0). To recover the Schwarzschild interior solution we
have to take K > 0, AB �= 0 in metric (26) and match it with the Schwarzschild
exterior metric ge across a timelike 3–surface �. The metric ge writes in curvature
coordinates as:

ge = −
(

1 − 2m

ρ

)
dτ ⊗ dτ + 1

1 − 2m
ρ

dρ ⊗ dρ + ρ2h. (27)

and � is taken as ρ = ρ0 > 2m. The continuity of the metric potential gρρ across
� is equivalent to take K = 2m/ρ3

0
. The continuity of the timelike component gττ

and its first derivative ∂ρgττ across � fixes (up to a sign ε = ±1) the integration

constants: A = (3ε/2)
√

1 − Kρ2
0

and B = −ε/2. Under the above requirements,

the constant � is expressed as:

� = 4m

ρ3
0

(
9m

ρ0

− 4

)
, (28)

which allows us to give an interpretation of this parameter:
For the Schwarzschild interior solution, the condition � < 0 is equivalent to

m/ρ0 < 4/9, which gives the mass/radius limit ratio for the stability of a spheri-
cally symmetric static configuration of uniform density.

As it is well known, the derivative ∂ρgρρ presents a discontinuity across �

and the coordinate ρ is not an admissible coordinate in the sense of Darmois
and Lichnerowicz. Several types of admissible coordinate systems for this and
other matching problems has been analyzed by different authors (see, for instance,
[1, 15–18]). From these studies, when an expression r (ρ) as a radial admissible
coordinate is provided, it could be used to express our relation (28) in terms of
r0 = r (ρ0 ).

Note that the particular situation with A2 = B2 corresponds to � = 0; the
case A = B has been interpreted in [19] as a model of universe and, in [20] an
interior solution with A = −B has been matched with the exterior Schwarzschild
solution in an harmonic coordinate system.
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On the other hand, we can also comment on solutions with K = 0 for which
the metric is expressed as:

g = −(Aρ2 + B)2dτ ⊗ dτ + dρ ⊗ dρ + ρ2h, (29)

A and B being two constants given by:

1) If k1 = 0, k2 �= 0 then A = k2
4 and B = −�

4k2
.

2) If k2 = 0, k1 �= 0 then A = −�k1
4 and B = 1

4k1
.

Here, if � = 0, the second case reduces to Minkowski space–time while the first
case does not. Moreover, the pressure of a spherically symmetric SIST can be
decomposed using these metrics. In fact, expression (19) (with f = ν) is written
as p(ω) = −2K + p1(ω) + p2(ω), where p1(ω) is the pressure corresponding to
the case k1 = 0, k2 �= 0 and p2(ω) the corresponding to the case k1 �= 0, k2 = 0.

Finally, it should be remarked that the simplest Schwarzschild interior gen-
eralizations are the so called generalized Schwarzschild interiors which are the
conformally flat space–times whose energy content is a non–expanding perfect
fluid [21]. In addition, the fluid is shear–free and vorticity–free due to the Bianchi
identities and the nullity of the Weyl tensor. The nullity of the expansion implies
that the energy density is a constant that also gives the curvature of the space-
like sections orthogonal to the fluid flow. In general, this flow is non geodesic,
according to the pressure inhomogeneities. This family of solutions is obtained
and presented in a non–conformally flat form, using adapted coordinates to the
fluid flow, althought the Weyl tensor nullity plays an essential role in its determi-
nation [21]. In this paper we have presented a way to obtain the conformal factor
of the (static) SIST. Its possible extension to cover the generalized Schwarzschild
interiors is an essential question that remains open.
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