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Abstract. We consider the question of properly defining energy and momenta for non
asymptotic Minkowskian spaces in general relativity. Only those of these spaces which have
zero energy, zero linear 3-momentum, and zero intrinsic angular momentum would be candidates
to creatable universes, that is, to universes which could have arisen from a vacuum quantum
fluctuation. Given a universe, we completely characterize the family of coordinate systems in
which it would make sense saying that this universe can be a creatable universe.

1. General considerations
Which is the most general universe which has null energy, null linear 3-momentum, and null
intrinsic 3-angular momentum, and which could be the interest of such a question?

From the first seventies, people have speculated about a Universe which could have arisen
from a quantum vacuum fluctuation [1] [2]. If this was the case, one could expect this Universe
to have zero energy.

But, then, why we should consider only the energy? Why not expect that the linear 3-
momentum and angular intrinsic 3-momentum of the Universe also be zero? And finally: why,
in all, not to expect that, both, linear 4-momentum and angular intrinsic 4-momentum be zero?

So, in the present paper, we will consider both: linear 4-momentum, Pα = (P 0, P i), and
angular 4-momentum, Jαβ = (J0i, J ij). In all: it could be expected that only those universes
with Pα = 0, and Jαβ = 0 could have arisen from a quantum vacuum fluctuation. Then, we
could say that only these ones would be ‘creatable universes’.

Now, as it is well known (see, for example [3]), when dealing with an asymptotically flat
space-time, one can define in a unique way its linear and angular 4-momentum, provided that
one uses any coordinate system which goes fast enough to a Minkowskian coordinate system in
the 3-space infinity.

Nevertheless, if, when dealing with the Universe as such, we only consider non asymptotically
space-times, we cannot use such Minkowskian systems. Then, we will not know in advance which
coordinate systems should we use, in order to properly define the linear and angular 4-momentum
of the Universe. This is, of course a major problem, since, as we will see, and it is well known, Pα

and Jαβ are strongly coordinate dependent, and it is so whatever it be the energy-momentum
complex we use (the one of Weinberg [3], or Landau [4], or any other one).

As we have just said, this strong coordinate dependence of Pα and Jαβ is very well known,
but in spite of this, in practice, is not always properly commented or even taken properly into
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account. This can be seen by having a look on the different calculations of the energy of the
Universe which have been appeared in the literature (see for example, among other references,
[5][6]) from the pioneering paper by Rosen [7].

Even Minkowski space can have non null energy if we take non Minkowskian coordinate
systems. This non null energy would reflect the energy of the fictitious gravitational field
induced by such non Minkowskian coordinates, or in other words the energy tied to the family
of the corresponding accelerated observers. So, in particular, to define the proper energy and
momentum of a universe, we would have to use coordinate systems adapted, in some sense, to
the symmetries of this universe, in order to get rid of this spurious energy supply. In the rest of
the present paper we will address this question in some detail. We will look for the good family
of coordinates systems in order to properly define the energy and momenta of the considered
universe. Assuming some reasonable conditions, we will determine this family in the case in
which we are interested, mainly when the universe has zero energy and momenta.

2. Which coordinate systems
We expect any well behaved universe to have well defined energy and momenta, i. e., Pα and
Jαβ would be finite and conserved in time. So, in order this conservation makes physical sense,
we need to use a physical and universal time. Then we will use Gauss coordinates:

ds2 = −dt2 + dl2 , dl2 = gijdxidxj , i, j = 1, 2, 3. (1)

In this way, the time coordinate is the proper time and so a physical time. Even more, it is
an everywhere synchronized time (see for example [4]) and so an universal time.

Obviously, we have so many Gauss coordinate systems in the considered universe (or in a
part of it) as we have space-like 3-surfaces, Σ3. Then, Pα and Jαβ will depend on Σ3 (as the
energy of a physical system in the Minkowski space-time does, which depends on the chosen Σ3,
i.e., on the chosen Lorentz coordinates).

Now, in order to continue our preliminary inquire, we must choose one energy-momentum
complex. Since besides linear momentum we will also consider angular momentum, we will
need a symmetric energy-momentum complex. Then, we will take the Weinberg one [3]. This
complex has the property that it allow us to write energy and momenta as some integrals over
the boundary 2-surface, Σ2 of Σ3. Then, any other symmetric complex with this property, as
for example the one from Landau [4], will let us to obtain essentially the same results that the
ones we will obtain in the present paper.

Then, taking the above Weinberg complex, one obtains, in Gauss coordinates, for the linear
4-momentum, Pα = (P 0, P i), and the angular one, Jαβ = (J0i, J ij), the following expressions
[3]:

P 0 =
1

16πG

∫

(∂jgij − ∂ig)dΣ2i , P i =
1

16πG

∫

(ġδij − ġij)dΣ2j (2)

Jkj =
1

16πG

∫

(xkġij − xj ġki)dΣ2i , (3)

J0i = P it− 1
16πG

∫

[(∂kgkj − ∂jg)xi + gδij − gij ]dΣ2j , (4)

where we have used the following notation: g ≡ δijgij , ġij ≡ ∂tgij and dΣ2i is the surface
element of Σ2.

The area of Σ2 could be zero, finite or infinite. In the first case the energy and momenta
would be trivially zero.
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3. More about the good coordinate systems
From what has been said in the above Section, one could erroneously concluded that, in order
to calculate the energy and momenta of a universe, one needed to write the metric in all Σ3,
in Gauss coordinates. Nevertheless, since, according to Eqs. (2), (3), (4), Pα and Jαβ can be
written as surface integrals on Σ2, all we need is this metric, in Gauss coordinates, on Σ2 and
its immediate neighborhood (notice that space derivatives of the metric appear in some of these
integrals).

Furthermore, since Pα and Jαβ are supposed to be conserved, we only need this metric in
the neighborhood of a given time, say t = t0, or in other words in the elementary vicinity of
Σ3, whose equation, in the Gaussian coordinates we are using, is then t = t0. Thus, we do not
need our Gauss coordinate system to cover all the universe life. Nevertheless, in order to be
consistent we will need to check that the conditions for this conservation are actually met (see
next the end of Section 4 in relation to this question).

Now, the surface element dΣ2i, which appears in the above expressions of Pα and Jαβ , is
defined as if our space Gauss coordinates, (xi), were Cartesian coordinates. Thus, it has not
any intrinsic meaning in front of a change of coordinates on the neighborhood of Σ2. So, which
is the correct family of coordinate systems that we must use on this neighborhood, in order to
properly define the energy and momentum of the universe?

In order to answer this question, we will first prove that, on Σ2, in any given time instant t0,
dl20 ≡ dl2(t = t0) has a conformally flat form, that is, there is a coordinate systems such that

dl20|Σ2 = fδijdxidxj , i, j = 1, 2, 3, (5)

where f is a function defined on Σ2. The different coordinate systems, in which dl20|Σ2 exhibits
explicitly its conformal form, are connected among themselves by the conformal group in three
dimensions. Then, one or some of these different conformal coordinate systems are to be taken
as the good coordinate systems to properly define the energy and momenta of the considered
universe. This is a natural assumption since the conformal coordinate systems allow us to write,
in an explicit way, the space metric on Σ2 in the most approximate form to the explicit Euclidean
space metric. But, which ones of all the conformal coordinates should be used? We will not treat
to answer here this question, since our final goal in the present paper is to consider universes
with zero energy and momenta. Then, we will see next that, in the particular case where the
energy and momenta of the universe are zero in one of the above conformal coordinate systems,
the energy and momenta are zero in any other conformal coordinate system.

So, according to what we have just announced, we must prove that dl20|Σ2 has a conformal
form. In order to do this, let us use Gaussian coordinates, (yi) in Σ3, based in Σ2. Then, we
will have

dl20 = (dy3)2 + gab(y3, yc)dyadyb , a, b, c = 1, 2 (6)

In the new (yi) coordinates the equation of Σ2 is then y3 = L, where L is a constant.
Then, we can always find a new coordinate system (xa) on Σ2, such that we can write dl20 on

Σ2, that is to say, dl20|Σ2 , as:

dl20|Σ2 = (dy3)2 + f(L, xa)δabdxadxb , i, j = 1, 2, 3, (7)

Finally, we make the coordinate transformation

x3 =
y3 − L

f
1
2

+ C, (8)

with C an arbitrary constant, which can be seen to allow us to write dl20|Σ2 in the form (5), as
we wanted to prove.
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Furthermore, if r ≡ δijxixj , and we assume that the equation of Σ2 in spherical coordinates
is r = R(θ, φ), in the vicinity of Σ2, we will have:

dl2 ≈ [fδij + (r −R) 1g′ij + (t− t0) 1ġij ]dxidxj . (9)

where 1g′ij and 1ġij are functions which do not depend neither on r nor on t. Let us note that if
the equation of the boundary, Σ2, is r = ∞, then we should consider an expansion in 1/r of gij
instead of the above expansion in r −R.

According to Eqs. (2), (3), (4), notice that the 1g′ij functions will appear in P 0, whereas the
1ġij functions will appear in P i and J ij . In the components J0i will appear all functions which
are present in Eq. (9).

The f , 1g′ij and 1ġij functions will change when we do a conformal change of coordinates. But,
this is the only change these functions can undergo. To see this, let us see first which coordinate
transformation are allowed, besides the conformal transformations, if the the explicit conformal
character of dl20|Σ2 is to be preserved. In an evident notation, these transformations will have
the form

xi = x′i + yi(xj)(t− t0) , (10)

in the vicinity of Σ3. But it is easy to see that here the functions yi(xj) must all three be zero,
if the Gaussian character of the coordinates has to be preserved. That is, the only coordinate
transformations which we can do on the vicinity of Σ2 metric are the coordinate transformations
of the conformal group in three dimensions.

Thus, given Σ3, that is, given the 3-surface which serves us to build our Gauss coordinates, we
have defined uniquely Pα and Jαβ , modulus some transformation which is conformal on Σ2. So,
the question is: how do Pα and Jαβ change under such a conformal transformation? As we have
said above, we are not going to try to answer this question here. Instead of this, since we are
mainly concerned with ‘creatable universes’, we will explore under what reasonable assumptions
the energy and momentum of a universe are zero for all the above conformal systems.

4. Zero energy and momentum irrespective of the conformal system
The first thing to be noticed in relation to the question is that Pα and Jαβ are invariant in
front of the groups of dilatations, translations, and rotations, respectively, in three dimensions.
These all three groups are subgroups of the conformal group in three dimensions. Then, we
are left with the subgroup of elements that have been sometimes called the essential conformal
transformations. But it is well known [8] that these transformations are equivalent to apply first
an inversion, that is, r going to 1/r, then a translation, and finally another inversion. So, in
order to see how Pα and Jαβ change when we do a conformal transformation, one has only to
see how they change when we apply an inversion, that is, r going to r′, such that

r′ =
1
r

, r2 ≡ δijxixj . (11)

Assume as a first case that the equation of the boundary Σ2 is r = ∞. In this case, the 2-
surface element, dΣ2i, which appears in the Eqs. (2), (3), (4), can be written as dΣ2i = r2nidΩ,
where ni ≡ xi/r, and dΩ is the elementary solid angle.

Now, let us consider first the energy, P 0. How does it change when we apply an inversion?
This lead us to see how its integrand, I ≡ r2(∂jgij − ∂ig)nidΩ = r2(ni∂jgij − ∂rg)dΩ, changes.
After some calculation, one sees that the new value, I ′, for I is

I ′ = r3(r∂rg − rni∂jgij + 2ninjgij + 2g)dΩ, (12)

which, according to Eq. (9), can still be written for t = t0 as
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I ′ = r3(r∂rg − rni∂jgij + 8f)dΩ. (13)

Now, in this expression of I ′ there is an r3 common factor. Thus, if we want P 0′ to be zero,
it suffices that f goes at least as r−4 when r goes to ∞. Then, according to what we have
commented in the last Section, the functions gij − fδij , which must go to zero faster than f ,
will go at least as r−5. Of course, this asymptotical behavior of f and gij − fδij makes the
original P 0 equal zero too. Thus, on the assumption that the equation of Σ2 is r = ∞, we have
proved that this behavior is a sufficient condition in order that P 0 = 0 be independent of the
used conformal system.

This sufficient condition is not a necessary one, since it could happen that P 0 were zero
because the angular dependence of I. An angular dependence which makes zero the integral of
I on the boundary 2-surface, Σ2, independently of the behavior of I when r goes to ∞. But, in
this case, from the above expressions of I ′ and the expression of I, one sees that the sufficient
and necessary condition to have P 0′ equal zero is that the integral of f on Σ2 be zero because
of the special angular dependence of the function f .

In all, under the assumption that the equation of Σ2 is r = ∞, we have given the necessary
and sufficient conditions in order to have P 0 = 0 independently of the used conformal system.
Also, one can easily see that the same is true for P i = 0 and Jαβ = 0, provided that the above
asymptotic behavior for f and gij − fδij can be extended to 1ġij .

We will see next that all this can be applied to the closed and flat Friedmann-Robertson-
Walker(FRW), whose energy and momenta become then zero.

Let us continue with the question of the nullity of energy and momenta, leaving now the case
where the equation of Σ2 is r = ∞ and considering the case where this equation is r = R(θ, φ).

Let us consider first the special case where R is a finite constant. Then, according to the
above expressions of I ′ and I, one sees that in this case the necessary and sufficient condition to
have P 0 = 0 irrespective of the used conformal system is that the integral of f on Σ2 be zero.
This could be so, either because f is zero for r = R, or because the special angular dependence
of f .

In the general case, when it is r = R(θ, φ), a natural sufficient condition to have energy zero,
irrespective of the used conformal system, is that gij = 0 at first order in r−R(θ, φ), in the time
t = t0, so that, in Eq. (9), it would be f = 0 and 1g′ij = 0. This is the same sufficient condition
which was present, in a natural way, in the above cases, i.e., when it was r = ∞, and when it
was r = R ≡ constant, respectively.

It can be easily seen that extending this condition to 1ġij = 0 (see again Eq. (9)) entails that
not only the energy of the considered universe, but also the linear 3-momenta and the angular
4-momentum will be zero irrespective of the used conformal system.

Finally, in order to make sure that Pα and Jαβ are actually conserved, we need the nullity of
the second time-time and time-space derivatives of the original space metric on Σ2. This is the
answer to the consistency question raised at the end of the second paragraph, at the beginning
of Section 3.

5. The example of FRW universes
As it is well known, in these universes one can use Gauss coordinates such that the 3-space
exhibits explicitly its conformal flat character:

dl2 =
a2(t)

[

1 + k
4r2

]2 δijdxidxj , r2 ≡ δijxixj , (14)

where a(t) is the expansion factor and k = 0, k = ±1 are the index of the 3-space curvature.

XXIXth Spanish Relativity Meeting (ERE 2006) IOP Publishing
Journal of Physics: Conference Series 66 (2007) 012018 doi:10.1088/1742-6596/66/1/012018

5



Then, this conformal flat character will be valid, a fortiori on any vicinity of Σ3 and of Σ2.
Therefore, according to Section 3, we can apply our definitions to the metric (14). We will have
then:

P 0 = − 1
8πG

∫

r2∂rfdΩ , P i =
1

8πG

∫

r2ḟnidΩ, (15)

Jkj =
1

16πG

∫

r2ḟ(x0knj − x0jnk)dΩ, (16)

J0i = P it− 1
8πG

∫

r2(fni − x0i∂rf)dΩ (17)

with dΩ = sin θ dθ dφ, ni ≡ xi/r, where x0i is the origin of angular momentum, and where we
have put

f ≡ a2(t)
[

1 + k
4r2

]2 . (18)

Then, one can easily obtain the following results, in according with most literature on the
subject:

k = 0, +1 : Pα = 0, Jαβ = 0,
k = −1 : P 0 = −∞.

(19)

Thus, the flat and closed FLRW universes are ‘creatable universes’, but the open one is not.

6. Work in progress
Before we finish the paper, we must point out two open questions which we are addressing at
this moment.

The first one is, if in the case that Pα = 0 and Jαβ = 0 for a chose 3-surface, Σ3, this nullity
will remain preserved when we move to a new Σ3, as it is suggested by what happens in the
Minkowski space.

The second one would be to study, next to the considered LFRW universes, another ones, as
for instance the Bianchi universes, in order to see which of them, if any, are ‘creatable universes’.

The detailed calculations and proofs of the present paper, jointly with the possible results
obtained on the above questions, will be considered elsewhere.
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