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The act of reading requires multiple cognitive processes 
that range from sensory to strategic. One of the first steps 
when recognising a word is encoding the identity and posi-
tion of its constituent letters, which is termed orthographic 
processing and is the bridge between perceptual and lin-
guistic processes (see Grainger, 2018). Although most 
research on word recognition has focused on reading 
through sight (see Verhoeven & Perfetti, 2021, for a cross-
linguistic perspective), it is also possible to read through 
touch using the braille writing system. The present paper 
examines the process of letter identity coding in reading by 
testing if the encoding of letter identities is affected by tac-
tile letter similarity (see Baciero et al., 2022, for a recent 
examination of letter position coding in braille). Before 
diving into our study, we first describe theoretical and 
empirical work on letter identity coding during visual-
word recognition. Then, we describe the braille system and 
why it presents a crucial test case for the generalisability of 
letter and word processing theories.

Orthographic processing in visual 
format

Visually presented words are often presented in different 
fonts, sizes, colours, letter-CaSe, or ; yet, these 
words can be readily identified (e.g., see Hannagan et al., 
2012, for evidence with CAPTCHAs). The robustness of 
visual-word recognition to sensory changes has been taken 
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to suggest that lexical access is driven by the abstract rep-
resentations of the word’s constituent letters (a = a = A = a). 
Evidence for the abstract letter representation assumption 
comes from early masked priming studies (e.g., Jacobs 
et al., 1995; see also Bowers et al., 1998): word identifica-
tion times to the uppercase word ARTE are as fast when 
briefly preceded by the identity prime ARTE (i.e., nomi-
nally and visually identical to the prime) than by the low-
ercase identity prime arte (i.e., nominally identical but 
visually different to the prime; see Dehaene et al., 2004, 
for neuroimaging evidence, and Vergara-Martínez et al., 
2015, for electrophysiological evidence). These abstract 
letter representations are so crucial to reading that they 
develop early in the development of literacy, as shown by 
Gomez and Perea (2020) with second-grade readers. 
Leading models of visual-word recognition assume a hier-
archical process where the sensory input is first mapped 
onto a set of letter features, such as horizontal lines or 
curves (see Dehaene et al., 2005; Grainger et al., 2008). 
Subsequently, letter features detectors are mapped onto 
abstract letter detectors that are insensitive to physical 
characteristics such as size, format, colour, or case (e.g., 
the detector of the letter T would activate similarly for the 
images “T,” “t,” or “t”). These arrays of abstract letter 
detectors are understood to drive the process of lexical 
access. Critically, these models assume that abstract letter 
identities are equally confusable with each other. Consistent 
with this tenet, prior lexical decision studies have shown 
that both accuracy and response times to pseudowords cre-
ated by replacing a single letter from a baseword are 
remarkably alike regardless of whether the replacement 
involves a similar letter (e.g., viotin [baseword: violin]) or 
a different letter (e.g., viocin) in both skilled readers and 
developing readers (Perea & Panadero, 2014; see also 
Perea, Baciero, et al., 2022, and Gutierrez-Sigut et al., 
2022, for converging behavioural and electrophysiological 
evidence, respectively). Clearly, if visual, non-abstract ele-
ments had played a relevant role during word recognition, 
it would have been more difficult to reject viotin as a word 
than viocin.

Notably, the centrality of abstract letter representations 
during word recognition in the visual modality does not 
exclude the possibility of some perceptual noise when ini-
tially encoding letter identities. Indeed, there is some evi-
dence of visual similarity effects in the first processing 
stages. Using Forster and Davis’ (1984) masked priming 
technique, Marcet and Perea (2017, 2018) found that, for 
the target word OBJECT, the visually similar prime obiect 
is nearly as effective as the identity prime object and more 
effective than its control obaect (see Perea, Hyönä, & 
Marcet, 2022, for converging evidence in Finnish). To 
examine the time-course of this visual-letter similarity 
effect, Gutierrez-Sigut et al. (2019) replicated the Marcet 
and Perea (2017) experiments by recording the partici-
pants’ event-related potentials (ERPs). They found that, in 

a time window usually associated with the initial contact 
with the abstract representations (N250; Grainger & 
Holcomb, 2009), the ERP responses were very similar for 
object-OBJECT and obiect-OBJECT; in contrast, obaect-
OBJECT produced larger amplitudes. Only at a later time 
window commonly associated with lexical-semantic access 
(N400), the waves evoked by object-OBJECT differed 
from those evoked by the visually similar pair obiect-
OBJECT. These findings suggest that, in the visual modal-
ity, there is some noise associated with letter identity in the 
initial stages of letter/word recognition that is ultimately 
resolved (see Kinoshita et al., 2021).

Of particular relevance to the present study work, it has 
been suggested that the wide variability of visual forms in 
both handwritten and printed letters aids the emergence of 
and rapid access to abstract representations of letters dur-
ing visual word recognition (Li & James, 2016; see also 
Hannagan et al., 2012). Notably, previous research has 
shown that skilled readers may show sizable visual-simi-
larity effects for printed stimuli that lack variability in a 
format such as logos. Pathak et al. (2019) found that mis-
spelled logotypes like anazon (original logo: amazon) pro-
duced more errors and longer latencies than misspelled 
logotypes like atazon—note that n is more visually similar 
than t to the m in amazon. Perea, Baciero, et al. (2022) 
replicated this finding using another set of logotypes; criti-
cally, they found no evidence of a letter-similarity effect in 
parallel experiments with misspelled common words (e.g., 
amarillo [yellow in Spanish]; anarillo = atarillo). They 
argued that logos, being typically presented in a single 
typeface and design, were more susceptible to the effects 
of perceptual factors than common words.

Braille reading

While most studies on orthographic processing have relied 
on the visual presentation of letters and words, it is also 
possible to read through the sense of touch. As shown 
below, braille presents some unique characteristics that 
allow us to better understand the nature of reading in gen-
eral. To our knowledge, no studies have yet examined the 
effects of letter similarity in braille word recognition.

Each character in braille is represented in a 2 × 3 cell 
( ), where a total of 64 combinations of raised dots can 
be configured. Given the constraints imposed by this finite 
number of configurations, braille letters have a much 
lower redundancy than printed letters because a single 
dot’s elevation, or not, is sufficient to create another letter 
(see Millar, 1997; Tobin & Hill, 2015).

To read braille, individuals scan the text from left to 
right using their fingertips; thus, unlike visual reading, 
where the sensory process occurs when the eyes fixate on 
a word, the sensory process in tactile reading occurs dur-
ing movement (see Millar, 2003). This makes the sensory 
information in braille somewhat transient due to the 
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seriality of letter processing induced by the finger motion: 
a given letter ceases to be available once the participant’s 
fingertip(s) moves to the following letter. Notably, the 
study of word recognition and reading in braille serves as 
a benchmark for modality-dependent versus modality-
independent processes during lexical access (see Fischer-
Baum & Englebretson, 2016). Both braille and visual 
alphabetic systems are forms of written communication 
and are bound to have some similarities in processing and 
neural correlates (see Hannagan et al., 2015; Reich et al., 
2012, for evidence of activation in the sometimes-called 
visual word form area, and Kim et al., 2017, and Tian 
et al., 2021, for more recent accounts). At the same time, 
the differences between sensory modalities and the charac-
teristics of braille letters are likely to shape the cognitive 
processes underlying reading (e.g., see Baciero et al., 
2022).

Unlike letters in visually presented words, braille letters 
are subject to strict norms, and hence they are highly con-
sistent across contexts (e.g., braille displays, thick stock 
paper, elevators).1 Moreover, unlike the Latin script, there 
are no separate characters for upper-case letters in braille 
(i.e., a code is presented before letters/words to indicate 
upper case; e.g., A = ).2 Thus, the sensory input from 
braille letters is much less variable than from visually pre-
sented words.

Is there a letter similarity effect in 
braille?

To summarise, we have identified three differences 
between visual and braille reading that we suggest are 
most relevant for this research:

1. Structural constraint difference. Given the limita-
tion imposed by the 2 × 3 grid, the elevation, or 
not, of a single dot is sufficient to create a different 
letter. Hence, braille letters are less redundant than 
printed letters.

2. Variability difference. Given the structural con-
straint and the regulation and norms in braille char-
acters, the braille writing system lacks the 
variability in font, case, and format present in vis-
ual reading. Therefore, braille letters are more con-
sistent across contexts than printed letters.

3. Perceptual difference. Given the finger(s) motion 
needed to read braille, it is more transient and serial 
than visually presented stimuli.

The issue at stake in the present work is whether these 
differences make braille readers uniquely sensitive to letter 
similarity effects. We can envision two possible outcomes: 
The first one is that due to the structural constraint, skilled 
braille readers become highly efficient at encoding the 
word’s abstract letter identities. In this scenario, proficient 

braille readers would show a null or negligible sensitivity 
to letter similarity. The second scenario is that braille read-
ers may be more susceptible to noise during the encoding 
of letter identities given the variability and perceptual dif-
ferences outlined above and, as a result, braille readers 
would show letter similarity effects. Hence, we believe 
that if the structural constraint difference dominates, we 
would find a small to negligible letter similarity effect; 
conversely, if the variability and perceptual differences 
dominate, we would see a sizable letter similarity effect.

Overview of the experiment

We designed a lexical decision experiment to test whether 
letter-similarity effects are present in braille word recogni-
tion. As is common in the literature on the visual modality, 
the focus of our analysis was on the pseudowords. These 
pseudowords were created by replacing one letter from a 
baseword, either with a tactually similar or a tactually dis-
similar letter. For instance, from the baseword:  
[autor; author in Spanish], we created a tactually similar 
pseudoword (  [ausor]) and a tactually dissimi-
lar pseudoword (e.g.,  [aucor]; s is more simi-
lar to t than c in a braille similarity matrix; Baciero, Perea, 
et al., 2021). The critical question here is whether the tac-
tually similar pseudowords make the no decision more dif-
ficult in a lexical decision than the tactually dissimilar 
pseudowords. This “interference” manipulation has proved 
to be a valuable paradigm both in the visual modality (e.g., 
Mirault & Grainger, 2021; Pathak et al., 2019; Perea & 
Lupker, 2004; Perea & Panadero, 2014) and in the tactile 
modality (e.g., Perea et al., 2012, for letter position 
coding).

In sum, if there is some confusability due to letter simi-
larity during tactile word recognition, a tactually similar 
pseudoword like  [ausor] would be more per-
ceptually similar to its baseword  [autor] than 
a tactually dissimilar pseudoword like  
[aucor]. In this scenario, one would expect worse perfor-
mance in a lexical decision (i.e., lower accuracy or longer 
response times) for tactually similar than tactually dissimi-
lar pseudowords.

Method

This study was pre-registered on the Open Science 
Framework (OSF) before data collection (https://osf.
io/329cn/).

Participants

With the help of the National Organization of Spanish 
Blind People, we recruited 12 participants that were diag-
nosed with either blindness (8) or severe visual impair-
ment (4) at birth (5 male; M = 39.83 y.o.; range: 19–58). 

https://osf.io/329cn/
https://osf.io/329cn/
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They were all native Spanish speakers and braille readers 
from childhood (5–6 y.o.). Two participants had finished 
high school, three were undergraduate students, five had 
completed a university degree, and two had completed a 
post-graduate degree. All participants gave informed con-
sent before participating in the study and received an 
incentive for participating (7.5€). We used a Sequential 
Bayes Factor Design (Schönbrodt & Wagenmakers, 2018) 
to determine the number of participants, as established in 
the pre-registration form. Specifically, we computed the 
Bayes factor for the critical effect (i.e., similar vs dissimi-
lar pseudowords) after the first 12 participants via a paired 
Bayesian t-test (with default priors) by subjects using the 
BayesFactor package (Morey & Rouder, 2014) in R (R 
Core Team, 2021). Bayes factors (BFs) exceeded 3 (i.e., 
the criterion in the pre-registration) for accuracy 
(BF10 = 366.01); hence, sampling stopped at n = 12. For 
response times, the general pattern was the same as in 
accuracy, but the BF did not exceed such criterion—note 
that response times in braille reading are long and highly 
variable (Bertelson et al., 1992).

Materials

We selected 120 Spanish words from the EsPal database 
(Duchon et al., 2013) to act as base words (mean length: 
6.74 letters [range: 5–8]; mean frequency: 75.23 per mil-
lion [range: 10.15–727.42]). We used the Baciero, Perea, 
et al. (2021) tactile letter similarity matrix to generate 
two pseudowords by replacing one internal letter.3 The 
replacement letter could be either tactually similar (TS) 
or tactually dissimilar (TD) to the original letter (see 
Table 1). The pseudowords had no orthographic neigh-
bour (substituted-letter neighbour) other than their cor-
responding basewords. We created two counterbalanced 
lists so that if a similar pseudoword was presented in List 
1, its corresponding dissimilar pseudoword would be 
presented in List 2. Each list was composed of 120 pseu-
dowords (60 TS and 60 TD). We also selected a separate 
set of 120 words that were unchanged to act as the posi-
tive items experiment (mean length: 6.74 letters [range: 
5–8]; mean frequency: 74.07 per million [range: 10.42–
585.02]). All items are presented in the online 
Supplementary Material A.

Procedure

We used a refreshable braille display (i.e., Active Braille, 
Help Tech; Saladino, 2019) to present the stimuli to par-
ticipants. This display was connected via USB to a MacOS, 
and we created a shell script both to present the stimuli on 
the braille display (enabling the OS-X’s VoiceOver acces-
sibility feature) and to record participant’s responses.

The experiment took place in a quiet room and one par-
ticipant at a time. We conducted a lexical decision task 
(i.e., “is the string a Spanish word?”) in which we instructed 
participants to use the index finger of their preferred read-
ing hand to perceive the stimuli, and to use two fingers of 
the other hand to make the responses by pressing one of 
the two possible keys on the computer’s keyboard (M for 
“word,” N for “nonword”). At the beginning of the experi-
ment, we showed participants where their index finger had 
to be placed before each trial. We instructed participants to 
read the letter string in a continuous manner without mak-
ing any regression and to be as quick and accurate as pos-
sible in their responses. The stimuli remained in the braille 
display until a response was made. Response times (RTs) 
were measured from each trial presentation onset. Inter-
trial-interval was 1.3 s, allowing participants to reset their 
index finger to the start position. We included 12 practice 
items at the beginning of the session, and the order of tar-
get trials was randomised.

Results

Both accuracy and reaction times were collected in each 
trial. As established before data collection, trials in which 
responses were either shorter than 0.25 s or greater than 8 s 
were excluded from the analysis (0.42%). For the latency 
analyses, error responses (6.28%) were also excluded. 
Table 2 shows the mean accuracy and correct RTs per 
condition.

To examine the effect of tactile letter similarity on the 
pseudowords, we conducted Bayesian linear mixed-effects 
models using brms (Bürkner, 2017) in R (R Core Team, 
2021), with default priors.4 We employed the Bernoulli 
link function for the accuracy model and the ex-Gaussian 
link function for the RT model. Both models included sim-
ilarity (similar [−0.5] vs dissimilar [+0.5]) as a fixed 

Table 1. Example of pseudoword stimuli.

Condition Pseudoword Base word [in English]

Tactile similar [TS] ausor autor [author]

Tactile dissimilar [TD] aucor
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factor, and all random effects allowed by the experimental 
design:

DependentVariable ~ Similarity +

(1+Similarity|Subject)+

(1+Similarity|Item)

Each model had four chains of 5,000 iterations (war-
mup = 1,000). The output provides each estimate’s value, 
standard error, and the 95% credible interval (95% CrI) of 
their posterior distributions. Evidence in favour of an 
effect is taken when the 95% CrI does not contain zero. All 
the models converged, and R̂ was 1.00 in all cases.5

The analyses of the accuracy showed substantially 
higher accuracy in the tactually dissimilar pseudowords 
than in the tactually similar pseudowords (0.971 vs 0.897, 
respectively), b = 1.59, SE = 0.041, 95% CrI = [0.86, 2.47]. 

RT analysis showed that responses were faster for the tac-
tually dissimilar pseudowords than for the tactually similar 
pseudowords (2,836 vs 2,863 ms, respectively); however, 
we did not find evidence for an effect, as the credible inter-
val crossed zero, b = 50.87, SE = 55.53, 95% CrI = [−60.48, 
160.77] (see Figure 1 for a depiction of letter-similarity 
effects by participants).

Discussion

The present study examined whether letter identity coding 
in braille word recognition is susceptible to perceptual 
noise, measured by letter-similarity effects. Adult blind 
individuals performed a lexical decision task in which the 
pseudowords were created by replacing one letter of a 
word by either a tactually similar letter (e.g.,  
[ausor], baseword:  [autor]) or a tactually dis-
similar letter (e.g.,  [aucor]). Unlike previous 
experiments in the visual modality with misspelled 

Table 2. Mean accuracy (proportion) and response times (ms) for correct and incorrect responses for each condition.

Lexicality Type Accuracy RT correct

Pseudoword Tactually dissimilar 0.971 2,836
Pseudoword Tactually similar 0.897 2,863
Word 0.941 2,269

RT: response time.
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Figure 1. Mean response times in milliseconds (left) and accuracy (right) per similarity condition and subject. Each grey line 
links the mean of a particular subject in each of the conditions (tactually dissimilar [TD] and tactually similar [TS]). The green line 
represents the overall mean per condition across subjects.
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common words in lexical decision, results showed higher 
accuracy for dissimilar than similar pseudowords (97.1% 
vs 89.7%, respectively). While weaker, we found the same 
trend in latency data (2,836 ms for dissimilar vs 2,863 ms 
for similar pseudowords; see the exploratory data analysis 
in the online Supplementary Material for further support of 
this effect). This result in the response times may be due to 
the fact that participants were instructed not to perform 
any regression, which, although common, could have 
increased the variability of the latency data. Nonetheless, it 
is worth mentioning that other studies on orthographic pro-
cessing in the visual domain have also found effects rather 
in accuracy than in latency (e.g., transposition effects with 
symbols; see Duñabeitia et al., 2012; Massol et al., 2013 or 
in word recognition tasks with young readers; see Gómez 
et al., 2021). Likewise, in a recent study on letter position 
coding in braille using the same group of participants as 
the present study, Baciero et al. (2022) found a substantial 
transposed-letter effect in accuracy (e.g., the transposed-
letter pseudoword LABOARTORIO was more error-prone 
than the replacement-letter pseudoword LABOESTORIO 
[the base word was LABORATORY, the Spanish for labo-
ratory]), but not in response times. While response times 
and accuracy are two sides of the same coin, further 
research should examine why accuracy data may be more 
sensitive to experimental manipulations than latency data 
in some scenarios.

Our findings have relevant theoretical implications for 
models of word recognition. The better performance for 
dissimilar than similar pseudowords favours the idea that 
perceptual noise is an intrinsic part of letter identity coding 
when reading braille. A pseudoword like  
[aucor] is perceptually less similar to its tactually similar 
baseword  [autor] than a tactually dissimilar 
pseudoword like  [ausor]. If the mapping from 
the tactile input to the activation of abstract letter represen-
tations had been fully precise, both similar and dissimilar 
pseudowords would have been classified equally quickly 
and accurately as nonwords. This pattern rules out the idea 
that abstract letter representations during braille reading 
are achieved with great efficiency due to braille’s low 
redundancy. Instead, our findings favour the idea of per-
ceptual noise in letter identity encoding. This perceptual 
noise introduces uncertainty in the identification of the 
constituent letters of words, as described by the noisy-
channel models (see Norris & Kinoshita, 2012, for a full 
model of visual orthographic processing, and Gomez, 
2008, for a model of letter position coding using the same 
principle). This perceptual noise would be more prominent 
in the tactile than in the visual modality—as indicated in 
the Introduction, letter similarity effects can be found in 
the very earliest stages of word recognition, but they 
resolve quickly during word processing (Gutierrez-Sigut 
et al., 2019).

Why would misspelled common words show a sizable 
tactile letter-similarity effect in lexical decision with 
skilled braille readers? We believe that two differences 
between visual and braille reading explain this effect. 
First, there is a perceptual difference, as the letters of a 
word in braille are read one by one for a short amount of 
time (7.5 characters/second; Legge et al., 1999); in con-
trast, all the letters in visually presented words (at least for 
4–7 letter strings) are available simultaneously. Thus, the 
processes underlying letter identity coding in braille may 
resemble those reported with briefly presented stimuli (see 
Gutierrez-Sigut et al., 2019; Marcet & Perea, 2017, 
2018)—note that, although there is conscious perception 
for braille letters, the encoding of letter identity in the tac-
tile modality may not be resolved as quickly as in the vis-
ual modality due to the fleeting exposure to the stimuli. 
Second, there is a variability difference because the physi-
cal characteristics of braille letters are highly homogene-
ous across contexts: braille letters follow standardised 
norms, so a word like  [paper] is always pre-
sented in that format; instead, visually presented common 
words can have different physical characteristics (e.g., 
paper = paper = PAPER). This lack of variability among 
braille letters may make braille reading more susceptible 
to the influence of perceptual factors (see Perea, Baciero, 
et al., 2022, for evidence with logos and brand names).

We attribute the letter similarity effect in braille lexical 
decision (which is not present in visual lexical decision 
experiments) to both the perceptual and the variability dif-
ferences between braille and visual reading. Unfortunately, 
these two factors cannot be disentangled and cannot be 
manipulated experimentally. Along the same lines, any 
comparison between braille and visual reading faces the 
limitation that there are many differences between the 
decoding process reading in these two modalities. In this 
article, we have identified three critical differences: struc-
tural constraint, variability, and perceptual. Of course, there 
are other significant differences, such as the quality of 
orthographic representations due to the limitations of the 
haptic/tactile system and the fact that there is likely to be 
more exposure to text for sighted versus blind readers. To 
make matters more complicated, there are differences not 
only between the reading systems but also between the 
readers. Indeed, in the visual modality, readers with dys-
lexia and deaf readers are more sensitive to perceptual cues 
(e.g., more errors to viotin and to viocin [base word: violin] 
in readers with dyslexia; see Perea & Panadero, 2014; dif-
ferent ERP waves for viotin and viocin in deaf readers; see 
Gutierrez-Sigut et al., 2022) than normotypical hearing 
readers, presumably because of differences in the quality of 
the orthographic representation (see Bélanger & Rayner, 
2015; Lavidor, 2011, for discussion). Nonetheless, despite 
the intrinsic difficulties interpreting differences between 
braille and sighted reading, our findings are clear: Tactually 
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similar pseudowords are more confusable with their base-
words than tactually dissimilar pseudowords.

In sum, our findings reinforce the view that letter iden-
tity coding has some perceptual noise, providing evidence 
for modality-independent, noisy-channel models of word 
recognition (see Kinoshita et al., 2021). Importantly, such 
perceptual noise seems to be modulated by (1) the specific 
characteristics of the stimuli (i.e., it is larger for those stim-
uli that are constant across contexts) and (2) how the stim-
uli are sensed (i.e., it is larger when the exposure to the 
stimuli is limited). We believe that the present study opens 
the door to examine in further detail the nuances of ortho-
graphic processing in braille using a standard reading situ-
ation (e.g., how does letter identity coding interact with 
predictability and contextual effects during braille sen-
tence reading? see Drieghe et al., 2005; Slattery, 2009, for 
evidence in sighted reading).
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Notes

1. Braille specifications are the following: 0.48 mm dot-height; 
1.44 mm dot-base-diameter, 2.4 mm distance between hori-
zontal/vertical dots of the same character, 6.2 mm distance 
of corresponding dots in a contiguous character, and 10 mm 
between corresponding dots in adjacent lines (see Spanish 
Braille Commission, 2015; UK Association for Accessible 
Formats, 2017).

2. Note that this varies for some languages (e.g., in Russian 
braille, the symbol for capital letters is:  instead of ). 
Furthermore, refreshable braille displays may use eight-dot 
braille cells which are useful in some contexts (e.g., math-
ematics); for instance, in this format, the bottom row repre-
sents some text characteristics such as capitalization (e.g., 
A = ).

3. The tactile similarity matrices can be found in the follow-
ing link: https://osf.io/q2y7r/. They are based on the perfor-
mance of blind braille readers in a same-different judgement 
task.

4. The default priors are generally well suited for most experi-
mental situations (see Rouder & Morey, 2012).

5. For completeness, we also analysed the effect of word-fre-
quency for the word stimuli. We did find the typical word 
frequency effect both for response times (RTs) (credible 
interval [CrI] = [13.16, 7.86]) and accuracy (CrI = [0.02, 
1.05]). These data are reported in the Open Science 
Framework (OSF) repository, together with some explora-
tory analyses (i.e., delta plots and conditional accuracy 
functions).
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