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Creatable universes: a new, and more consistent and general approach
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We present a new approach to the question of properly defining energy and momenta for non
asymptotically Minkowskian spaces in general relativity, in the case where these energy and momenta
are conserved. In order to do this, we first prove that there always exist some special Gauss
coordinates for which the conserved linear and angular three-momenta vanish. Then, we conclude
that the linear and angular 4-momenta related to these intrinsic coordinate systems are the proper
4-momenta of the universe considered. This allows us to consider the case of creatable universes
(the universes whose proper 4-momenta vanish) in a consistent way, which is the main interest of
the paper. When applied to the Friedmann-Lemâıtre-Robertson-Walker case, perturbed or not, our
formalism leads to previous results, according to most literature on the subject. Some future work
deserving to be accomplished is mentioned.

PACS numbers: 04.20.-q, 98.80.Jk

I. INTRODUCTION: GENERAL

CONSIDERATIONS

In a precedent paper [1], the authors addressed the
question of properly defining the linear and the angular
4-momenta of a significant family of non asymptotically
flat space-times. As it is well known, see for example [2]
or [3], this proper definition can be accomplished with-
out difficulty in the opposite case of asymptotically flat
space-times, but not in the general case. The reason for
this difficulty in the general case stays in the dramatic
dependence of these momenta of the coordinate system
used. This fact is very well known but very few times
has properly been taken in account in the literature of
the field, where some authors use a given coordinate sys-
tem to calculate some of the momenta, without any com-
ments on the rightness of the coordinate selection that
have been done. For related questions on this subject
see, for instance, [4–8] and references therein.

The family of space-times that we are going to consider
in the present paper is the family of all non asymptoti-
cally flat space-times where these well defined momenta
are conserved in time. We call these particular space-
times universes, since it is to be expected that any space-
time which could represent the actual universe should
have conserved momenta, provided that these momenta
be properly defined, which is the the goal achieved in the
present paper.

In particular, we call creatable universes the universes
which have vanishing 4-momenta, since again this is what
could be expected to happen if the considered universe
raised from a quantum fluctuation of the vacuum [9, 10].
In fact, the question of the creatable universes is our main
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motivation to consider the subject of properly defining
the momenta of non asymptotically flat space-times. De-
manding the vanishing of the momenta can be a way
of saying something relevant about how our actual Uni-
verse looks like either now or in the preinflationary phase.
Thus, for example, in [11], perturbed flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) universes accord-
ing to standard inflation were found to be non creatable.
Therefore, among the inflationary perturbed FLRW uni-
verses, only the closed ones would be left as a good can-
didate to represent the actual Universe.

In this paper we present a new approach to the subject
of properly defining the two 4-momenta of a universe, as
compared with the one displayed in the above reference
[1]. The present approach is new in the following sense:

Given a universe, when trying to select the appropri-
ated coordinate systems in order to properly define its
two 4-momenta, Pα and Jαβ , we impose differently to
[1] that both 3-momenta, P i and J ij , vanish, the last
one irrespective of the origin of momentum. Further, ac-
cording to [1], we rest on Gauss coordinates based on
some space-like 3-surface, Σ3, such that the correspond-
ing 3-space metric can be written in a conformally flat
way on the boundary of Σ3. Such coordinate systems,
where both 3-momenta vanish, the last one irrespective
of the origin, which at the same time are Gaussian coordi-
nates satisfying the above conformally flat property, will
be called here intrinsic coordinate systems. Obviously,
we will have to prove that these intrinsic coordinate sys-
tems always exist for any universe.

Furthermore, in [1], in order to have well defined 4-
momenta, or even vanishing 4-momenta, we had to sup-
pose that the metric and its first derivatives went fast
enough to zero when we approach the boundary of Σ3.
In the present paper we do not need to make such an as-
sumption, and so our present approach to the definition
of these 4-momenta is more general than in [1].

The paper is organized as follows: In Sec. II, given a
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space-like 3-surface, Σ3, we give the corresponding fam-
ily of coordinate systems where to pick up the right co-
ordinate systems to properly define the linear and the
angular 4-momenta associated to this Σ3. In Sec. III,
we consider all 3-surfaces Σ3 showing the same bound-
ary Σ2. Then, by defining what we have called intrinsic
coordinates, we select the 3-surfaces Σ3 for which the
linear and the angular 3-momenta vanish, after proving
that this vanishing is possible for some Σ3. In Sec. IV,
we define the notion of creatable universe and we discuss
briefly its goodness. In Sec V, we invoke some previous
results to check the creatibility of the perturbed FLRW
models in the new scheme, reaching the known conclu-
sion [11] previously obtained on these models. Finally, in
Sec VI, we point out which is, in our opinion, the main
interest of the paper, and in relation to this we refer to
some future work.
We still add three appendices where some calculations

are given in detail.
A short report containing some results, without proof,

of this work has been recently presented at the Spanish
Relativity Meeting ERE-2009 [12].

II. THE ENERGY AND MOMENTA OF A

UNIVERSE, ASSOCIATED TO A GIVEN

SPACE-LIKE 3-SURFACE

In order to define the linear and angular 4-momenta of
a universe we will use the Weinberg complex [2]. It can
be expected that the results obtained in the present paper
be the same irrespective of the complex used, provided
that it be symmetric in both suffix and make possible
that these 4-momenta can be written as integrals on the
2-surface boundary, Σ2, of the space-like 3-surface con-
sidered, Σ3, as it is the case, for example, for the Landau
complex [13], aside being the case for the Weinberg com-
plex used here.
To properly define the notion of 4-momenta of a uni-

verse, associated to some space-like 3-surface, Σ3, we will
take Gauss coordinates associated to this 3-surface, Σ3,
in the neighborhood of it (we explain next why we make
this choice). Then, according to [2], we have for the cor-
responding energy, P 0, linear 3-momentum, P i, angular
3-momentum, J ij , and components J0i of the angular
4-momentum, of the universe:

P 0 = κ

∫

(∂jgij − ∂ig)dΣ2i, (1)

P i = κ

∫

(∂0gδij − ∂0gij)dΣ2j , (2)

Jjk = κ

∫

(xk∂0gij − xj∂0gki)dΣ2i, (3)

J0i = P it− κ

∫

[(∂kgkj − ∂jg)xi + gδij − gij ]dΣ2j ,(4)

where we have used the following notation: κ−1 ≡ 16πG,
i, j, k, ... = 1, 2, 3, ..., g ≡ δijgij , ∂0 is the partial deriva-
tive with respect to x0 ≡ t, and where dΣ2i is the surface
element of Σ2, the boundary of Σ3. Further, index i, j, ...
are raised or lowered with the Kronecker δ and angular
momentum has been taken with respect to the origin of
coordinates.

Why Gauss coordinates? We expect any well behaved
universe, V4, to have well defined energy and momenta,
i. e., Pα and Jαβ , α, β, ... = 0, 1, 2, 3, such that they are
finite and conserved in time (a universe in our notation).
So, for this conservation to make physical sense, we need
to use a physical and universal time and then we are
conveyed to use Gauss coordinates to properly define this
kind of time and then the universe 4-momenta.

That is, we will have for the line element of V4:

ds2 = −dt2 + dl2, dl2 = gijdx
idxj , (5)

and we can write t = t0 = constant for the equation of
Σ3.

The area of the 2-surface boundary Σ2 could be zero,
finite or infinite. Let us precise that in the first case,
when the area is zero, the 4-momenta do not necessarily
vanish, unless the metric and its first derivatives remain
conveniently bounded when we approach Σ2.

Obviously, we have as many local families of Gauss
coordinates as space-like 3-surfaces, Σ3, we have in V4.
Then, Pα and Jαβ will depend on Σ3, which is not a
drawback in itself (the energy of a physical system in the
Minkowski space-time also depends on the Σ3 chosen, i.e.,
on the Lorentzian coordinates chosen). But the problem
is that, given a space-like 3-surface, Σ3, we can still have
many different 4-momenta, according to the particular
Gauss coordinate we chose, associated to the same Σ3.

To suppress a part of the arbitrariness left in the choice
of Gauss coordinates, henceforth we will choose Gauss
coordinates such that the equation of Σ2 becomes x3 = 0,
dl2 on Σ2 reads

dl2(t = t0, x
3 = 0) ≡ dl2|Σ2

= f(xa)δijdx
idxj , (6)

with f some given function, a, b, ... = 1, 2, and further-
more

g3a(t = t0) = 0. (7)

That can always be done (see [1]). Therefore, choosing
dx1dx2dx3 as the integration 3-volume element (which is
implicit in (1)-(4)) become physically sounder.

Furthermore, since t = t0, x
3 = 0, is now the equation

of the 2-surface Σ2, the expressions (1)-(4) for Pα and



3

Jαβ simplify to:

P 0 = −κ
∫

∂3gaa dx
1dx2 , (8)

P a = −κ
∫

∂0g3a dx
1dx2 , (9)

P 3 = κ

∫

∂0gaa dx
1dx2 , (10)

J ij = κ

∫

(xj∂0g3i − xi∂0g3j) dx
1dx2 , (11)

J0a = P at0 + κ

∫

xa∂3gbb dx
1dx2 , (12)

J03 = P 3t0 − κ

∫

gaa dx
1dx2 . (13)

where gaa = g11 + g22.

III. PROVING THAT, FOR ANY UNIVERSE,

INTRINSIC COORDINATES ALWAYS EXIST

We start with a Gauss coordinate frame, {xα}, such
that (6) and (7) are satisfied. Let us prove that, from
this coordinate frame, we always can move to an intrinsic

coordinate frame as defined in the Introduction. Let it
be a coordinate transformation xα → x′α such that in
the neighborhood of Σ2 we can write the expansion in
x′3 and t′ − t0

t− t0 = 0ξ
1x′3 + 1ξ

0 (t′ − t0) + ... ,

x3 ≡ x3 = 0ξ
1
3x

′3 + 1ξ
0
3 (t′ − t0) + ... , (14)

xa ≡ xa = 0ξ
0
a + 0ξ

1
ax

′3 + 1ξ
0
a (t′ − t0) + ... ,

where the expansion coefficients nξ
m and nξ

m
i , with

n,m = 0, 1, 2, ... , are functions of x′a. Notice that this
coordinate transformation is completely general except
for the fact that

0ξ
0 = 0ξ

0
3 = 0. (15)

To begin with, we will require that the new coordi-
nates {x′α} be Gauss coordinates for V4, associated to
the space-like 3-surface Σ′

3, i.e. to t′ = t0. Actually, we
will only require that the {x′α} be Gauss coordinates in
the neighborhood of Σ′

2, the boundary of Σ′
3.

On the other hand, since the equation of the boundary
Σ2 is t = t0, x

3 = 0, this means by definition of boundary
that the metric, gij , and its first derivatives, all them for
t = t0, exist only for, let us say, x3 > 0, at least in some
elementary interval around x3 = 0. Then, since

g′ij = − ∂t

∂x′i
∂t

∂x′j
+
∂xk

∂x′i
∂xl

∂x′j
glk (16)

Σ2 will still be the boundary of Σ′
3, provided that the

functions xα(x′β) and its derivatives, up to second or-
der included, be well defined coordinates wherever the
metric gij and its first derivatives are well defined in the
neighborhood of Σ2.

Notice that, from Eqs. (14), the equation of Σ2 in the
new coordinates {x′α} reads t′ = t0, x

′3 = 0. Thus, if we
name Σ′

2 the 2-surface t′ = t0, x
′3 = 0, we can say that

Σ′
2 = Σ2

Then, besides requiring that {x′α} be Gauss coordi-
nates for V4 in the neighborhood of Σ2, the boundary of
Σ′

3, we will require that, according to (6)

dl′2(t = t0, x
3 = 0) ≡ dl′2|Σ2

= f ′(x′a)δijdx
′idx′j . (17)

Furthermore, we will still require that the new linear and
angular 3-momenta, P ′i and J ′ij (see (9), (10) and (11)),
vanish, the last one irrespective of the origin. That is to
say, we want the new coordinate system {x′α} to be an
intrinsic coordinate system as defined in the Introduc-
tion.
From Eq. (11) we can see very easily that a necessary

and sufficient condition to have J ij = 0, irrespective of
the momentum origin, is that

∫

∂0g3i dx
1dx2 = 0, ∀i, (18)

which for i = a leads to P a = 0. On the other hand, the
three components of J ij can be more explicitly written

J12 = κ

∫

(x2∂0g31 − x1∂0g32) dx
1dx2, (19)

J3a = κ

∫

xa∂0g33 dx
1dx2. (20)

Then, aside (19) and (20) we also have (18). A sufficient
condition to have all this at the same time is that the g3i
metric components be such that

∫

∂0g33 dx
1 =

∫

∂0g33 dx
2 = 0, (21)

∫

∂0g3a dx
(a) = 0, (22)

where putting the a-index between parenthesis means
that the index is not summed up.
In all: we start from a coordinate system, {xα}, where

we have

g00 = −1, g0i = 0, (23)

g3a(t = t0) = 0, gij(t = t0, x
3 = 0) = f(xa)δij , (24)

and we want to prove that a coordinate transformation
(14) exists such that the new components of the metric
satisfy

g′00 = −1, g′0i = 0, (25)

g′ij(t
′ = t0, x

′3 = 0) = f ′(x′a)δij , (26)
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and that, according to (9), (10), (18), (19) and (20), we
have:

∫

∂′0g
′
aa dx

′1dx′2 = 0,

∫

∂′0g
′
3i dx

′1dx′2 = 0, (27)

∫

(x′2∂′0g
′
31 − x′1∂′0g

′
32) dx

′1dx′2 = 0, (28)

∫

x′a∂′0g
′
33 dx

′1dx′2 = 0, (29)

where ∂′0 means time derivative with respect the new time
t′.
What all these conditions (25)-(29) say about the func-

tions nξ
m and nξ

m
i which are present in the coordinate

transformation (14)?
In order to answer this question let us first write in the

neighborhood of Σ2:

gij = 0g
0
ij + 0g

1
ijx

3 + 1g
0
ij(t− t0) + ..., (30)

where, according to the notation used in (14), we have:

0g
0
ij = gij(t = t0, x

3 = 0), (31)

0g
1
ij = ∂3gij(t = t0, x

3 = 0), (32)

1g
0
ij = ∂0gij(t = t0, x

3 = 0), (33)

and so on. This means that the expansion coefficients,

ng
m
ij in (30) are functions only of xa.
Then, Eqs. (27), (28) and (29) read

∫

1g
′0
aa dx

′1dx′2 = 0,

∫

1g
′0
3i dx

′1dx′2 = 0, (34)

∫

(x′2 1g
′0
31 − x′1 1g

′0
32) dx

′1dx′2 = 0, (35)

∫

x′a 1g
′0
33 dx

′1dx′2 = 0, (36)

where, similarly to (31), (32) and (33), we have put

1g
′0
3a = ∂′0g

′
3a(t

′ = t0, x
′3 = 0) = ∂′0g

′
3a(t = t0, x

3 = 0),
(37)

1g
′0
33 = ∂′0g

′
33(t = t0, x

3 = 0), (38)

since, according to (14), t′ = t0, x
′3 = 0 ⇔ t = t0, x

3 = 0.
Similarly, Eq. (26) reads now:

0g
′0
ij = f ′(x′a)δij . (39)

Thus, with the new notation ng
′m
ij , the conditions (25)-

(29) become (25), (34)-(36) and (39).

Let us first consider conditions (25). To zero order in
t′ and x′3 (that is, strictly on the boundary Σ2) these
conditions become

(1ξ
0)2−f(1ξ03)2 = 1, 1ξ

0
a = 0, 1ξ

0
0ξ

1 = f 1ξ
0
3 0ξ

1
3 , (40)

from g′00 = −1, g′0a = 0 and g′03 = 0, respectively.
On the other hand, conditions (39) become

f ′δab = fδcd
∂0ξ

0
c

∂x′a
∂0ξ

0
d

∂x′b
, 0ξ

1
a = 0, f(0ξ

1
3)

2 − (0ξ
1)2 = f ′,

(41)
from 0g

′0
ab = f ′δab, 0g

′0
3a = 0 and 0g

′0
33 = f ′, respectively.

It can be seen that the general solution of the system
(40) and (41) is

1ξ
0
a = 0ξ

1
a = 0. (42)

1ξ
0 =

√

f

f ′ 0ξ
1
3 = coshψ, (43)

1√
f ′ 0ξ

1 =
√

f 1ξ
0
3 = sinhψ, (44)

plus

Mab ≡
∂0ξ

0
a

∂x′b
= λ

(

cos θ sin θ
− sin θ cos θ

)

, λ ≡
√

f ′/f, (45)

the Jacobian matrix of the conformal transformation in
two dimensions. In (43), (44) and (45) the functions ψ,
λ and θ are arbitrary functions of x′a. Notice that (45)
says that in the integrals (34)-(36) we can put dx′1dx′2 =
λ−2dx1dx2.
We still must have:

1g
′0
3a = (f 1ξ

1
b + 1g

0
3b 1ξ

0
0ξ

1
3)Mba (46)

+ f 0ξ
1
3 1ξ

0
3,a − 0ξ

1
1ξ

0
,a ,

1g
′0
33 = 2(f 0ξ

1
3 1ξ

1
3 − 0ξ

1
1ξ

1) (47)

+ 1g
0
33 1ξ

0(0ξ
1
3)

2 ,

1g
′0
aa = (1g

0
bc 1ξ

0 + 0g
1
bc 1ξ

0
3)MbaMca (48)

= λ2(1g
0
aa 1ξ

0 + 0g
1
aa 1ξ

0
3) ,

where 1g
′0
3a, 1g

′0
33 and 1g

′0
aa are functions of x′a such that

(34), (35) and (36) are satisfied. The derivative with

respect x′a is denoted by , a (for instance, 1ξ
0
3,a ≡ ∂ 1ξ

0

3

∂x′a
).

In Eqs. (46) and (47) new expansion coefficients 1ξ
1
i

and 1ξ
1 appear, which are not included in (42)-(45). But

they appear in Eq. (25) when it is taken to zero order
in t′ and order one in x′3 (remember that up to now we
have only considered the lowest order of this equation),
which becomes:

0g
′1
0a = (f 1ξ

1
b + 1g

0
3b 0ξ

1
1ξ

0
3)Mba (49)

+f 1ξ
0
3 0ξ

1
3,a − 1ξ

0
0ξ

1
,a = 0

0g
′1
03 = f(1ξ

0
3 0ξ

2
3 + 1ξ

1
3 0ξ

1
3)− 1ξ

0
0ξ

2 (50)

− 1ξ
1

0ξ
1 + 1g

0
33 0ξ

1
1ξ

0
3 0ξ

1
3 = 0

0g
′1
00 = 2(f 1ξ

0
3 1ξ

1
3 − 1ξ

0
1ξ

1) (51)

+ 1g
0
33 0ξ

1(1ξ
0
3)

2 = 0
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Therefore, we must fit the new expansion coefficients, 1ξ
1
i

and 1ξ
1, plus the arbitrary functions λ, θ, and ψ, of Eqs.

(43)-(45), in order to satisfy the system (46)-(48) plus
(49)-(51). Let us show that this can always be done.
First, since the Jacobian matrix Mab is regular, we

can always fit the 1ξ
1
b such that the two Eqs. (46) be

satisfied. Second, since f 6= 0, (dl2 is strictly positive)
and (see Eq. (43)) 0ξ

1
3 6= 0, we can fit 1ξ

1
3 such that Eq.

(47) be satisfied too. Furthermore, it can be seen (see
Appendix A) that ψ can always be fitted such that Eq.
(48) becomes satisfied.
Next, we consider the three remaining Eqs. (49)-(50).

Since (see again (43)) 1ξ
0 6= 0 we can fit 0ξ

2 such as to
have (50). Similarly for Eq. (51) by fitting 1ξ

1. Finally,
it can be proved (see Appendix B) that the Jacobian
matrix (45) can always be fitted in order to have Eq.
(49) satisfied.
In all, we have just proved that for any universe there

always exist intrinsic coordinate systems, that is Gaus-
sian coordinates, {x′α}, satisfying the supplementary
conditions (39), and such that P ′i = 0 and, irrespective
of the angular momentum origin, J ′ij = 0.

IV. CREATABLE UNIVERSES

Let it be a universe that we have referred to intrinsic
coordinates {x′α}. Then, we will call that universe a
creatable universe if in this coordinates we also have:

P ′0 = 0, J ′0i = 0. (52)

This means, according to Eqs. (8), (12) and (13), that

P ′0 = −κ
∫

0g
′1
aadx

1dx2 = 0, (53)

J ′0a = κ

∫

x′a 0g
′1
bbdx

1dx2 = 0, (54)

J ′03 = −κ
∫

0g
′0
aadx

1dx2 = −2κ

∫

f ′dx1dx2 = 0. (55)

that is, 0g
′1
aa and f ′ must be such that the above four

integrals vanish.
On the other hand, we find after some calculation

0g
′1
aa = (1g

0
bc 0ξ

1 + 0g
1
bc 0ξ

1
3)MbaMca

= λ2(1g
0
aa 0ξ

1 + 0g
1
aa 0ξ

1
3) (56)

which can be compared with (48). Notice that here we
are left with no more freedom to fit a given value of 0g

′1
aa

in order to have (53) and (54): in fact, both, the Jaco-
bian matrix Mab, plus 0ξ

1 and 0ξ
1
3 (that is to say, plus

ψ, according to (43) and (44)), have already been fitted
such as to have intrinsic coordinates. This means, that a
universe is not necessarily a creatable universe.
Now, before we can continue, we must say something

about Eq. (55), that would have to be satisfied if, ac-
cording to our definition, we have a creatable universe.
Since f ′ is strictly positive it seems at first sight that

(55) can only be satisfied in any one of the two following
cases: first, if the area of Σ2 vanish (in which case f ′

should remain conveniently bounded when we approach
Σ2; notice that the boundary Σ2 could not belong to Σ′

3,
in which case f ′ could go to infinite when we approach
Σ2); second, if f ′ goes to zero when we approach Σ′

2,
which means again that Σ2 does not belong to Σ′

3.
But, actually, these are not the only cases where we can

have (55), since Σ2 could have several different sheets,
and it could happen that the different contributions from
these different sheets compensate among them to give
a vanishing value for

∫

f ′dx1dx2. Thus, in Minkowski
space,M4, in Lorentzian coordinates (which are intrinsic
coordinates) we have f ′ = 1. But, Σ2 is made from
six sheets, the six faces of a cube that increases without
limit. Then, the two contributions corresponding to two
opposite faces cancel each one to the other.
Anywise, some one could argue that we could only de-

fine a given universe as a creatable universe if Pα =
Jαβ = 0 for ANY intrinsic coordinate system. But this
would be an exceeding demand since not even the case
of the Minkowski space-time, M4, would satisfy such a
strong requirement. Actually, one type of intrinsic coor-
dinates for this universe are the standard Lorentz coordi-
nates. Furthermore, in these coordinates, all 4-momenta,
Pα and Jαβ vanish, so that this universe is a creatable
universe according to the definition we have just given.
Nevertheless, it can be easy seen (see Appendix C) that
starting from Lorentz coordinates, one can always make
an elementary coordinate transformation leading to new,
non Lorentzian, intrinsic coordinates, such that the new
energy P ′0 does no more vanish. Obviously, according to
Sec. III, this elementary coordinate transformation has
to be one where the infinitesimal version of the coeffi-
cients 0ξ

0 and 0ξ
0
3 do not vanish, that is Eq. (15) does

not more occur.
The reason for this non vanishing energy, P ′0, in M4 is

that, by doing the above elementary coordinate transfor-
mation, we have left a coordinate system (the Lorentzian
one) which was well adapted to the symmetries of the
Minkowskian metric: the ones tied to the ten parameters
of the Poincaré group.
Thus, given a universe which has Pα = Jαβ = 0 for

some intrinsic coordinate system, if there are other in-
trinsic coordinates where this vanishing is not preserved,
we should consider that this non preservation expresses
the fact that the new intrinsic coordinates are not well
adapted to some basic metric symmetries. To which sym-
metries, to be more precise? In general terms, to the ones
which allow us to have just vanishing linear and angular
4-momenta for some intrinsic coordinate system.

V. THE PERTURBED FLRW UNIVERSES

In Ref. [11] the creatibility of perturbed FLRW uni-
verses was addressed. The main result of that paper
which concerns us here is that in the flat case it is found
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that the energy is infinite, P 0 = ∞, for inflationary scalar
perturbations plus arbitrary tensor perturbations. This
seems to say that inflationary perturbed flat FLRW uni-
verses are not creatable. Nevertheless this assessment
needs to be validated in the new framework we have
developed in the present paper, where creatibility can
only be considered for intrinsic coordinate systems, i. e.,
systems where, in particular, the linear and angular 3-
momenta, P i and J ij , vanish.
Then, we prove next that both momenta vanish in the

coordinate system where it was obtained that P 0 = ∞.
Therefore, we conclude that, in the new framework of
the present paper, the non creatibility of the inflationary
perturbed flat FLRW universe remains unchanged.
Let us prove first that P i vanish. According to Ref.

[11] we write the perturbed 3-space metric dl2 as

dl2 =
a2(t)

(1 + k
4r

2)2
(δij + hij)dx

idxj , (57)

where a(t) is the cosmic expansion factor.
In the flat case, k = 0, when considering inflationary

scalar perturbations, the perturbed 3-space metric, hij ,
reads

hij(~x, τ) =

∫

exp(i~k · ~x)hij(~k, τ)d3k (58)

with the following expression for the Fourier transformed

function hij(~k, τ):

hij(~k, τ) = h(~k, τ)k̂ik̂j + 6η(~x, τ)(k̂ik̂j −
1

3
δij). (59)

Here h ≡ hkk and η are convenient functions, k̂i ≡ ki/k,
k ≡

√
kiki, and τ is defined such that dt/dτ ≡ a.

According to Eq. (2):

P i = lim
r→∞

r2

16πG

∫

Iid3k (60)

where

Ii ≡
∫

exp(i~k · ~x)[ḣkk(~k, τ)δij − ḣij(~k, τ)]njdΩ

=

∫

exp(i~k · ~x)[ḣ(~k, τ)(δij − k̂ik̂j)

+6η̇(~x, τ)(
1

3
δij − k̂ik̂j)]njdΩ. (61)

where the dot stands for the time, t, derivative and with
dΩ the integration element of solid angle. On the other
hand, one easily finds
∫

exp(i~k · ~x)nidΩ =
4πi

kr
(
sin kr

kr
− cos kr)k̂i ≡ Φ(k, r)k̂i

(62)
where what is important for us here is that Φ does not

depend on k̂i. Then

Ii = Φ[6η̇(~x, τ)(
1

3
k̂i − k̂i)] = −4Φη̇(~x, τ)k̂i. (63)

But, as it has been quoted in Ref. [11], in the case of
inflationary scalar perturbations, in which we are inter-

ested here, η(~k, τ) does not actually depend on ~̂k. Then,
by symmetry,

∫

Iid3k = 0, and so, P i = 0 for any time.
Next, we consider general tensor perturbations and we

see that P i vanish too. As quoted again in Ref. [11], the

above Fourier transformed function hij(~k, τ) reads now:

hij(~k, τ) = H(k, τ)ǫij(k̂), (64)

where the symmetric matrix ǫij is transverse and trace-
less:

ǫijki = 0, ǫii = 0. (65)

The above Ii integral become now

Ii = −
∫

exp(i~k · ~x)H(k, τ)ǫijnjdΩ, (66)

which according to (62) and the first equation in (65)
becomes Ii = 0. This is, we have again P i = 0.
Thus, when inflationary scalar and general tensor per-

turbations are both present we have P i = 0, as we wanted
to prove.
The next step will be to prove that, for any time, Jjk

vanish too for both types of perturbations. Let us first
consider inflationary scalar perturbations, that is, Eq.
(59).
According to Eq. (11):

Jjk = lim
r→∞

r3

16πG

∫

Ijkd3k, (67)

where

Ijk =

∫

exp(i~k · ~x)[nkḣij(~k, τ)−nj ḣki(~k, τ)]nidΩ. (68)

But, obviously:

∫

exp(i~k · ~x)ninjdΩ ∝ δij , k̂ik̂j , (69)

that is, the calculation of this integral must give a con-
tribution which goes like δij , and another one which goes

like k̂ik̂j . Then, it is easy to verify that when these two
kinds of contributions are introduced in (68) we obtain
identically Ijk = 0, and so Jjk = 0.
Finally, we will consider general tensor perturbations,

that is, hij(~k, τ) given by Eqs. (64) and (65). In this
case (68) becomes

Ijk = Ḣ(k, τ)

∫

exp(i~k · ~x)(nkǫij − njǫki)nidΩ. (70)

But having in mind (69) and the first equation of (65)
it is straightforward to see that Ijk and then Jjk vanish.
All in all, for any time, P i and J ij vanish in the same

coordinate system where it was proved (see Ref. [11])
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that P 0 = +∞. Then, we can assert that our perturbed
flat FLRW universe is a non creatable one.

On the other hand, it is obvious that in the present new
framework, as in [11], perturbed closed FLRW universes
are creatable, while perturbed open FLRW universes are
not.

VI. FINAL CONSIDERATIONS

First of all, it is to be remarked that according
to most literature on the subject [14–16], the closed
and flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universes are creatable universes while the open FLRW
universe is not. We do not need to show that this known
result is here preserved since it has been proved in [1]
in a similar but different framework to the one stated in
the present paper. Nevertheless the translation of the re-
sult from the old framework to the present one is straight
forward.

Notice that the same conclusion follows from the re-
sults obtained in [4] concerning integral conservation laws
with respect to a given background and its associated
isometry group, but only when this background is the
flat space-time. The creatibility of the perturbed FLRW
universes should be also analyzed following the approach
of Ref. [4]. In this case, the above conclusion about the
non-perturbed case strongly suggests that the results pre-
sented in Sec. V could be recovered from the results of [4]
under these assumptions: (i) the considered background
is the Minkowski space-time, (ii) the conservation laws
are referred to the background isometries, and (iii) the
perturbed metric and the energy content are considered
in the synchronous gauge (by taking Gauss coordinates).

Now, before ending the paper we would like to point
out that the main interest of it could be to give a cri-
terium to discard from the very beginning as much as
possible space-times as candidates to represent our actual
Universe. The criterium could be that good initial can-
didates must be creatable universes. Thus, in [11] it was
proved that, within the inflationary perturbed FLRW
universes, only the closed case corresponds to a creat-
able universe. This result remains valid in the frame-
work of the present paper, as it has been proved in Sec.
V. Similarly, since some other space-times have lately
been considered as candidates to represent our Universe
(see for example, [17], [18]), we could check them to see
if they fulfill the above criterium of creatibility. When
making this checking, in the case we obtained Pα = 0
and Jαβ = 0 for a given t = t0, we still had to verify that
the result does not depend of the value of t0, that is, we
would have to verify a posteriori that we were dealing
with a space-time which is a universe. All this would
deserve some future work.
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Appendix A: Fitting the function ψ to get P ′3 = 0

We must fit ψ such that 1g
′0
aa, given by (see (48))

1g
′0
aa = λ2(1g

0
aa 1ξ

0 + 0g
1
aa 1ξ

0
3) , (A1)

gives P ′3 = 0. Notice that according to Eq. (10) we have

P ′3 = κ

∫

1g
′0
aa dx

′1dx′2 . (A2)

On the other hand, from (43) and (44), the equation (A1)
can be written as

a = b coshψ + c sinhψ , (A3)

where

a ≡ 1g
′0
aa, b ≡ λ2 1g

0
aa, c ≡ λ2√

f
0g

1
aa (A4)

Then, putting coshψ ≡ x, we obtain the algebraic second
order equation

(b2 − c2)x2 − 2abx+ a2 + c2 = 0 , (A5)

that only has real solutions if

a2 + c2 ≥ b2 . (A6)

But we can ensure it by taking a large enough. This
can always be made since if a ≡ 1g

′0
aa 6= 0 is such that

∫

a dx′1dx′2 = 0, then we also will have
∫

Kadx′1dx′2 =
0, withK a constant whose absolute value, |K|, is as large
as we wanted.1 Furthermore, if |K| is large enough, we
can easily see that for the new coefficient a, that is, for
Ka, one at least of the x solutions is larger than one, as
it must be.

Appendix B: Fitting conveniently the functions λ

and θ or the functions λ and ψ

According to what is said at the end of Sec. III, we
must fit the functions λ and θ such that Eq. (49) be
satisfied. Taking in account (46), the Eq. (49) becomes:

1g
′0
3a = ( 1ξ

0
0ξ

1
3 − 0ξ

1
1ξ

0
3) 1g

0
3bMba (B1)

+ f( 0ξ
1
3 1ξ

0
3,a − 1ξ

0
3 0ξ

1
3,a)

+ 1ξ
0

0ξ
1
,a − 0ξ

1
1ξ

0
,a ,

1 The singular case a ≡ 1g′0aa = 0, would give as a solution for
(A3) tanhψ = −b/a, which only exists if |b/a| < 1.
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where 1ξ
0
3,a ≡ ∂ 1ξ

0

3

∂x′a
, and so on. Furthermore, having in

mind (43), (44) and the definition of λ in (45), Eq. (B1)
becomes:

1g
′0
3a = λ(Mba 1g

0
3b +Xa), (B2)

where we have put

Xa ≡ 2√
f

∂ψ

∂x′a
. (B3)

Then, from (45), we obtain the system

λ2( 1g
0
31 cos θ − 1g

0
32 sin θ) = −λX1 + 1g

′0
31 (B4)

λ2( 1g
0
32 cos θ + 1g

0
31 sin θ) = −λX2 + 1g

′0
32. (B5)

Notice that, in this system, the functions 1g
′0
3a are defined

modulus an arbitrary constant factorK (as it was, above,
the case with 1g

′0
aa). This means that, in (B4) and (B5),

we can take 1g
′0
3a as small as we want, provided that the

original 1g
′0
3a remain bounded (the unbounded special

case will be considered next), which in turn means that
we can take as the system to solve

λ( 1g
0
31 cos θ − 1g

0
32 sin θ) = −X1 (B6)

λ( 1g
0
32 cos θ + 1g

0
31 sin θ) = −X2. (B7)

whose unique solution, out of the singular case 1g
0
3a = 0,

is

λ cos θ = − 1g
0
31X1 + 1g

0
32X2

( 1g031)
2 + ( 1g032)

2
≡ Y1, (B8)

λ sin θ =
1g

0
32X1 − 1g

0
31X2

( 1g031)
2 + ( 1g032)

2
≡ Y2, (B9)

that is to say

λ =
√

Y 2
1 + Y 2

2 , tan θ =
Y2
Y1
. (B10)

To complete the above discussion let us consider the
special case where 1g

′0
3a goes to infinite when we approach

Σ2. (Obviously this will have to be compatible with the
vanishing of the integrals

∫

1g
′0
3adx

′1dx′2). In this case,
the system (B4), (B5), becomes:

λ2( 1g
0
31 cos θ − 1g

0
32 sin θ) = 1g

′0
31 (B11)

λ2( 1g
0
32 cos θ + 1g

0
31 sin θ) = 1g

′0
32, (B12)

with 1g
′0
3a going to infinite, whose solution is

λ2 = ∞, tan θ = lim
1g

0

3a
→∞

1g
0
31 1g

′0
32 − 1g

0
32 1g

′0
31

1g031 1g′031 + 1g032 1g′032
. (B13)

We could still consider the remaining two special cases
where, only one of the two functions 1g

0
3a goes to infinite,

but the reader can see easily than also in both cases a
solution exists for λ, θ.

To end with this Appendix B, let us consider the above
singular case 1g

0
3a = 0. It seems that now the four Eqs.

(46) and (49) cannot always be satisfied by fitting 1ξ
1
b

and Mab since these four unknown functions appear now
through only two quantities 1ξ

1
bMba.

Nevertheless, let us proceed along the following lines:
As far as Eq. (49) is concerned, we always can satisfy

it by fitting some convenient values of 1ξ
1
b , since f 6= 0

and Mab is a regular matrix.
On the other hand, according to (B2) and (B3), Eq.

(46) reads now

1g
′0
3a =

2λ√
f

∂ψ

∂x′a
. (B14)

Using λ as an integrating factor, we always can find a
family of solutions ψ of these two equations. Then, we
must fit this family of solutions such that the Eq. (48)
we are left with,

1g
′0
aa = λ2( 1g

0
aa coshψ +

0g
1
aa√
f

sinhψ), (B15)

becomes satisfied. To see that this is also possible, in
(B14) we will choose 1g

′0
3a = ǫag3, with ǫa = 1, ∀a, and

g3 a function such that
∫

g3dx
′1dx′2 = 0. In this case we

have ∂ψ
∂x′1 = ∂ψ

∂x′2 , that is ψ is a function of x′1+x′2 ≡ y1,

but not of y2 ≡ x′1 − x′2:

∂ψ

∂y2
= 0. (B16)

Then, let us integrate (B16) along y2 over Σ2. We will
have

a = b coshψ + c sinhψ , (B17)

with

a =

∫

1g
′0
aady2, b =

∫

λ2 1g
0
aady2, c =

∫

λ2√
f

0g
1
aady2,

(B18)
where, like ψ, the coefficients a, b, c, depend only on y1.
On the ground of what was said for the coefficient a of
Appendix A, the present coefficient a is also as greater
as we want. Then, we can conclude that (B17) always
have a solution for ψ for any function 1g

′0
aa such that

∫

1g
′0
aadx

′1dx′2 = 0. That is to say, Eqs. (46), (48) and
(49) can all be satisfied at the same time, as we wanted
to prove in the present singular case 1g

0
3a = 0.

Appendix C: The counter example of Minkowski

space

In Sec IV, we claim that if we have a universe such
that its ten 4-momenta vanish for some given intrinsic
system of coordinates, we cannot hope to keep this ten-
fold vanishing against any coordinate change going to
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new intrinsic coordinates. The reason of this is that even
Minkowski space, M4, have not such a property.
In order to see this, referM4 to Lorentzian coordinates.

These are obviously intrinsic coordinates, in the sense of
the present paper. Furthermore, all ten 4-momenta van-
ish in this Lorentzian frame. Thus, according to our def-
inition, M4 is an example of creatable universe. Then,
let us make some general infinitesimal coordinate trans-
formation:

xα = x′α + ǫα(x) , (C1)

where the old coordinates, {xα}, are Lorentzian coordi-
nates. Let us subject the functions ǫ(x) to the condition
that the new coordinates {x′α} be intrinsic coordinates.
That is, the new metric components

g′αβ = ηαβ + ηαρ∂βǫ
ρ + ηβρ∂αǫ

ρ (C2)

has to satisfy on the one hand, Eqs. (25) and (26) (the
first one up to zero order in t′ − t0 and order one in x′3).
On the other hand, the time derivatives ∂′0g

′
3i, ∂

′
0g

′
aa,

must fulfill the conditions (34)-(36)

∫

1g
′0
aa dx

1dx2 = 0,

∫

1g
′0
3i dx

1dx2 = 0, (C3)

∫

(x′2 1g
′0
31 − x′1 1g

′0
32) dx

1dx2 = 0, (C4)

∫

x′a 1g
′0
33 dx

1dx2 = 0, (C5)

which mean that P ′i = 0 and that, irrespective of the
origin of the angular momentum, J ′ij = 0 (notice that to
first order we can put dx1dx2 instead of dx′1dx′2).
After some elementary calculations, all these condi-

tions are written:

1ε
0
a = ∂a 0ε

0, 1ε
0
3 = 0ε

1, 1ε
0 = 0, (C6)

1ε
1
a = ∂a 0ε

1, 1ε
1
3 = 0ε

2, (C7)

0ε
1
a = −∂a 0ε

0
3, 0ε

1
3 = (1− f ′)/2, (C8)

1g
′0
3a = ∂a 1ε

0
3+ 1ε

1
a, 1g

′0
33 = 2 1ε

1
3, 1g

′0
aa = 2∂a 1ε

0
a, (C9)

where we have used the notation εi ≡ εi.

A particular solution of this system is

0ε
1 = 1ε

0 = 0, 1ε
0
i = 1ε

1
i = 0, 0ε

1
a = −∂a 0ε

0
3, (C10)

0ε
1
3 = (1− f ′)/2, ∂2aa 0ε

0 = 0. (C11)

On the other hand, we similarly obtain:

0g
′1
aa = 2∂a 0ε

1
a (C12)

which, according to the corresponding equation in (C10),
becomes

0g
′1
aa = −∂2aa 0ε

0
3. (C13)

Thus, since 0ε
0
3 is small, but otherwise arbitrary, we

always can choose 0ε
0
3 so as to have

∫

0g
′1
aa dx

1dx2 6= 0, (C14)

that is, so as to have P ′0 6= 0. Then, as we have an-
nounced, we cannot preserve the vanishing of P ′α and
J ′αβ when making a general coordinate transformation
from an intrinsic coordinate system to another intrinsic
one.
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