

Profesor Responsable: José María Moratal Mascarell.

2019

EJERCICIOS. Tema 10: Química de Fe, Co y Ni

- 1.- Completa y ajusta las reacciones siguientes:
 - a) Fe (s) + HCl (ac) \rightarrow
 - b) níquel metálico con H₂SO₄(ac)
 - c) adicionar un exceso de NaOH(conc) a una disolución acuosa de [Co(H₂O)₆]²⁺
 - d) adicionar HCl(conc) a una disolución acuosa de [Co(H₂O)₆]²⁺
- e) Ni (s) + CO $(g) \rightarrow$
- f) $\operatorname{Fe}_2\operatorname{O}_3(s) + \operatorname{CO}(g) \xrightarrow{\Delta} (\text{varias opciones})$
- g) Co (s) + H₂SO₄ (ac) \rightarrow
- h) $\operatorname{Fe_2O_3}(s) + \operatorname{H_2}(g) \xrightarrow{\Delta}$
- i) $[Ni(H_2O)_6]^{2+}(ac) + OH^{-}(ac) \rightarrow$
- j) $Co(OH)_2(s) + NaOH(conc) \rightarrow$
- k) adicionar un exceso de ión cloruro a una disolución acidificada de $[Fe(H_2O)_6]^{3+}$
- 1) calentar hierro metálico con cloro(g)
- m) calentar hierro metálico con yodo.
- n) $[Ni(H_2O)_6]^{2+}$ (ac)+ NH_3 (ac) \rightarrow
- **2.-** Las constantes de estabilidad globales, β_6 , para los complejos $[Co(NH_3)_6]^{2+}$ y $[Co(NH_3)_6]^{3+}$ en medio acuoso son, $\beta_6^{II} = 10^5$ y $\beta_6^{III} = 3.93 \cdot 10^{35}$, respectivamente, y el potencial redox estándar del par $E^o[Co^{3+}(ac)/Co^{2+}(ac)] = 1.92$ V. Calcula $E^o[Co(NH_3)_6^{3+}/Co(NH_3)_6^{2+}]$.
- **3.-** Teniendo en cuenta los datos siguientes, ΔH_f° (kJ·mol⁻¹): CO(g) = -110,5 ; Ni(CO)₄ (g) = -602,9 ; S° (J·mol⁻¹·K⁻¹): Ni(s)= 29,9 ; CO(g)= 197,7 ; Ni(CO)₄ (g) = 410,6.
 - a) Calcula la constante de equilibrio para la formación del tetracarbonilníquel(0), a partir de níquel(s) y monóxido de carbono(g).
 - b) ¿a partir de qué temperatura el proceso de descomposición del complejo tetracarbonilníquel(0) será espontáneo?
- **4.-** La batería Ni-Cd se utiliza en ordenadores portátiles y linternas; es una batería recargable y como electrolito se utiliza una disolución acuosa de KOH(ac). **Datos**.- $\mathcal{F} = 96485 \text{ C·mol}^{-1}$; potenciales redox en *medio básico* (V) : E°'[Cd(OH)₂/Cd] = -0,824 ; E°'[NiO(OH)/Ni(OH)₂] = +0,53.
 - a) Explica cuál es el ánodo y cuál el cátodo y calcula la diferencia de potencial que proporciona la batería.
 - **b**) Escribe las semirreacciones y la reacción global ajustada que tiene lugar cuando funciona la batería, y **determina** el valor de ΔG° .

- **5.-** De los siguientes iones complejos explica cuál o cuáles serán diamagnéticos: $[NiF_6]^{4-}$, $[Co(H_2O)_6]^{3+}$, $[Ni(CN)_4]^{2-}$, $[Co(NH_3)_6]^{2+}$, $[Co(en)_3]^{3+}$, $[CoF_6]^{3-}$.
- **6.-** Nombra o formula, según corresponda, los siguientes complejos: (piridina <u>=</u> py)
 - a) diacuotriclorohidroxoferrato(III) de potasio.
 - b) bromuro de tetraamminocloronitrito-N-cobalto(III).
 - c) [Ni(en)₃]Cl₂
 - d) diamminodicloro(etano-1,2-diamina)cobalto(II).
 - e) triclorotrifluorocobaltato(III) de sodio.
 - f) $[Fe(en)_3]_4[Fe(CN)_6]_3$
 - g) catión di-μ-hidroxo-bis[triamminoclorocobalto(III)].
 - h) $[(NH_3)_4Co(NH_2)(OH)Co(en)_2]Cl_4$
 - i) catión triamminocobalto(III)-di-u-hidroxo-u-nitrito-diamminopiridinacobalto(III).
- 7.- Ordena las siguientes especies complejas de menor a mayor valor de Δ , justificando la respuesta: $[\text{Co}(\text{H}_2\text{O})_6]^{3+}, [\text{Co}(\text{NH}_3)_6]^{3+}, [\text{Co}(\text{NH}_3)_6]^{2+}, [\text{Co}(\text{NH}_3)_4]^{2+}, [\text{Rh}(\text{NH}_3)_6]^{3+}$.
- 8.- El espectro electrónico del complejo $[Ni(en)_3]^{2+}$ presenta la transición de menor energía a λ_1 = 909 nm. **Datos:** Z(Ni) = 28; N_A = 6,022x10²³ mol⁻¹; $h = 6,63\cdot10^{-34}$ J·s ; $c = 3\cdot10^8$ m·s⁻¹; 1 nm = 10⁻⁹ m.
 - a) Calcula el valor de Δ_0 en kJ/mol.
 - b) Escribe la configuración electrónica del complejo [Ni(en)₃]²⁺ y calcula la energía de estabilización de campo cristalino, EECC, en kJ/mol.
 - c) Explica si en el complejo [Ni(en)₃]Cl₂ cabría esperar contribución orbital al momento magnético y calcula el valor del momento magnético de spin-sólo.
- 9.- El diagrama de Latimer para las especies del hierro en *medio básico* es el siguiente:

$$FeO_4^{2-} \xrightarrow{0.81 \text{ V}} Fe_2O_3 \xrightarrow{-0.56 \text{ V}} Fe(OH)_2 \xrightarrow{-0.89 \text{ V}} Fe$$

Datos E°'(V) a **pH = 14**: $(O_2/H_2O) = +0.401$, $(H_2O/H_2) = -0.82$; $(N_2/NH_3) = -0.74$ V.

- a) Representa el diagrama de Frost.
- b) *En atmósfera exenta de aire*, explica qué especies <u>no</u> deberían ser estables en medio básico indicando las especies resultantes.
- c) Explica que especies serán estables en presencia de aire, en medio básico.
- d) A una disolución acuosa de $\text{FeO}_4^{2^-}$, en **medio básico**, se le añade $\text{NH}_3(\text{ac})$. Escribe las semirreacciones redox y la reacción global ajustada que tiene lugar.
- **10.-** Explica en qué estado de oxidación (y especie) se encontraría el hierro en cada uno de los casos siguientes:
 - a) en un lago poco profundo y bien aireado
 - b) en un lago poco profundo, bien aireado y que sufre el efecto de la lluvia ácida
 - c) en el agua de una zona pantanosa.

Ejercicios adicionales

- 11.- Nombra o formula, según corresponda, los siguientes complejos:
 - a) anión tetracianodifluoroferrato(II).
 - b) tetraoxoferrato(VI) de potasio.
 - c) $K_3[Co(NO_2)_6]$.
 - d) $[CoCl_2(en)_2]_2[CoCl_4]$.
 - e) $[(NH_3)_5Co(CN)Co(CN)_5]$.
- 12.- Ordena las siguientes especies complejas de menor a mayor valor de Δ , justificando la respuesta: $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{3-}$, $[FeCl_4]^{2-}$, $[Fe(CN)_6]^{4-}$.
- 13.- El espectro electrónico del complejo [Ni(DMSO)₆]²⁺, [DMSO = dimetilsufóxido], presenta tres bandas de absorción con máximos a λ_1 = 1294, λ_2 = 771 y λ_3 = 416 nm. Escribe la configuración electrónica del complejo y determina el valor de Δ_0 en cm⁻¹ y en kJ/mol, así como la EECC en kJ/mol.

Datos.- n° atómico del níquel, Z(Ni) = 28; $h = 6.63 \cdot 10^{-34} \text{ J·s}$; $N_{A} = 6.022 \cdot 10^{23} \text{ mol}^{-1}$; $c = 3 \cdot 10^{8} \text{ m·s}^{-1}$.

14.- En disolución acuosa tanto el $Fe^{2+}(ac)$ como $Fe^{3+}(ac)$ forman complejos octaédricos con el ligando 1,10-fenantrolina (fen). Calcula la constante de estabilidad global, β_3^{II} , del complejo $[Fe(fen)_3]^{2+}$.

Datos.- constante de estabilidad global del complejo $[Fe(fen)_3]^{3+}$, $\beta_3^{III} = 1,26\cdot10^{14}$; potencial redox estándar medio ácido (V): $E^o(Fe^{3+}/Fe^{2+}) = +0,77$; $E^o[Fe(fen)_3^{3+}/Fe(fen)_3^{2+}] = 1,196$.

- **15.-** El compuesto $K_3[\text{CoF}_6]$ tiene un momento magnético efectivo $\mu_{ef} = 5,63$ MB. El espectro electrónico de una disolución acuosa de $[\text{CoF}_6]^{3-}$ presenta una única banda de absorción a $\lambda = 700$ nm. **Datos:** nº atómico del cobalto, Z(Co) = 27; $N_A = 6,022 \times 10^{23} \text{ mol}^{-1}$; $h = 6,63 \cdot 10^{-34} \text{ J·s}$; $c = 3 \cdot 10^8 \text{ m·s}^{-1}$; $1 \text{ nm} = 10^{-9} \text{ m}$
 - a) Escribe la configuración electrónica de la especie compleja $[CoF_6]^{3}$.
 - **b**) Calcula el valor de Δ_0 de $[CoF_6]^{3-}$ en kJ·mol⁻¹.
 - c) Calcula la energía de estabilización de campo cristalino, EECC, de $[CoF_6]^{3-}$ en kJ·mol $^{-1}$.
 - **d**) Calcula el valor del momento magnético de spin-sólo, μ_{ss} .
 - e) Compara el valor calculado de μ_{ss} , con el valor experimental, μ_{ef} = 5,63 MB, y justifica si cabría esperar alguna desviación entre ambos valores.