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Departamento de Astronomı́a y Astrof ı́sica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain;

antonio.morales@uv.es, diego.saez@uv.es

Received 2007 October 25; accepted 2008 January 22

ABSTRACT

Recent observations have pointed out various anomalies in some multipoles (small ‘) of the cosmic microwave
background (CMB). In this paper, it is proved that some of these anomalies could be explained in the framework of
a modified concordance model, in which there is an appropriate distribution of vector perturbations with very large
spatial scales. Vector modes are associated with divergenceless (vortical) velocity fields. Here, the generation of these
modes is not studied in detail (it can be done ‘‘a posteriori’’); on the contrary, we directly look for the distributions of
these vector modes which lead to both alignments of the second and third multipoles and a planar octopole. A general
three-dimensional (3D) superimposition of vector perturbations does not produce any alignment, but we have found
rather general 2D superimpositions leading to anomalies similar to the observed ones; in these 2D cases, the angular
velocity has the same direction at any point of an extended region, and moreover, this velocity has the same distribu-
tion in all the planes orthogonal to it. Differential rotations can be seen as particular cases, in which the angular ve-
locity only depends on the distance to a rotation axis. Our results strongly suggest that appropriate mixtures of scalar
and vector modes with very large spatial scales could explain the observed CMB anomalies.

Subject headinggs: cosmic microwave background — cosmology: theory — large-scale structure of universe
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1. INTRODUCTION

The analysis of the data obtained by theWilkinson Microwave
Anisotropy Probe (WMAP) has pointed out some anomalies in
the temperature distribution of the cosmicmicrowave background
(CMB). These anomalies have not been explained in the frame-
work of the concordance model, which is an inflationary flat uni-
verse with cold dark matter, dark energy, and reionization. For
appropriate values of the involved parameters, thismodel explains
most of the current cosmological observations, e.g., themagnitude-
redshift relation satisfied by far supernovae, the statistical prop-
erties of galaxy surveys, and the CMB anisotropies; nevertheless,
some aspects of these observations remain controversial. Among
them, the WMAP anomalies deserve attention. Some of these
anomalies could be due to unexpected systematic errors associ-
ated with foreground subtraction, galactic cuts, statistical anal-
ysis, and so on; however, other anomalies could be true effects
requiring new physics. Future experiments such as Planck should
distinguish between physical effects and systematic errors. Let us
now list themain anomalies: (1) the amplitude of theC2 multipole
is lower than was expected, (2) there is an asymmetry between the
north and south ecliptic hemispheres, (3) the multipole C3 is too
planar, and (4) the multipoles C2 and C3 are too aligned. Other
anomalies concerning ‘ > 3 multipoles have also been described.

The importance of anomaly 1was initially overestimated. The
probability assigned by Spergel et al. (2003) to the C2 value ob-
tained from the first-year WMAP data was �1:5 ; 10�3. After-
ward, other authors (Efstathiou 2003, 2004; Gaztañaga et al. 2003;
Slosar et al. 2004) obtained greater probabilities by using different
methods for data analysis. Finally, Hinshaw et al. (2007) used the
data from the first three years of theWMAP sky survey, plus ap-
propriate statistical and foreground subtraction techniques, to con-
clude that the probability of the measured C2 multipole is�0.16.
In conclusion, the observed value of C2 is currently considered
small but compatible with the concordance model. Nevertheless,
a lack of correlations at the largest angular scales appears to be

statistically significant in cut-sky maps (see Spergel et al. 2003;
Copi et al. 2007; Hajian 2007)

Anomaly 2was studied in detail by Eriksen et al. (2004a, 2004b)
andHansen et al. (2004a, 2004b). The hemispherical power asym-
metry is nowadays considered substantial and robust; neverthe-
less, more study is necessary to get definitive conclusions (Eriksen
et al. 2007).

Mathematical methods to quantify the alignment of C2 andC3

as well as the planar character of C3 were depicted by deOliveira-
Costa et al. (2004; vectors n2 and n3 and parameter t) and Copi
et al. (2004;multipole vectors). For the sake of simplicity, we have
designed a code to compute n2, n3, and t, whereas multipole vec-
tors will be considered elsewhere. Vectors n2 and n3 maximize
the quantity

� ¼
X
m

m2ja‘m(n)j 2 ð1Þ

for ‘ ¼ 2 and 3, respectively. In this last equation, quantities
a‘m(n) are the spherical harmonic coefficients of the CMB map
in a coordinate system where n coincides with the z-axis. See
de Oliveira-Costa et al. (2004) for the explicit definition of pa-
rameter t. Anomalies 3 and 4 have been studied in many papers
(Schwarz et al. 2004; Bielewicz et al. 2004; Copi et al. 2006,
2007). The planar shape of C3 has been confirmed by Copi et al.
(2006, 2007), but this characteristic of the octopole is not very
unlikely in the concordance model. More problematic is the
strong alignment of C2 and C3. Some authors state that the mul-
tipole alignment is actually anomalous and also that the alignment
extends up to ‘ ¼ 5. They suggest the existence of a symmetry
axis (Land&Magueijo 2005, 2007; Bernui et al. 2007; Cho 2007).
Other authors (Rackić & Schwarz 2007) propose the existence
of a preferred plane without rotational symmetry. This proposal
suggests either a differential rotation viewed from an arbitrary point
in space, which should be outside the rotation axis, or a more
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complicated vortical motion with aligned angular velocities. Mo-
tions of this type—in extended regions—can be simulated with
appropriate combinations of large-scale vector modes. Finally,
let us mention another CMB anomaly which has been found at
smaller angular scales: a non-Gaussian cold spot (�10

�
size) lo-

cated in the south hemisphere (Vielva et al. 2004; Cruz et al. 2005;
Martı́nez-González et al. 2006).

An anisotropic Bianchi VIIh model has been recently consid-
ered (Jaffe et al. 2005, 2006a, 2006b; Bridges et al. 2007; Ghosh
et al. 2007) with the essential aim of explainingmost of the above
WMAP anomalies; however, the authors recognize that their model
does not explain the observed acoustic peaks. Other authors have
studied the anisotropy produced by big voids with appropriate
locations (Inoue & Silk 2006, 2007) to account for the mentioned
anomalies. Motivated by the above considerations about symme-
tries and vortical (divergenceless) motions, we propose here an-
other possibility whichmay contribute to explain the large angular
scale CMB structure: the existence of vector perturbations with
large enough spatial scales. Here, the main features of the first ‘
multipoles produced by these vector modes are estimated in the
framework of a concordance model.

By using appropriate large scales, only their contribution to the
first multipoles are significant, and consequently, there are no
problems with the acoustic peaks. In the linear regime, scalar,
vector, and tensor modes (Bardeen 1980) do not couple among
them; hence, vector modes can be separately studied. Vector
modes are vortical peculiar velocity fields which do not appear
in standard inflation; nevertheless, large-scale vector modes may
appear in brane-world cosmologies (Maartens 2000) and also in
models with appropriate topological defects (Bunn 2002).What-
ever the origin of the vector modes may be, we are interested in
their possible effects on the CMB when their amplitudes are ap-
propriately normalized. Two effects produced by the same type
of large-scale vector perturbations were studied in Morales &
Sáez (2007, hereafter Paper I). Some basic aspects concerning
these perturbations can be found in this reference.

Our background is the so-called concordance cosmological
model, with a reduced Hubble constant h ¼ 10�2H0 ¼ 0:71
(whereH0 is the Hubble constant in units of km s�1Mpc�1). The
density parameters of vacuum energy and matter (baryonic plus
dark) are �� ¼ 0:73 and �m ¼ 0:27, respectively. All these pa-
rameters are compatiblewith the analysis of the three-yearWMAP
data recently published (Spergel et al. 2007).

Throughout this paper, Greek (Latin) indices run from 0 to 3
(1 to 3). Units are defined in such a way that c ¼ � ¼ 1, where c
is the speed of light and � ¼ 8�G/c4 is the Einstein constant.
The unit of length is the Megaparsec. Symbols a, �, and z stand
for the scale factor, the conformal time, and the redshift, respec-
tively. Whatever quantity A may be, A0 (Ae) stands for the value
of A at the present (CMB emission) time. Quantity a0 is assumed
to be unity. This choice is always possible in a flat background.

2. CMB ANISOTROPY

The most general vector perturbation of an FRW universe is a
fluctuation of the metric g��, the four-velocity u

�, and the trace-
less tensor E�� describing anisotropic stresses. In the absence of
scalar and tensor perturbations, the gauge can be chosen in such
a way that the line element reduces to

ds 2 ¼ a2 �d� 2þ 2hi dx
i d� þ �ij dx

i dx j
� �

; ð2Þ

where the perturbations of the g0i metric components have been
written in the form hi ¼fh1; h2; h3g, (h1; h2; h3) ¼ h. From the

matter four-velocity, u� ¼ (u0; u), one defines the peculiar veloc-
ity v ¼ u/u0. Finally, the condition Eij ¼ 0 is assumed throughout
the paper, which means that there are no anisotropic stresses con-
ditioning the evolution of v and h.
Let us now calculate the CMB temperature contrast, �T /T ,

due to the above linear vector perturbations. From the equations of
the null geodesics, the following formula can be easily obtained,

�T

T
¼ vc0 = n� vce = n� nin j

Z �e

�0

@hj
@x i

d�; ð3Þ

where n is the unit vector in the observation direction and vc ¼
vþ h. In the case of linear vector modes, the integral can be cal-
culated along radial null geodesics of the FRW background,
whose equations are �̇ ¼ �ṙ and �̇ ¼ �̇ ¼ 0 (in terms of the
spherical coordinates r, �, and � associated with xi). The dots
stand for derivatives with respect to the affine parameter.
Functions h(�; r) and v(�; r) can be expanded in terms of an

appropriate basis (the fundamental harmonic vectors; see Bardeen
1980; Hu & White 1997) to write

h(r; �) ¼ �
Z

Bþ(k; �)eþ(k)þ B�(k; �)e�(k)½ �

; exp (ik = r)d 3k; ð4Þ

where k is the wavenumber vector, k is the unit vector k/k, and
functions Bþ and B� are the coefficients of the h-expansion. A
representation of vectors eþ and e� is

	�1 ¼ (�k1k3=k � ik2)=

ffiffiffi
2

p
; ð5Þ

	�2 ¼ (�k2k3=k þ ik1)=

ffiffiffi
2

p
; ð6Þ

	�3 ¼ �
=k
ffiffiffi
2

p
; ð7Þ

where 
 ¼ (k 2
1 þ k 2

2 )
1/2 (see Paper I ). Hereafter, the follow-

ing compact notation is used Bþ(k; �)eþ(k)þ B�(k; �)e�(k) ¼
B�e� . Vector v(�; r) is expanded in the same way using the co-
efficients v� (k; �). Quantities v�c ¼ v� � B� are gauge invariant
(Bardeen 1980). Under the condition Eij ¼ 0, quantities B� (k; �)
decrease as a�2 in both the radiation-dominated and the matter-
dominated eras (see Paper I). Therefore, vector metric perturba-
tions being significant at decoupling (the end of inflation) would
be negligible today (at decoupling). During matter domination,
the following formula holds, B� (k; �) ¼ 6H 2

0 �mv
�
c0(k)/k

2a2(�).
Furthermore, functions v�c are proportional to a�1 (constant) in
the matter- (radiation-) dominated era. According to these com-
ments, vector modes producing significant effects on the CMB
should not freely evolve from the early universe. Either they are
produced by exotic processes (brane-worlds, strings, and so on)
close enough to recombination-decoupling or they must be main-
tained by somefield producing an appropriateEij 6¼ 0 vector com-
ponent (see Paper I). Using the above expansions and evolution
laws, the relative temperature variation due to the last term of
equation (3) can be rewritten as

�T

T
¼ 6H 2

0 �m

Z re

0

dr

a2(r)
F(r); ð8Þ

where F(r) ¼ Fpq(r)n
pnq and

Fpq(r)¼ �i

Z
kp

k 2
v�c0(k)	

�
q (k) exp(ik = r)d

3k: ð9Þ
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This last equation can be seen as a Fourier transform for each
pair ( p; q) of indices. After these transforms are performed for
appropriate boxes and resolutions, function F(r) and the integral
in equation (8) can be easily calculated for a set of directions
defining a sky CMB map. A HEALPix (see Górski et al. 1999)
pixelization covering the sky with 3072 pixels is used in our
simulations.

Apart from the above CMB temperature effects, vector modes
produce a rotation of the polarization direction (Skrotskii effect;
Skrotskii 1957). As it was proved in Paper I, the rotation angle is

� ¼ 3H 2
0 �m

Z re

0

dr

a2(r)
½n = G(r)�; ð10Þ

where

G(r) ¼
Z

vþc0e
þ(k)� v�c0e

�(k)
k

exp(ik = r)d 3k: ð11Þ

For the line element from equation (2), the components of the
angular velocity in momentum space areWi ¼ a3	ijkW

jk . From
this relation and theWmn components given by Bardeen (1980)
one easily gets—at first order—the following formulas,

W1 ¼ iv�c 	�2 k3� 	�3 k2
� �

; ð12Þ

W2 ¼ iv�c 	�3 k1� 	�1 k3
� �

; ð13Þ

W3 ¼ iv�c 	�1 k2� 	�2 k1
� �

; ð14Þ

hence, the equation kiWi ¼ 0 is identically satisfied. The result-
ing components only depend on the gauge invariant quantities
v�c ¼ v�c0(k)/a, and consequently, the angular velocity is an ap-
propriate vector field in order to discuss the properties of the vec-
tor modes and their superimpositions in a gauge invariant way (it
is not the case of the peculiar velocity).

Various appropriate choices of v�c0(k) are considered further be-
low. In each case, the angular velocity and the resulting�T /T and
� maps are analyzed. For the �T /T maps, the angle formed by
vectors n2 and n3 (giving the directions of the quadrupole and
octopole) and the parameter t defining the planar character of the
octopole (see de Oliveira-Costa et al. 2004) are calculated.

3. CMB ANISOTROPY PRODUCED
BY A SINGLE VECTOR MODE

A unique vector mode ku is first considered. In this way, some
ideas—which are basic to understanding the CMB effects pro-
duced by superimpositions of these modes—are pointed out. For
a unique mode, we can write

v�cu(k)¼ v�cu�(k� ku)� (v�cu)
��(kþ ku); ð15Þ

where the complex numbers v�cu ¼ v�cuR þ iv�cuI fix the amplitude
of the chosenmode and �(k� ku) and �(kþ ku) are Dirac distri-
butions. Equation (15) implies the relation ½v�cu(k)�

� ¼ �v�cu(�k),
which ensures that the components of the angular velocity in po-
sition space, as well as the temperature contrast �T /T and the
Skrotskii rotation angle � , are real numbers. Moreover, for a
unique mode, the coordinate axis in momentum space can be
chosen in such a way that ku ¼ (ku1; 0; 0) with ku1 ¼ ku> 0, and
then, equations (5)Y(7) lead to

	�1 ¼ 0; 	�2 ¼ i=
ffiffiffi
2

p
; 	�3 ¼ �1=

ffiffiffi
2

p
: ð16Þ

For the sake of simplicity in notation, the x1, x2, and x3 compo-
nents of the angular velocity are hereafter denotedWx,Wy, and
Wz, respectively. The same notation is used for the components
of any other vector in position space. From equations (12)Y(16)
one easily gets

Wx ¼ 0; ð17Þ

Wy ¼ ku
ffiffiffi
2

p
vþcuR� v�cuR
� �

sin � þ vþcuI � v�cuI
� �

cos �
� �

; ð18Þ

Wz ¼ ku
ffiffiffi
2

p
vþcuR þ v�cuR
� �

cos � � vþcuI þ v�cuI
� �

sin �
� �

; ð19Þ

where � ¼ ku = r ¼ kur sin � cos � and variables r, �, and � are
spherical coordinates in position space. Analogously, from equa-
tions (9), (15), and (16) one proves that the only nonvanishing
components of Fpq(r) are F12 ¼ Wz/k

2
u and F13 ¼ �Wy/k

2
u . As it

follows from these relations and equations (18)Y(19), functions
F12 andF13 depend on our choice of the complex numbers vþcu and
v�cu. Once these numbers have been chosen, the integral of the
right-hand side of equation (8) can be easily written as

�T

T
¼ 6

ffiffiffi
2

p
H 2

0 �mn
1

ku
An2 þ Bn3

� �
Ic þ Cn2þ Dn3

� �
Is

� �
;

ð20Þ

where A ¼ vþcuR þ v�cuR, B ¼ v�cuI � vþcuI , C ¼ �(vþcuI þ v�cuI ),
D ¼ v�cuR � vþcuR,

Is ¼
Z re

0

a�2(r) sin � dr; ð21Þ

Ic ¼
Z re

0

a�2(r) cos � dr; ð22Þ

n1 ¼ sin � cos �, n2 ¼ sin � sin �, and n3 ¼ cos �. The inte-
grals from equations (21) and (22) are to be performed along
each of the 3072 directions configuring our HEALPix map from
emission (re) to observation (r ¼ 0). Afterward, the resulting map
can be analyzed by using our numerical code that was specially
designed to get n2, n3, and t.

The value ku ¼ 2�/Lu with Lu ¼ 4 ; 104 Mpc has been fixed,
and then, for A ¼ C ¼ 0 and B ¼ D ¼ 6:6 ; 10�10 (mode 1),
vectors n2 and n3 appear to be perfectly aligned in the direction
(0,1,0) and the octopole is rather planar (t ¼ 0:93). The total
�T /T map is displayed in the top panel of Figure 1. The middle
and bottom panels of Figure 1 show the quadrupolar and octo-
polar components of this map. Figure 2 has the same structure,
but it corresponds to A ¼ B ¼ �C ¼ D ¼ 3:3 ; 10�10 (mode 2).
In this last case, there is no alignment. The angle formed by the
vectors n2 ¼ (0:037; 0:706; 0:707) and n3 ¼ (�0:037; 0:706;
�0:707) is very close to 90

�
, and the parameter t takes on the

value t ¼ 0:93 (as in the first case). Other angles and t values
appear for other choices of parameters A, B, C, and D. These
results strongly suggest that random superimpositions of arbi-
trary vector modes should not lead to aligned n2 and n3 vectors.
This fact is verified in x 4 by considering a rather general 3D
superimposition.

Finally, another type of vectormodes (hereafter calledw-modes)
deserves particular attention (see x 5 for applications). In this case,
the coordinate axes inmomentum space are chosen in such away
that ku ¼ (ku1; ku2; 0), and then, the conditions v

þ
cu ¼ v�cu ¼ vcu are

assumed. The complex number vcu can be put in the form vcu ¼
jvcujcos � þ ijvcujsin �. Similarly,we canwrite ku1 ¼ 
u cos � and
ku2 ¼ 
u sin �. The effect of a unique w-mode is now considered.
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By performing the same kind of calculations as for previous iso-
lated modes, one easily gets

Wx ¼ Wy ¼ 0; ð23Þ

Wz ¼ 2
ffiffiffi
2

p

ujvcuj(cos � cos � � sin � sin � ); ð24Þ

where � ¼ ku = r¼ 
ur (n
1 cos �þ n2 sin �). Furthermore, the

associated temperature contrast is

�T

T
¼ 12

ffiffiffi
2

p
H 2

0 �mjvcuj

u

Ic cos � � Is sin �ð Þ

; n2n2� n1n1
� � sin 2�

2
þ n1n2 cos 2�

� �
: ð25Þ

Thousands of maps,Mi, corresponding to different values of �
and � have been obtained and analyzed. Parameters 
u and jvcuj
have been fixed. Their values are 
u ¼ �/(2 ; 104) Mpc�1 and
jvcuj ¼ 3:3 ; 10�10. In Figure 3 we display three of these maps

corresponding to distinctw-modes; they are different, but the spots
are always aligned along the equatorial zone, and consequently, as
has been verified, vectors n2 and n3 are aligned along the direction
(0; 0; 1), and moreover, the octopole is very planar t ’ 0:94. This
type of alignment and a high t value (planar octopole) appear in
all the maps. Other values of 
u and jvcuj have been considered
with the same result. If we superimpose many of these maps,
the vectors n2 and n3 of the resulting map are not always aligned;
in other words, any combination of linear modes lying in the
plane (k1; k2) with vþc0 ¼ v�c0 ¼ vc0 does not lead to multipole
alignments.
This fact is not surprising taking into account that, for a given

map, directions n2 and n3 maximize the quantity � defined in
equation (1), which is nonlinear with respect to the a‘m coeffi-
cients. Superimpositions of w-modes have been numerically anal-
yzed in a simple way; we have taken 1521 maps Mi, and then,
another 1521mapsNj have been obtained according to the follow-
ing formula, Nj ¼

P j
i¼1 Mi. From the analysis of the Nj maps,

the following conclusions have been obtained: (1) vectors n2

Fig. 2.—Same as Fig. 1, but for vector mode 2 (see text). There is no align-
ment in this case, but the octopole is visibly planar. Vectors n2 and n3 are almost
orthogonal. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 1.—Top: HEALPix map of (�T /T ) ; 105 for vector mode 1 (see text).
Middle: Quadrupole of this map.Bottom: Octopole of this map. The alignment of
C2 andC3 is evident. The octopole looks planar. Normalization is irrelevant. [See
the electronic edition of the Journal for a color version of this figure.]
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and n3 are aligned in the direction (0,0,1) for 1314 of these maps,
which appear to have rather planar octopoles; and (2) in the re-
maining 207 cases, there are no alignments and the octopole is less
planar. In Figure 4, one of these cases is displayed; the spots of the
bottompanel are not aligned in the equatorial zone (t ¼ 0:46), and
then, the direction n3 is not parallel to (0,0,1). Indeed, it has been
numerically verified that these directions are almost orthogonal to
(0,0,1) in most of the above 207 cases. A theoretical proof of this
orthogonality is not easy as a result of the particular form of the
nonlinear definition of n2, n3, and t. In x 5, this type of vector
modes (w-modes) will be superimposed to simulate differential
rotations and other symmetric divergenceless motions. Then, the
fraction of the superimpositions leading to n2 and n3 alignments
will be experimentally found.

4. 3D SUPERIMPOSITIONS OF VECTOR MODES

According to equation (9), functions Fpq(r) can be calculated
by using the 3D fast Fourier transform (FFT). In order to do

that, 5123 cells are considered inside a big box with a size of
2 ; 105 Mpc. In this way, the cell size is �390 Mpc, and con-
sequently, vector modes with spatial scales between 104 and 5 ;
104 Mpc can be well described in the simulation. We can then
calculate the functionF(r) to perform the integral in equation (8);
in order to do that, the observer is placed at an arbitrary point lo-
cated in the central part of the simulation box, where the Fourier
transform is expected to be well calculated, and then, the integra-
tion is performed for each of the 3072 directions of the pixel
centers. The variations of F(r) along the photon trajectories are
smooth, and consequently, the integrations giving �T /T can
be easily performed. Furthermore, in a central cube with 1:2 ;
105 Mpc per edge (60% of the box size in our simulations), we
can place 53 observers uniformly distributed and separated by a
distance of 3 ; 104 Mpc. Then, the quantity �T /T can be cal-
culated for each of these observers; thus, from a given simula-
tion the information we obtain is greater than in the case of one
unique observer located, e.g., at the box center.

Fig. 4.—Same as Fig. 1, but for the superimposition of w-modesN1126 (see x 3).
Vector n2 has the direction (0,0,1), and the octopole is not planar. Calculations
indicate that vectorsn2 andn3 are orthogonal; hence, directionn3 is contained in the
equatorial plane. Normalization is irrelevant. [See the electronic edition of the Jour-
nal for a color version of this figure.]

Fig. 3.—HEALPix maps of (�T /T ) ; 105 produced by different w-modes
(see text). The equatorial alignment and the planar character of the octopole are
evident in the three panels. Normalization is irrelevant. [See the electronic edition
of the Journal for a color version of this figure.]
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In this section, it is assumed (as in Paper I ) that v�c0R and v�c0I
are four statistically independent Gaussian variables with vanish-
ing mean and also that each of these numbers has the same power
spectrum. The form of this common spectrum is P(k) ¼ Ak nv ,
where nv is the spectral index of the vector modes and A is a nor-
malization constant. Two values of the spectral index, nv ¼ 1 and
2, have been considered. The spatial scale is varied from 104 to
5 ; 104 Mpc in all cases (only very small kwavenumbers are con-
sidered). Four realizations of this 3D random superimposition of
vector modes have been performed for each spectrum, and then,
125 observers have been located as described above in each of the
simulation boxes. Thus, 500 simulations of the CMB relative tem-
perature variations obtained from the last term of equation (3)
have been obtained. Moreover, the corresponding 500 simula-
tions of the term �vce =n have also been found. In all cases, the
linearity conditions jh(r)jn 1 and jvc(r)jn 1 have been veri-
fied using the relations

h(�; r)¼ �6H 2
0 �ma

�2(�)

Z
v�c0(k)

k 2
e� (k) exp(ik = r)d 3k;

ð26Þ

v�c (�; r) ¼ a�1(�)

Z
v�c0(k)e

� (k) exp(ik = r)d 3k: ð27Þ

The analysis of all these simulations has led to the following main
results.

1. The term�vce =n is negligible against the last term of equa-
tion (3). In Figure 5, we present one simulation of each of these
terms for nv ¼ 1. Numbers in the bottom panel (�vce =n term) are

much smaller than those of the top panel ( last term of eq. [3]).
Obviously, this comparison is independent of the spectrum nor-
malization. We have verified that the average hC2i correspond-
ing to the 500 maps of the term�vce = n is�1/600 times smaller
than the average calculated from equations (8)Y(9); therefore,
the term�vce = n is hereafter neglected and our study is restricted
to the maps obtained from equations (8)Y(9).
2. The angle �23 subtended by directions n2 and n3 is smaller

than 10
�
in nine of the 500 simulations for both spectral indices,

nv ¼ 1 and 2. These numbers are compatible with the 8.33 cases
expected for a random distribution of direction n3 around a fixed
n2 (see de Oliveira-Costa et al. 2004).
3. The parameter t appears to be greater than 0.94 in 40 and

42 simulations in the cases nv ¼ 1 and 2, respectively. These num-
bers are to be compared with 35, which is the corresponding num-
ber obtained by de Oliveira-Costa et al. (2004) in the case of an
isotropic Gaussian random field. All these considerations are in-
dependent of the normalization of the spectra.

We can conclude that 3D random superimpositions of large-
scale vector models do not explain either the observed alignment
of C2 and C3 (�23 ’ 10

�
) or the unusually planar octopole (t ’

0:94). However, the study of some 2D distributions of modes is
worthwhile.

5. 2D SUPERIMPOSITIONS OF VECTOR MODES

Special superimpositions of vector modes are now considered.
They are 2D superimpositions leading to divergenceless motions
in long-sized zones, which are hereafter called parallel vorticity
regions (PVRs). In each of these regions there is a privileged
direction. Inside the region, the angular velocity (describing the
local vorticity there) is parallel to the privileged direction every-
where. The x3-axis (hereafter z-axis) can be chosen to be parallel
to the privileged direction. Finally, the PVRs are assumed to be
uniform along this axis in the sense that all the orthogonal planes
are equivalent. In short, inside the PVRs, the components of the
angular velocity are Wx ¼ 0, Wy ¼ 0, and Wz ¼ Wz(x

1; x2). This
configuration appears if functions v�c0(k) are chosen as

vþc0(k) ¼ v�c0(k) ¼ vc0(k)�(�k � �=2): ð28Þ

In this equation, angle �k is one of the spherical coordinates in
momentum space (k and �k being the other two) and � stands
for the Dirac distribution. By substituting the distributions in
equation (28) into equations (12)Y(14), the following relations
are obtained in position space,

Wx ¼ Wy ¼ 0; ð29Þ

Wz(x1; x2) ¼
ffiffiffi
2

p Z
vc0(k1; k2; 0)


2ei(k1x1þk2x2)dk1 dk2: ð30Þ

Analogously, from equations (28) and (9), the nonvanishing com-
ponents of Fpq appear to be

F11 ¼ �F22 ¼ �
ffiffiffi
2

p Z
k1k2


2
vc0(k1; k2; 0)e

i(k1x1þk2x2)dk1 dk2;

ð31Þ

F12 ¼
ffiffiffi
2

p Z
k 2
1


2
vc0(k1; k2; 0)e

i(k1x1þk2x2)dk1 dk2; ð32Þ

F21 ¼ �
ffiffiffi
2

p Z
k 2
2


2
vc0(k1; k2; 0)e

i(k1x1þk2x2)dk1 dk2: ð33Þ

Fig. 5.—HEALPix maps of quantity (�T /T ) ; 105. Top: Part of this quantity
due to the last term of eq. (3). Bottom: Part obtained from the term �vce =n. The
second part is much smaller than the first one. This is independent of the power
spectrum normalization. [See the electronic edition of the Journal for a color ver-
sion of this figure.]
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Finally, vectorG(r) involved in equations (10)Y(11) has the fol-
lowing components,

Gx ¼ Gy ¼ 0; ð34Þ

Gz(x1; x2) ¼ �
ffiffiffi
2

p Z
vc0(k1; k2; 0)e

i(k1x1þk2x2)dk1 dk2: ð35Þ

As it follows from equation (28), our 2D superimpositions are
combinations of the w-modes studied at the end of x 3 (k3 ¼ 0
and vþc0 ¼ v�c0 ¼ vc0), and consequently, vectors n2 and n3 are
expected to be either parallel or orthogonal (almost in all cases).
The proportions between alignments and no alignments will be
numerically obtained from the analysis of simulations.

5.1. Differential Rotations

Apresent angular velocity of the formWz ¼ Wz(�) is assumed,
where � ¼ (x21 þ x22 )

1/2. This velocity describes a particular PVR,
which could be interpreted as a big region undergoing a differen-
tial rotation. The local vorticity only depends on the distance to the
z-axis, which plays the role of the rotation axis. Then, from equa-
tion (30) one easily finds

vc0(k1; k2; 0) ¼
ffiffiffi
2

p

8�2
2

Z
Wz(�)e

�i(k1x1þk2x2)dx1 dx2: ð36Þ

Function vc0(k1; k2; 0) is calculated by using the last equation,
and then, this function is substituted into equations (31)Y(33) to
get the Fpq components. It is also substituted into equation (35)
to obtainGz. All these functions only depend on the coordinates
x1 and x2. They are easily extended inside a 3D cube (where pho-
tons move) taking into account that the planes orthogonal to the
z-axis are indistinguishable. For example, in the case of the func-
tion F12, its value at any pointwith coordinates (x

1; x2; x3) located
inside the 3D cubewould beF12(x

1; x2; x3) ¼ F12(x
1; x2; 0). These

extended functions allow us to calculate either�T /T (from eq. [8])
or the polarization rotation angle � (from eq. [10]). These cal-
culations can be performed for any observer located well inside
the cube, in other words, for any observer whose last scattering
surface is fully localized inside the cube.

It is worthwhile to notice that, in the case of the rigid rotation
of a big region, the angular velocityWz vanishes in a certain gauge,
in which the observer rotates with the region. In this gauge, equa-
tion (36) gives vc(k1; k2; 0) ¼ 0, and taking into account that this
quantity is gauge invariant, it vanishes in any gauge; therefore, ac-
cording to equations (31)Y(35) plus equations (8) and (10), quan-
tities�T /T and � vanish. In short, there is no CMB anisotropy or
Skrotskii rotations associated with rigid rotations (the same is valid
for rotations of the spatial coordinates in the absence of vector
modes). These effects only appear in the case of differential rota-
tions, which cannot be globally avoided by any rotation of the ref-
erence frame.

Two functions Wz ¼ Wz(�) have been used; the first one is

W N
z (�) ¼ N1 e�(� 2=2m 2)�e�2

h i
; � � 2m;

0; � > 2m;

(
ð37Þ

where N1 is a normalization constant. The length m defines the
spatial size of the PVR. The valuesm ¼ 5 ; 103 Mpc (case NI)
andm ¼ 3 ; 103 Mpc (case NII ) have been tried. Evidently, the
spatial scales involved in this differential rotation are very large.
The second function is

WC
z (�) ¼

N2 cos(��=2�max ); � � �max;

0; � > �max;

�
ð38Þ

quantities N2 and �max are the normalization constant and the
parameter defining the spatial profile of the angular velocity, re-
spectively. Two values of �max have been studied, �max ¼ 6:8 ;
103 Mpc (case CI) and �max ¼ 4 ; 103 Mpc (case CII).

Once an angular velocity profileWz ¼ Wz(�) has been assumed
(casesNI, NII, CI, andCII), only two elements remain free: (1) the
normalization constant and (2) the location of the observer in the
simulation square. The square is that appropriate for the Fourier
transforms in equations (31)Y(35). For the above profiles, a square
size of 5 ; 104 Mpc is used, and then, 81 observers are uniformly
located in a central square of 2 ; 104 Mpc size. The separation
between neighboring observers is 2:5 ; 103 Mpc; therefore, once
parameter m (�max) is fixed in the profile W N

z (W C
z ), 81 simula-

tions of �T /T and � can be obtained as has been described in the
first paragraph of x 5.1. Each map corresponds to a localization of
the observer characterized by its distance to the rotation axis (x1 ¼
x2 ¼ 0 line). The analysis of the resulting HEALPix maps has led
to the followingmain conclusions: (1) theC2-C3 alignment is per-
fect for any of the aboveWz profiles and observers (�23 ¼ 0); and
(2) the inequality t > 0:94 also is satisfied in all cases. These re-
sults are encouraging. The proposed differential rotations plus ap-
propriate large-scale scalar modes could easily lead to the observed
angle�23 ’ 10� and also to the parameter t ’ 0:94. Of course, the
large-scale vector modes under consideration should dominate
against the scalar ones. Thus, the alignment produced by the dif-
ferential rotation (vector modes) would not be hidden by the effects
of standard scalarmodes. The amplitude of the scalar perturbations
contributing to small-‘multipoles (very large scales) should be
smaller than those corresponding to the standard flat spectrum
(compatible with the remaining observed C‘ quantities). Either
a certain cutoff or a damping of the scalar fluctuations would be
necessary on very large scales. Details about the possible cutoff
scale or the gradual damping are out of the scope of this paper;
however, the general considerations of this paragraph are impor-
tant to normalize the Wz profiles.

A few considerations about recent CMB observations are nec-
essary before describing our normalization method. According to
Hinshaw et al. (2007;WMAP three-year data analysis), the CMB
quadrupole is CWMAP

2
’ 2:96 ; 10�11, whereas the octopole is

CWMAP
3 ’ 7:38 ; 10�11; hence, if it is assumed that the contri-

bution of scalar and vector modes to these multipoles are to be
added (statistical independence of the scalar modes and the dif-
ferential rotation) and, moreover, it is taken into account that the
contribution of the vectormodesmust dominate (see previous par-
agraph), then such a vector contribution should roughly satisfy the
following conditions: (1) C2 must be a little smaller than 2:96 ;
10�11 and (2) 2C2< C3< 3C2. Hence, the following method is
used to normalize in each of the cases NI, NII, CI, and CII. In the
first step, the C2 and C3 multipoles of the 81 maps are calculated
for an arbitrary normalization, and then, the maps (observers) com-
patiblewith condition 2—which is independent of normalization—
are found. The total number,Nb, of thesemaps is given—for each
case—in Table 1. Some of these maps correspond to observers
located at the same distance from the rotation axis, and conse-
quently, their normalizations are identical except for small nu-
merical errors. This fact has been verified. The total number of
distinct distances (observers), Nd , and the distances themselves,
dor(i) with i 2 1;Nd½ �, are also given in Table 1. In a second step,
the normalization constant is chosen to have C2 ¼ 2:5 ; 10�11

for each of the above Nd observers, and then, the resulting octo-
poles, C3(i ), are calculated and shown in Table 1 for i 2 1;Nd½ �.
A number Nd of different normalizations is thus obtained. Each
of these normalizations is separately considered. The�T /T and
� maps corresponding to one of the two observers of case
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NI (i ¼ 1 in Table 1) are displayed in Figure 6. The top panel
shows a�T /T map which seems to be clearly compatible with
a planar octopole (estimated value of t ’ 0:9979) and a perfect
alignment (�23 ¼ 0, with possible small errors due to the limited
angular resolution of theHEALPixmaps). The bottom panel dis-
plays the corresponding � map. Angles close to 0.1

�
are reached

in some directions; the angles are similar to (a little smaller than)
those obtained in Paper I, which were estimated by using a rather
arbitrary normalization.

After the above normalization method has been applied, any
of theNd normalizations correspond to an observer (characterized
by its distance to the rotation center) whose C2 and C3 multipoles
satisfy the following conditions: (1) they are appropriate to ex-
plain the values observed by theWMAP satellite with the help of a
certain contribution due to scalar modes (to be estimated); (2) these
multipoles are fully aligned; and (3) the octopole is very planar

(t > 0:94). The distances from the observers to the rotation axis
are different from zero (see Table 1), and consequently, these ob-
servers are not placed on the rotation axis but in another position,
which is as probable as any other position in the space.
Normalizations lead to the values of the constants N1 and N2

involved in equations (37)Y(38), from which the dimensionless
amplitude of the angular velocity profileAwz ¼ Wz(� ¼ 0)/H0 can
be found in each case. The resultingAwz values are given in Table 1
for the normalizations included in it. They are a few times greater
than the value 4:3 ; 10�10 reported by Jaffe et al. (2005) in the
framework of a fully different model.

5.2. Statistical Parallel Vorticity Fields

In this section, a PVR is simulated by using statistical meth-
ods. The components vc0R and vc0I of the complex numbers
vc0(k1; k2; 0) are generated as two statistically independentGauss-
ian variables with the same power spectrum and zero mean. The
form of the spectrum is the same as in the 3D simulations; namely,
P(
) ¼ A
nv , and the chosen spectral indices and spatial scales
are also the same as in the 3D statistical realizations.
Ten realizations of these 2D random superimposition of vec-

tor modes have been performed for each spectrum (nv ¼ 1 and
2), and then, 81 observers were uniformly located in the simu-
lation square using the same method as in the 2D simulations
withWz profiles; however, the sizes of the simulation square and
the central square are 2 ; 105 and 1:28 ; 105 Mpc, respectively,
and the distance between observers is 1:6 ; 103 Mpc. Thus, 810
simulations of the CMB relative temperature variations produced
by PVRs have been obtained. The corresponding � maps have
also been found. All thesemaps have been analyzed. Results from
this analysis are now described; we begin with various con-
clusions which are independent of the spectrum normalizations:
(1) the angle�23 is zero in 48.64% (48.4%) of the 810 simulations
for nv ¼ 1 (nv ¼ 2); (2) the parameter t appears to be greater than
0.94 in 18.64% (19.88%) of the simulations for nv ¼ 1 (nv ¼ 2);
and (3) the conditions t > 0:94 and �23 ¼ 0 are simultaneously
satisfied in�11% (�12%) of the simulations for nv ¼ 1 (nv ¼ 2).
These last percentages can be found fromTable 2, where the num-
ber of cases, nat, satisfying the two relations t > 0:94 and�23 ¼ 0
is given for each of the 10 2D realizations.We have counted these
cases, because as has been discussed in x 3, conditions t > 0:94
and�23 ¼ 0 do not seem to be independent and, consequently, the
probability of the realizations satisfying the two relations is not a
priori the product of the individual probabilities.
The spectra are normalized as follows. First, all the simulations

satisfying the conditions t > 0:94 and �23 ¼ 0 are normalized by
the condition C2 ¼ 2:5 ; 10�11, and then, those of them satisfy-
ing the inequalities 2C2< C3< 3C2 are identified and counted.

TABLE 1

2D Simulations Based on Wz Profiles

Case Nb
a Nd

b C3(1) ; 1011 C3(2) ; 1011
dor(1) ; 10�3

(Mpc)

dor(2) ; 10�3

(Mpc) Awz(1) ; 109 Awz(2) ; 109

NI ............................. 12 2 7.23 5.94 7.9 9.0 0.99 0.95

NII ............................ 8 1 6.58 . . . 7.9 . . . 2.51 . . .

CI.............................. 12 2 7.04 5.33 7.9 9.0 1.51 1.41

CII ............................ 8 1 5.77 . . . 7.9 . . . 3.94 . . .

Notes.—First column lists the fourWz profiles defined in the text. In each case, 81 observers are uniformly distributed in the central part of the simulation box.We also
have that C3(1) is the octopole (after normalization by the condition C2 ¼ 2:5 ; 10�11) of one of the Nd observers, whereas C3(2) corresponds to the second of these ob-
servers (if it exists). The same is the case for dor and for the dimensionless ratio Wz(� ¼ 0)/H0.

a The number of observers whose CMB multipoles satisfy the relation 2C2 < C3 < 3C2 is Nb.
b Among the Nb observers, there are Nd ones which are actually different (they are located at distinct distances, dor , from the rotation axis).

Fig. 6.—Top: HEALPix map of (�T /T ) ; 105 for case NI and observer
i ¼ 1 (see Table 1). A strong C2-C3 alignment and a high t value are evident.
Bottom: Corresponding � map, where the angles are given in degrees. [See the
electronic edition of the Journal for a color version of this figure.]
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Their total number, nobs, is given in Table 2 for each of our 10 2D
realizations. It is worthwhile to notice that each of the normalized
simulations corresponds to one of the 10 2D statistical realizations
and also to an observer located at a certain position in the simula-
tion cube. Since there is no rotation axis, coordinates x1 and x2 are
both necessary to fix the observer position in the plane orthogonal
to the vorticity direction of the PVR.

For nv ¼ 1 (2), the number nobs appears to be zero in five (one)
of our 10 2Dstatistical superimpositions of vectormodes. In these
five (one) cases, conditions t > 0:94 and �23 ¼ 0 are satisfied

(see Table 2), but there are no observers measuring a quadrupole
C2 ¼ 2:5 ;10�11 and an octopole satisfying the relations 2C2 <
C3 < 3C2. It is then easy to calculate the probability of having at
least one observer whose measurements satisfy the four condi-
tions t > 0:94, �23 ¼ 0, C2 ¼ 2:5 ; 10�11, and 2C2< C3 <
3C2, namely, whose measurements may be compatible with cur-
rent observations after introducing appropriate subdominant sca-
lar modes. This probability is close to�5.5% (�10.8%) for nv ¼
1 (2). With these probabilities we cannot say that we live in a very
special zone of the PVR, but in a reasonably probable one, which
is equally probable to any other positions inside the PVR.

For nv ¼ 2 and 2D realization number 9 of Table 2, there are
two observers (nobs ¼ 2) whose measurements are compatible
with the four above conditions. One of these observers, located at
�5 ; 104 Mpc from the cube center, would measure t ’ 0:9631,
�23 ¼ 0, C2 ¼ 2:5 ; 10�11, and C3 ¼ 6:45 ; 10�11. The �T /T
and � maps corresponding to this observer are shown in Figure 7.
The top panel displays the �T /T map, which looks like those
compatible with a planar octopole and a perfect alignment. The
corresponding � map is exhibited in the bottom panel. The larg-
est angles—close to �4:4 ; 10�3 deg—are much smaller (by a
factor�1/50) than those based on the normalization of Paper I.
Of course, these angles are too small to produce any currently
significant B-polarization of the CMB.

Finally, Figure 8 shows a dimensionless quantity proportional
to the present angular velocityWz. The represented zone is located
inside the simulation square and centered in it. The normalization
is the same as in Figure 7 (same 2D simulation and observer).
White and black spots correspond to regions which are rotating
in opposite senses. A boundary with Wz ¼ 0 separates them.
The mean value of (Wz/H )0 is negligible by construction, and
the typical deviation is hjWzj2i1/2/H0 ¼ 3 ; 10�9. Many realiza-
tions (e.g., Fig. 8) have been considered to conclude that the typ-
ical value of (Wz/H )0 is always a few times 10�9.

6. DISCUSSION AND CONCLUSIONS

Appropriate combinations of large-scale vector perturbations
have been introduced in the concordancemodel, and then, their ef-
fects on theCMBanisotropy have been studied in detail. Ourmain
conclusions can be summarized as follows: 3D superimpositions

TABLE 2

Statistical 2D Simulations

Case (nv ¼ 1) nat
a nobs

b Case (nv ¼ 2) nat nobs

1....................... 7 1 1....................... 11 3

2....................... 9 0 2....................... 10 1

3....................... 6 2 3....................... 12 2

4....................... 9 1 4....................... 12 2

5....................... 9 0 5....................... 11 2

6....................... 7 3 6....................... 10 1

7....................... 9 0 7....................... 12 2

8....................... 4 0 8....................... 12 1

9....................... 11 1 9....................... 12 2

10..................... 17 0 10..................... 12 0

Note.—Ten 2D statistical simulations corresponding to the spectral indices
nv ¼ 1 and 2 are numbered in the first and fourth columns, respectively.

a Number of observers which measure �23 ¼ 0 and t > 0:94 (among 81 of
them placed inside the simulation box).

b Number of cases (among 81) in which measurements would be compatible
with conditions �23 ¼ 0, t > 0:94, and 2C2 < C3 < 3C2.

Fig. 7.—Top: Same as Fig. 6, but for one of the two observers measuring
multipolesC2 andC3 compatible with current observations in realization number 9
of the case nv ¼ 2 (see Table 2 and text). Bottom: Corresponding Skrotskii angles,
� , given in units of 10�3 deg. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 8.—Map of the dimensionless quantity (Wz/H )0 ; 10
9 in the plane orthog-

onal to the angular velocity. The size of the represented square is 50 Mpc. [See the
electronic edition of the Journal for a color version of this figure.]
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of vector modes do not explain the CMB anomalies; however,
some 2D superimpositions of these modes lead to good results.
Two types of 2D simulations have been performed: one of them
represents differential rotations of big regions and the other one
leads to extended statistical PVRs. In these two cases there is a
preferred direction of symmetry. It is the direction of the angular
velocity, which is the same for any point of the perturbed region.
In the first case, there is a symmetry around the rotation axis in the
plane orthogonal to the preferred direction; however, statistical
PVRs do not introduce such a rotational symmetry.

Suitable differential rotations can explain the planar character
of the octopole, its alignment with the quadrupole, and the main
part of the C2 and C3 values observed with WMAP. These facts
are proved, in x 5.1, for two differentWz profiles. Polarization ro-
tation angles � close to 0.1

�
are produced by these profiles. Other

possible profiles could produce slightly greater angles. A subdom-
inant contribution of large-scale scalar modes could then account
for a small part of the observed quadrupole and octopole, which
would be complementary to the part due to vector modes. These
scalar modes could also be responsible for the observed angle
�23 ’ 10

�
, which vanishes for pure differential rotations. The re-

quired scalar modes would destroy the rotational symmetry in the
plane orthogonal to the axis of the differential rotation. Skrotskii
rotations close to 0.1� would produce aB-polarization of the CMB,
which could be marginally observable by future satellites (see
Paper I ).

For statistical PVRs, there is an appreciable probability of ac-
counting for all the anomalies explained by differential rotations.
This probability depends on the form of the assumed power spec-
trum and also on the interval of k values considered in the com-
putations. The dependence on the spectral index has been pointed
out by considering two distinct values nv ¼ 1 and 2 (see x 5.2).
The mentioned probability is greater in the case nv ¼ 2 (�11%).
Of course, a certain level of scalar modes is necessary (as in the
case of differential rotations) in order to explain the observed an-
gle �23 ’ 10�. Statistical PVRs lead to � angles which are too
small to produce significant levels of B-polarization. Other inter-
vals of spatial scales and other power spectra could lead to higher
probabilities for the explanation of anomalies and, perhaps, to
greater Skrotskii rotations. In a certain k interval, the spectrum
of vector modes could have any form (a power law is not re-
quired either by any theoretical prediction or by observational
evidence). In a finite interval, e.g., between 104 and 5 ; 104 Mpc,
the spectral index of a power spectrum is arbitrary; nevertheless,
only some spectral indices are admissible, as k tends to zero, to
avoid divergences in some integrals (e.g., that of eq. [31]).

In Rackić & Schwarz (2007) it is stated that, at high confidence,
there is not any rotational symmetry of the CMB in the plane or-
thogonal to the symmetry axis. This fact is compatible with dif-
ferential rotations for two reasons: (1) the mentioned rotational
symmetry would be only observed from points placed on the ro-
tation axis, whereas we are not located on this line with very high
probability; and (2) there may be either large-scale subdominant
scalar perturbations or deviations with respect to a perfect differ-
ential rotation, and obviously, these perturbations and deviations
could contribute to hide any rotational symmetry and also to ex-
plain the deviation from zero observed in the angle �23.

The asymmetry of the north and south ecliptic hemispheres is
also compatible with our 2D superimpositions of vector modes.
We predict two equivalent hemispheres; nevertheless, they are
not separated by the ecliptic plane, but by the plane orthogonal to
the angular velocity. Furthermore, in some slightly different sce-

narios, the equivalence of these two hemispheres could disappear.
It occurs, e.g., if the last scattering surface of the observer is par-
tially outside the PVR, which is particularly probable for PVRs
which are not too extended in some direction.
Solar system alignments would be casual, as it seems natural

in any cosmological explanation of the observed anomalies (see
Cho 2007). All the theories of this type (including our proposal)
would be ruled out by solutions of the CMB anomaly problem
based on both the ordinary spectrum of scalar perturbations and a
noncosmological component accounting for the observed statis-
tical correlations with the local geometry of the solar system; how-
ever, current observations and data analysis have not unveiled any
component of this type accounting for the CMB anomalies.
We have assumed very large spatial scales to alter only a few

low-‘multipoles; nevertheless, only vector modes have been con-
sidered. Why have large-scale scalar modes not been tried? The
main reasons are now pointed out. For the chosen spatial scales,
combinations of modes should lead to very large almost homo-
geneous regions. It occurs whatever the nature of the perturba-
tions may be. In the case of vector modes, the angular velocity
will be almost homogeneous in these regions, and consequently,
it will have almost the same direction everywhere. These abso-
lutely natural regions, which could have sizes comparable to that
of the sphere bounded by the large scattering surface (for large
enough spatial scales), are the PVRs we need to explain anoma-
lies. In the case of scalar perturbations, the density contrast should
be almost constant in these large regions, and consequently, a cy-
lindrical scalar inhomogeneity would be actually unlikely. More-
over, a flattened inhomogeneity does not seem likely as a result of
the small scales required by the short thickness of the structure,
which would be small enough to affect multipoles with too large ‘
values. Hence, the symmetry axis and preferred planes seem to be
rather improbable in the case of large-scale scalar modes. Al-
though these arguments are qualitative, they strongly suggest the
use of vector modes.
Let us finish this paper with a list of a few open problemswhich

should be addressed in the near future: (1) the origin and evolution
laws of the vectormodes (e.g., brane-worlds, strings) deserve par-
ticular attention. Only a consistent theory on these subjects could
give answers to important questions such as: inwhat cosmological
period (or periods) are the vector modes generated? How do they
actually decay? How probable are the PVRs? Are scalar and vec-
tormodes statistically independent? (2)Multipole components for
‘ > 3 must also be analyzed and compared with those extracted
fromWMAP data. Multipole vectors (Copi et al. 2004) should be
used in this extended study. (3) The proportions between large-
scale scalar and vector modes must be considered in more detail;
and (4) deviations from the perfect parallelism assumed in our
2D superimpositions of vector modes could lead to interesting
results (hemisphere asymmetry, �23 observed value, and so on).
Large-scale rotations are currently enigmatic (even for us), but

the origin of the familiar cosmic expansion has remained un-
known for a century. In both cases, rotation and expansion, re-
jection (acceptance) would be only justified by the disagreement
(agreement) between predictions and observations (without pre-
judices). Although we do not have a closed theory on the subject
of this paper, results related to the CMB anomalies are actually
encouraging, and consequently, more study is worthwhile.
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Educación y Ciencia, MEC-FEDER project FIS 2006-06062.
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