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Abstract. The popular Stokes statements about polarized light are interpreted in a
Minkowskian language using a Lorentzian representation for the Stokes parameters
and the degree of polarization. The evolution equations for Stokes parameters on a
curved space–time are obtained using the parallel transport of the polarization vector
along a null geodesic. The interest of these equations in Astrophysics and Relativistic
Cosmology is outlined.

1 Introduction

Stokes parameters [1] are a useful tool to describe polarized electromagnetic
radiation. They contain exhaustive information about the degree of polarization
(total, linear and circular), angle of polarization and ellipticity pattern. On a
given space–time geometry, variations of such quantities are related with the
way of transporting these parameters along light beams. Hence, the use of the
Stokes parameters is of interest in Relativistic Astrophysics to study the transfer
of polarized electromagnetic radiation, and also in Cosmology, dealing with the
free propagation of polarized microwave background radiation on a perturbed
Friedmann–Robertson–Walker universe. The hope of observing the associated
cosmological polarization pattern is today an open prospect.

For practical purposes, these parameters are operationally defined for a quasi-
monochromatic plane wave whose amplitude and phase are slowly varying func-
tions at the scale of the coherence time [1], [2]. It is worth remembering that
the Stokes parameters are both observer-dependent and basis-dependent quan-
tities. Their definition involves the components of the electric field relative to a
given observer and are referred to an orthonormal basis on the spacelike 2-plane
perpendicular to the direction of propagation measured by the observer. Accord-
ing to conventional notation, they may be arranged in a four-element vector S,
termed Stokes vector, in the following way

S =




I
Q
U
V


 =




I
PI cos 2χ cos 2Ψ
PI cos 2χ sin 2Ψ

PI sin 2χ


 (1)

I > 0 being the light intensity and P the (total) degree of polarization,

0 ≤ P =

√
Q2 + U2 + V 2

I
≤ 1 (2)
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The ellipticity angle χ ∈ [−π/4, π/4] determines the eccentricity of the polariza-
tion ellipse, tanχ = ±b/a, b and a denoting, respectively, the lengths of its minor
and major semiaxes. The different helicity states of polarization, left-handed and
right-handed, are associated respectively with the positive and negative values
of χ. When χ = 0 the polarization is said linear, and χ = ±π/4 correspond to
circular polarization. The polarization angle Ψ ∈ [0, π) measures the inclination
of the major axis with respect to a given spacelike direction in the rest space of
an observer.

The possibility of using a Lorentzian metric to describe light polarization was
pointed out by Soleillet [3] but, to our knowledge, he did not develop this idea any
further. Later, Perrin employed a Minkowskian four-dimensional space to analyze
the algebraic structure of some scattering matrices [4] and, more recently, several
authors have considered the Soleillet–Mueller matrices and some relevant gener-
alizations from this point of view, [5] [6], [7], [8]. However, many other aspects of
the Soleillet idea remain unexplored, and its development could provide a way of
translating the Minkowskian language from relativistic physics to polarization
phenomena. For instance, some properties about generalized Soleillet–Mueller
matrices given in [7] can also be understood in terms of the algebraic classi-
fication of a symmetric 2–tensor in a Lorentzian four–dimensional metric and,
in particular, in terms of the energy conditions on the matter tensor given by
Plebański some time ago [9].

This contribution to the 24th edition of the Spanish relativistic meeting,
E.R.E–2001, is organized as follows. Section 2 introduces the Stokes space which
can be seen as a four-dimensional time-oriented Lorentzian vector space, using
the familiar relativistic terminology. The elements of this space are called Stokes
vectors. In this framework a distinguished timelike future-pointing vector is as-
sociated with ordinary unpolarized or natural light. Partially polarized light is
represented by any other timelike vector of the same time orientation than nat-
ural light. Its degree of polarization is related with the hyperbolic angle between
both timelike directions. In this picture, a future-pointing null direction rep-
resents totally polarized radiation. These null vectors generate the Stokes null
cone. In Sect. 3 we analyze the (general form of the) transfer equations for Stokes
distribution functions in a curved space–time. In the context of the geometrical
optics approximation, the transport equations for freely propagating radiation
proposed by Dautcourt and Rosen [10] and Bildhauer [11], [12] are recovered. Fi-
nally, in Sect. 4, we comment on the physical interest of the Lorentzian approach
to polarization phenomena and transport equations.

2 The Stokes space

From (2), one has I2 ≥ Q2 + U2 + V 2, and the equality takes place for totally
polarized light, P = 1. The above relation may be interpreted in a Lorentzian
terminology considering the Stokes space, that is, the set of points

S = {(I, Q, U, V ), I > 0} ⊂ R4
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endowed with a Lorentzian metric. Let S = (I, Q, U, V ) and S′ = (I ′, Q′, U ′, V ′)
be two Stokes vectors, that is S, S′ ∈ S, then their scalar product is given by

(S, S′) = II ′ −QQ′ − UU ′ − V V ′

Completely polarized lights are represented by null vectors S, (S, S) = 0, and
they generate the Stokes cone. A completely unpolarized or natural light of
intensity I is represented by a privileged positive vector Sn = (I, 0, 0, 0) having
P = 0. Any other positive Stokes vector S 6= Sn, (S, S) > 0 (i.e. pointing into
the Stokes cone) represents a partially polarized light with 0 < P < 1.

Next, we consider the Lorentzian interpretation of the degree of polarization
P . Let u be the unitary positive Stokes vector representing natural light of unit
intensity, (u, u) = 1. Then, the intensity of a light represented by the Stokes
vector S is defined as the scalar product of u and S,

I = (u, S) (3)

We have the following decomposition

S = (I − Ip)u + l (4)

where l is a totally polarized light (null vector) whose intensity is given by
Ip = (u, l). From (4), the scalar product gives

(S, S) = (I − Ip)2 + 2(I − Ip)Ip = I2 − I2
p

and from (2), the degree of polarization is given by the ratio of the intensity of
the partially polarized component Ip to the total intensity I,

P =
Ip

I
=

√
1− (S, S)

(u, S)2
(5)

Using the familiar relativistic notation,

s =
S√

(S, S)
= γ(1, β), γ = (u, s), β = (q, u, v) (6)

where q ≡ Q/I, u ≡ U/I and v ≡ V/I are the normalized Stokes parameters,
the expression (5) is written as

P =
√

1− 1
γ2

= β ≡ |β| (7)

which provides a new interpretation of the degree of polarization.
Proposition 1: In the Lorentzian representation for polarized radiation, the

degree of polarization P is kinematically interpreted as a “relative velocity” be-
tween the (unitary) Stokes vectors, u and s, respectively associated with natural
and partially polarized lights.
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In particular, the same interpretation can be made for the linear and circular
degrees of polarization which are defined respectively as

βl =
√

q2 + u2 = β cos 2χ, βc = v = β sin 2χ (8)

β being the total degree of polarization previously considered, β =
√

β2
l + β2

c .
Also, from (4) and writing u = (l + k)/(2Ip), every positive vector can be

decomposed according to the following expression

S =
1
2β

[
(1 + β) l + (1− β) k

]
(9)

where both k and l are null vectors with opposite projections in the 3-space
orthogonal to u. The physical meaning of (9) is clear because it reflects the well
known equivalence between a light beam having intensity I and polarization
degree β, and two incoherent streams of elliptically polarized light having inten-
sities I(1+β)/2 and I(1−β)/2 in the states of opposite polarizations (χ, Ψ) and
(−χ, Ψ +(π/2)). In particular, it is also suitable for the decomposition of natural
light, of intensity I, in two incoherent oppositely polarized waves with the same
intensity I/2. These waves can be linearly polarized and mutually perpendicular,
or circularly polarized with opposite helicities, one right-handed and the other
left-handed (cf. [1], [2]).

Also, the usual matrix representation of optical devices as polarizers and
retarders (Soleillet–Mueller matrices) has a Lorentzian meaning. Up to an overall
factor, they can be seen as elements of the proper orthochronous subgroup of
the Lorentz group acting on the Stokes space. Matrices representing polarizers
are homothetic to ordinary boosts, and retarders are represented as Euclidean
rotations, cf. [7], [13], [14], [15], [16].

3 Propagation of polarized radiation

Next, let us consider a one-parameter family of Stokes vectors S(λ) that, from
(1) and (8), can be written as

S(λ) =




I
Iβl cos 2Ψ
Iβl sin 2Ψ

Iβc


 (10)

where every quantity in this expression depends on the real parameter λ, that
is, I(λ), βl(λ), βc(λ) and Ψ(λ). From (8), denoting with a prime the derivation
with respect to λ, we obtain

β
′
l = (ln β)

′
βl − 2χ′βc (11)

β
′
c = 2χ′βl + (lnβ)

′
βc (12)
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Moreover, from (1) the polarization angle is given by

tan 2Ψ =
U

Q
=

u
q

(13)

and its derivative has the expression,

Ψ
′
=

u′q− q′u
2(u2 + q2)

(14)

So, we obtain the following relations that give the variations of the normalized
Stokes parameters with respect the parameter λ

q′ = −2Ψ
′
u + β

′
l cos 2Ψ (15)

u′ = 2Ψ
′
q + β

′
l sin 2Ψ (16)

v′ = β
′
c (17)

Note that (q(λ), u(λ), v(λ)) is a parametrized curve in the domain bounded by
the Poincaré sphere, which is also an extended and well known representation for
light polarization [1]. So, (15), (16) and (17) give the velocity of a motion across
this domain which is represented by a smooth path or sequence of polarized
states. This equations provide the transport of Stokes parameters along a space–
time curve x(λ) under the fair hypothesis that these parameters vary smoothly
along the curve, S(x(λ)). In physical applications only causal curves (light rays
and observers) will be relevant.

In the kinetic theory of a relativistic gas on a given space–time geometry
[17], the relevant quantity is the particle distribution function f . For an unpo-
larized photon gas, the specific intensity I (at a given light frequency ν) and the
photon distribution function f are related by I = ν3f . In the polarized case,
the Stokes parameters SA(A = I,Q, U, V ) are defined for quasi-monochromatic
light and can also be seen as specific intensities for the given frequency. As a
conventional extension for polarized radiation, the distribution function fA as-
sociated with SA, can be defined as fA = SA/ν3 (see, for instance, [18], [19]).
Units are taken so that h = c = 1. When unpolarized radiation is freely propa-
gating, the photon distribution function f is constant along each null geodesic,
that is, it must satisfy the collisionless Liouville equation Lf = 0. The effect
of the space–time geometry is involved in the Liouville operator L that repre-
sents a total derivative along the light trajectory x(λ). This operator acts on
the photon distribution function f as defined on the phase space for massless
particles, i.e. f

(
x(λ), k(λ)

)
, where k(λ) = dx(λ)/dλ is the photon 4-momentum,

and k2 = 0 in the given space–time metric, due to the photon masslessness.
When radiation is partially polarized the distribution functions fA

(
x(λ), k(λ)

)
associated with the Stokes parameters contain exhaustive information about po-
larization. In the unfreely propagating case, a source polarization term J enters
in the transfer equation for the total intensity, as expressed by the corresponding
Boltzmann-type equation LfI = J . The particular form of this term depends
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on the physical process under consideration (Thomson scattering, synchrotron
radiation, bremsstrauhlung, etc.).

Now, we suppose that the Stokes parameters may vary smoothly along the
photons paths x(λ), so that we have a one-parameter family of Stokes vectors
S(x(λ)) on each path. Then (15), (16) and (17) are also suitable for this situation,
whether the total derivative of the normalized Stokes parameters with respect
to λ is replaced by the Liouville derivation of the associated specific distribution
functions. Therefore, the actual form of these equations is

L
(fQ

fI

)
= −2Ψ

′ fU

fI
+ β

′
l cos 2Ψ (18)

L
(fU

fI

)
= 2Ψ

′ fQ

fI
+ β

′
l sin 2Ψ (19)

L
(fV

fI

)
= β

′
c (20)

Hence, we have the following transfer equations for polarized radiation

LfI = J (21)

LfQ =
fQ

fI
J − 2Ψ

′
fU + β

′
l fI cos 2Ψ (22)

LfU =
fU

fI
J + 2Ψ

′
fQ + β

′
l fI sin 2Ψ (23)

LfV =
fV

fI
J + β

′
c fI . (24)

For freely propagating photons the linear and circular polarization degrees are
assumed constant along each null geodesic. Specifically, from the above transfer
equations we arrive at the following result.

Proposition 2: In the free propagation of electromagnetic radiation, the
necessary and sufficient condition for the degrees of polarization to be constant
along each light ray, β

′
l = β

′
c = 0, is that the Stokes parameters distribution

functions satisfy the transport equations

LfI = 0 (25)

LfQ = −2Ψ
′
fU (26)

LfU = 2Ψ
′
fQ (27)

LfV = 0 (28)

where the prime denotes total derivation along the light ray.

Transport equations describing the free propagation of polarized electromag-
netic radiation in any space–time and in the geometrical optics approximation
were anticipated by Dautcourt and Rosen [10] and deduced by Bildhauer [11],
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[12] using Wigner distribution theory. From the above proposition, we can re-
cover the equations proposed by these authors when the transport of the polar-
ization angle is conveniently referred to an orthonormal tetrad {eA}3A=0 as will
be seen at once.

Let us consider a null geodesic with tangent vector k. Let us take eo = u an
arbitrary space–time observer and e3 = n the instantaneous spacelike unitary
vector along the light trajectory as measured by u. So, n = k/ν − u, where
ν = u · k is the observed light frequency. The space–time signature is taken
(+ − −−). The unitary vector e (polarization vector) along the major axis of
the polarization ellipse always stays on the 2-plane orthogonal to u and k; it is
determined up to a multiple of the null vector k and may be chosen

e = cos Ψe1 + sin Ψe2

Now the covariant derivative of e along k is given by

∇ke = (∇ke1 + Ψ
′
e2) cos Ψ + (∇ke2 − Ψ

′
e1) sin Ψ

Contracting the above expression with e1 and e2 it results

e1 · ∇ke = (e1 · ∇ke2 + Ψ
′
) sin Ψ

e2 · ∇ke = (e2 · ∇ke1 − Ψ
′
) cos Ψ

Then, according to [20], the polarization vector e is quasi-parallel transported
along the light beam, that is, the field ∇ke belongs to the (distribution of time-
like) 2-planes expanded by u and k if, and only if, the polarization angle varies
as

Ψ
′
= −e1 · ∇ke2 = e2 · ∇ke1 (29)

where the second equality also follows from the relation e1 ·e2 = 0. This condition
is satisfied in the geometrical optics approximation where, in particular, the
parallel transport of the polarization vector e along any light ray occurs, that
is ∇ke = 0. On the other hand, the covariant derivatives of the tetrad fields are
given by

∇eA eB = ΓC
BA eC

ΓC
BA being the connection coefficients. Now, from (29) taking into account that

k = ν(u + n) = ν(e0 + e3), the variation of the polarization angle may be
expressed as

Ψ ′ = ν(Γ 1
20 + Γ 1

23) = ν(Γ 2
10 + Γ 2

30). (30)

The transport equations are expressed in the form obtained by Bildhauer [11]
when (30) is replaced in Proposition 2. Note the very simplicity of the arguments
we have used to obtain the general form for the transfer equations (21)–(24).
Starting from (25)–(28) and assuming the relation fA = SA/ν3, the transfer
equations immediately follows.
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4 Comments and discussion

We have considered the unusual Lorentzian interpretation of the Stokes vectors
and the degree of polarization (see (5) and Proposition 1). In this framework the
popular Stokes statement about lights [1], [2]: “Any partially polarized light may
be regarded as the incoherent mixture of an unpolarized light and a completely
polarized one”, has a direct geometric meaning (see (4)) . It comes as a conse-
quence of the fact that any vector inside the positive shell of the null cone of a
Lorentzian structure (positive oriented vector) may be decomposed as the sum
of another positive oriented vector and a null vector with the same orientation
(positive intensity). In this sense, (9) refers to the incoherent decomposition of
a partially polarized light as two totally polarized lights with opposite polar-
izations. Moreover, the sum of positive and null vectors of the same orientation
always is a positive vector with the given orientation. This property reflects the
fact that any incoherent mixture of polarized beams of light may be represented
by a sole positive oriented Stokes vector.

On the other hand, the general form of transfer equations for polarized radi-
ation in curved space–times has been obtained considering the variation of the
Stokes parameters along a null curve, (21)–(24). For a given physical situation
(i.e. a specification of how the source term J depends on the distribution func-
tions fA ) each of the solutions of these equations provide an initial condition
for the general problem of free-propagating radiation in a curved background.
This propagation is governed by (25)–(28) when the linear and circular degrees
of polarization are constant along each ray. When the variation of the polariza-
tion angle is referred to an orthonormal tetrad, the transport equations are put
in Bildhauer’s form. In the geometrical optics approximation, the polarization
vector is parallely propagated along each ray. However, the rotation of the po-
larization vector with respect to a screen expanded by the tetrad fields e1 and
e2 must be taken into account whenever these fields are not parallel transported
along the ray. These provide a sort of frame-dependent effect (which would be
called kinematic Faraday rotation) that needs to be controlled.

The above comment may be important in Relativistic Cosmology, in relation
to the challenge of measuring the polarization of the cosmic microwave back-
ground radiation (CMB). At the last scattering surface, the solutions of the
Boltzmann equation (with a Thomson collisional term) provide the initial con-
ditions for free propagating radiation in a perturbed Friedmann universe. The
election of an appropriate background geometry, since decoupling until now, and
the study of the transport equations in this geometry, are essential questions to
be analyzed in connection with the theoretical prediction of a polarized CMB.

Also, in astrophysical scenarios where a general relativistic treatment would
be necessary (propagation of polarized radiation through a magnetized plasma
[20], polarization from accretion disks near compact objects [21], etc.) the de-
tailed analysis of the transport equations describing the change of polarization
along a null geodesic in a given space–time ought to have been considered. In a
pioneering work, Plebański [22] investigated the rotation of the plane of polar-
ization in the gravitational field of an isolated system, considering the linearized
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approximation. The gravitational Faraday rotation has been investigated in the
Kerr geometry from the parallel transport of the polarization vector along its
null geodesics [21], [23] and also, considering the expression of the terms of the
Bildhauer’s transport equations for this metric [12]. Because these equations fol-
low from the transport equations of Proposition 2, when the parallel transport
of the polarization vector is taken into account, both points of view seem to be
consistent.
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