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Previous research has shown that early in the word recognition process, there is some degree of
uncertainty concerning letter identity and letter position. Here, we examined whether this uncertainty also
extends to the mapping of letter features onto letters, as predicted by the Bayesian Reader (Norris &
Kinoshita, 2012). Indeed, anecdotal evidence suggests that nonwords containing multi-letter homoglyphs
(e.g., rn¡m), such as docurnent, can be confusable with their base word. We conducted 2 masked
priming lexical decision experiments in which the words/nonwords contained a middle letter that was
visually similar to a multi-letter homoglyph (e.g., docurnent [rn–m], presiclent [cl–d]). Three types of
primes were employed: identity, multi-letter homoglyph, and orthographic control. We used 2 commonly
used fonts: Tahoma in Experiment 1 and Calibri in Experiment 2. Results in both experiments showed
faster word identification times in the homoglyph condition than in the control condition (e.g.,
docurnento–DOCUMENTO faster than docusnento–DOCUMENTO). Furthermore, the homoglyph con-
dition produced nearly the same latencies as the identity condition. These findings have important
implications not only at a theoretical level (models of printed word recognition) but also at an applied
level (Internet administrators/users).
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In Roman script, as in other alphabetic scripts, letters are the
building blocks of words. When a printed word is presented, the
initial stages of processing are devoted to identify the visual
features (e.g., oriented curves/lines, intersections, terminations,
among others) of each of the visual objects (i.e., letters) that
comprise the word (e.g., the letters s-a-l-t in the word salt; see
Figure 1). The activation from these visual feature detectors is sent
to abstract letter detectors (i.e., salt and SALT would activate the
same letter detectors), which, in turn, send activation to whole-
word units; note that this process may involve both feedforward
and feedback connections (Carreiras, Armstrong, Perea, & Frost,
2014). The “magic moment” in word recognition occurs when the
level of activation of a given whole-word unit exceeds some
threshold (see Balota, Yap, & Cortese, 2006; McClelland, Mirman,
Bolger, & Khaitan, 2014).

Thus, as Norris and Kinoshita (2012) pointed out, during printed
word recognition “the visual system must identify how many
visual objects are present, their configuration (order), and their
identity” (p. 521). Indeed, the cognitive processes that underlie the

encoding of letter identification and letter position have received
considerable attention in the literature on printed word recognition
and reading (see Grainger, Dufau, & Ziegler, 2016, for review).
Most researchers assume that there is some degree of uncertainty
regarding letter identity and letter position in the early moments of
word processing (e.g., see Davis, 2010; Gomez, Ratcliff, & Perea,
2008; Grainger & van Heuven, 2003; Norris, 2006). For instance,
using Forster and Davis’s (1984) masked priming technique (i.e.,
a technique devised to reflect the early stages of word processing),
Marcet and Perea (2017) found that word identification times on a
target stimulus (e.g., DENTIST) were shorter when preceded by a
visually similar one-letter replacement nonword prime (e.g.,
dentjst; note that “j” and “i” are visually similar) than when
preceded by a visually dissimilar one-letter replacement nonword
prime (e.g., dentgst; see Kinoshita, Robidoux, Mills, & Norris,
2014; Perea, Duñabeitia, & Carreiras, 2008, for similar evidence
using letter-like numbers [e.g., 4 � A in M4TERI4L] and symbols
[e.g., � � A in M�TERI�L]). These findings suggest that, at the
earliest stages of word processing, the letter detector correspond-
ing to the letter “A” can be activated not only by the sensory
representation of the letter “A” but also by visually similar char-
acters such as “H,” “4,” or “�.” Likewise, word recognition times
on a target stimulus (e.g., JUDGE) are shorter when preceded by
a transposed-letter nonword prime (e.g., jugde) than when pre-
ceded by a replacement-letter nonword prime (e.g., jupte; Perea
& Lupker, 2003, 2004; see Johnson, Perea, & Rayner, 2007, for
evidence during sentence reading using parafoveal previews).
The robustness of masked transposed-letter priming effects
(e.g., jugde ¡ judge or cholocate ¡ chocolate) is a demon-
stration that, early in processing, there is some degree of
ambiguity regarding letter position.
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Critically, much less attention has been dedicated to the percep-
tual front end of word processing: how the visual objects that
compose the words are mapped onto letters. As Finkbeiner and
Coltheart (2009) indicated, “determining how readers extract letter
identities from the highly variable featural information in the input
is fundamental to attempts to understand the reading process” (p.
2). However, none of the current computational models of printed
word recognition and reading make any specific claims on the
binding from letter feature to letters. This is so because (a) the
focus of these models is on already highly complex processes (i.e.,
the underpinnings of the letter and word levels), and (b) the “basic
results” are assumed to be independent of the implementation of a
detailed mapping between features and letters (see Davis, 2010, p.
725; McClelland & Rumelhart, 1981, p. 383). As an illustrative
example, when introducing the SERIOL model of visual word
recognition, Whitney (2001) stated the following: “We do not
model the process of letter recognition; we take as given that a
mechanism exists to bind the features of a letter together, culmi-
nating in activation of the correct letter” (pp. 226–227).

For simplicity, the interactive activation model (McClelland &
Rumelhart, 1981) and its successors (dual-route cascaded model:
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; multiple read-
out model: Grainger & Jacobs, 1996) assume discrete slots for
letters that are fed by a feature-level channel on each letter position
using the Rumelhart and Siple (1974) uppercase font (e.g., the
word HAND would be encoded as ). The model does not
make any claims on how the visual components of letters are put
together, although a reasonable starting point is that the small gaps
among letters act as boundaries (e.g., we may not know Georgian
script, but we may easily deduce that the word საღამო [night in
Georgian] is composed of six letters). Therefore, the orthographic
coding scheme of the interactive activation model predicts an
unequivocal mapping of letter features to letters (e.g., the letter
features that compose “H” in HAND would not be merged with the
letter features of A).1 However, as indicated earlier, there is a rich
literature that has repeatedly shown that the processes underlying
word recognition can be better understood assuming a noisy or
incomplete signal of the visual input at the early moments of
processing (Adelman, 2011; Davis, 2010; Gomez et al., 2008;
Grainger et al., 2016; Norris, Kinoshita, & van Casteren, 2010).

Therefore, an open question is whether there is some degree of
ambiguity in the initial mapping of letter features onto letters.
Importantly, a leading model of visual word recognition (Bayesian
Reader model; Norris & Kinoshita, 2012) makes specific predic-
tions in this respect. Norris and Kinoshita (2012) claimed that, in
the early moments of word processing, “there will be uncertainty

about the identity of the objects, their location, and even whether
the objects really exist or are insertions created by spurious noise
in the system” (p. 521)—this ambiguity would be progressively
resolved over time (i.e., JUGDE may be processed initially as
JUDGE, but at some point the reader will notice the difference; see
Vergara-Martínez, Perea, Gómez, & Swaab, 2013, for an analysis
of the time course of the transposed-letter effect using evoked-
related potentials). Thus, the Bayesian Reader model can success-
fully capture that the masked nonword prime dentjst is more
effective at activating the word DENTIST than the control non-
word dentgst (i.e., dentjst and dentist only differ in a visually
similar letter) and that the masked nonword prime jugde is more
effective at activating the word JUDGE than the control nonword
jupte (i.e., jugde and judge share the same letters in different
order). But more importantly for the present purposes, the Bayes-
ian Reader model predicts that early in word processing, there is
also some degree of uncertainty with respect to the mapping of
visual objects onto letters. As Norris and Kinoshita (2012) indi-
cated, “In the same way that we assume that identity and order
information accumulates gradually over time, we also assume that
knowledge of which letters, or letter objects, are in the input also
improves over time” (p. 524).

One way to test this assumption of the Bayesian Reader model
is to examine whether or not visually presented words are seg-
mented into letter units at the early stages of word processing (i.e.,
house: h-o-u-s-e). To tackle this issue, we took advantage of the
fact that there are multi-letter combinations—the so-called “mul-
tiletter homoglyphs”2—whose shapes may resemble individual
letters (e.g., rn ¡ m, cl ¡ d, vv ¡ w). Although this type of
confusion occurs in optical character recognition engines (e.g., the
Tesseract ORG engine [Smith, 2007] has a specific module to
avoid “rn” being identified as “m”), we must keep in mind that
human readers can rapidly read words composed of distorted
characters (e.g., Completely Automated Public Turing test to tell
Computers and Humans Apart [CAPTCHAs]; see von Ahn, Mau-
rer, McMillen, Abraham, & Blum, 2008) that pose problems to
OCR engines (see Hannagan, Ktori, Chanceaux, & Grainger, 2012,
for evidence of substantial masked repetition priming when using
CAPTCHAs as primes). Thus, the research question could be put
this way: Would the detectors of a given letter (e.g., “m”) be
activated early in processing when a word not containing this
specific letter—but containing a multi-letter homoglyph (e.g.,
docurnent)—is briefly presented? This question is not only impor-
tant at a theoretical level (i.e., it would help refine the perceptual
feature-letter front-end of models of printed word recognition); at
an applied level, the potential confusability across letters is a
matter of serious concern when accessing Internet websites (Davis
& Suignard, 2012; see also Bohm, 2015). As acknowledged on the

1 The story is (obviously) more complex for semicursive scripts (e.g.,
Arabic; see Yakup, Abliz, Sereno, & Perea, 2015). For instance, in the
Arabic sentence άνيϚه“ دب άϡϰϡا ήΩأ” [the boy took the friend bear in Arabic],
each word’s segments need to be adequately segmented into letters and
words. The same case applies to reading cursive handwriting, in which the
lack of uniformity across letters adds to the additional segmentation pro-
cesses (e.g., see Barnhart & Goldinger, 2010; Perea, Marcet, Uixera, &
Vergara-Martínez, 2017).

2 As defined in Wikipedia, “A homoglyph is one of two or more
graphemes, characters, or glyphs with shapes that appear identical or very
similar” (Homoglyph, n.d.).

Figure 1. Representation of the word salt in Calibri, indicating the width
of each letter slot. See the online article for the color version of this figure.
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Microsoft website when discussing security in Internet domain
names, “rnicrosoft.com looks much like microsoft.com,”3 and this
may lead to spoofing attacks (see Gabrilovich & Gontmakher,
2002; Krammer, 2006). Thus, leaving aside the theoretical impli-
cations of the processing of multi-letter homoglyphs, if the suspi-
cion that these letter combinations are processed as one letter is
confirmed empirically, great care should be taken to prevent scam-
mers from imitating false identity via multi-letter homoglyphs—as
in rnacdonals.com—on Internet websites.

In the present experiments, we selected 240 words composed of
a middle letter that resembled a multi-letter homoglyph (e.g., “rn”
and “m” [docurnent–document]; “cl” and “d” [presiclent–presi-
dent])—the multi-letter homoglyph “vv” was not used because the
letter “w” is very infrequent in Spanish. As we were interested in
examining the early stages of word recognition, we used the same
procedure as in prior research on letter identity and letter position
coding (i.e., masked priming lexical decision; see Marcet & Perea,
2017; Perea & Lupker, 2004). On each trial, an uppercase target
stimulus (e.g., DOCUMENTO [the Spanish for DOCUMENT])
was preceded by a 50-ms lowercase nonword prime created by
replacing the critical letter (e.g., “m”) of the target word (docu-
mento) by its corresponding multi-letter homoglyph (docurnento)
or by a lowercase nonword control prime created by replacing the
letters “rn” with “sn” (docusnento).4 To obtain an estimate of the
degree that the multi-letter homoglyphs activate their visually
similar equivalent letters, we also included a lowercase identity
prime (documento).

The predictions are clear. If visually presented words are readily
segmented into letter units at early stages of word processing, the
letters “r” and “n” in docurnent would only activate their corre-
sponding best-match letter units (i.e., “r” and “n”). As a result, the
multi-letter homoglyph “rn” would not activate the letter “m” in
docurnent to a greater degree than the control multi-letter combi-
nation “sn” in docusnent. Therefore, one would expect a similar
advantage of the identity condition (document–DOCUMENT) over
the two replacement-letter conditions (docurnent–DOCUMENT
and docusnent–DOCUMENT). At a theoretical level, this outcome
would support the idea that the small gaps around the visual
objects mark the beginning and end of each letter, at least when
using highly legible fonts; furthermore, this would pose some
problems to those models that assume that early in processing,
there is some degree of uncertainty at assigning the word’s con-
stituent visual objects onto letter units. At an applied level, this
outcome would suggest that the source of the alleged confusability
of multi-letter homoglyphs (if any) does not arise early in process-
ing. Alternatively, if there were some degree of uncertainty at
assigning the stimulus’ visual information to letters units early in
processing (i.e., the letter “rn” in docurnento would activate the
abstract unit “m” to some degree)—as would predict the Bayesian
Reader model (Norris & Kinoshita, 2012)—one would expect
faster word identification times in the multi-letter homoglyph
priming condition than in the control priming condition (i.e.,
docurnent–DOCUMENT � docusnent–DOCUMENT); indeed, in
the extreme scenario, the multi-letter homoglyph condition could
be processed as fast as the identity condition (for evidence with
visually similar one-letter different primes, see Marcet & Perea,
2017; Perea et al., 2008). This latter outcome would not only
support the predictions of the Bayesian Reader model (Norris &
Kinoshita, 2012), but it would make it necessary to refine the links

between the feature and letter levels in models of printed word
recognition—note that the Bayesian Reader model is silent as to
how the visual objects are bound onto letters. (We defer a discus-
sion how visual features are mapped onto letters to the General
Discussion.) Furthermore, at an applied level, this outcome should
be made known to Internet administrators to avoid users from
being potential victims of identity thief on malicious websites—
this may also lead to the creation and use of fonts that minimize
this potential confusability.

To assess the generality of the findings in an ecological setting,
we employed two common fonts. In Experiment 1, we used
Tahoma, which is the default font of the most popular social
network (Facebook)—this font has already been used in masked
priming experiments (e.g., Duyck & Warlop, 2009; Silvia, Jones,
Kelly, & Zibaie, 2011). This font has a narrow interletter spacing,
thus maximizing the chances to capture the effects from multi-
letter homoglyphs (if any) during printed word recognition (e.g.,
documento–DOCUMENTO vs. docurnento–DOCUMENTO vs.
docusnento–DOCUMENTO). In Experiment 2, we employed Ca-
libri. This is the default font in the most popular office package
(Microsoft Office; for masked priming experiments using Calibri font,
see Chen, Peltola, Ranta, & Hietanen, 2016; Tan & Yap, 2016). As
Calibri has a wider interletter spacing than Tahoma (e.g.,
document–DOCUMENTO vs. docurnento–DOCUMENTO
vs. docusnento–DOCUMENTO), it offers a useful scenario to
test whether the effects of multi-letter homoglyphs are restricted to
a special case of narrow-spaced fonts.

Experiment 1

Method

Participants. Thirty undergraduate psychology students from
the Universitat de València (Spain), all of them native speakers of
Spanish, took part in the experiment. All participants signed an
informed consent form before starting the experiment.

Materials. The set of word stimuli was composed of 240
Spanish words extracted from the EsPal subtitle database (Duchon,
Perea, Sebastián-Gallés, Martí, & Carreiras, 2013). The average
Zipf frequency was 4.39 (range � 2.98–6.11), the average number
of letters was 7.8 (range � 5–12), and the average OLD20 was 2.1
(range � 1– 7.8). All these words had the letters “m” or “d” in a
middle position (e.g., DOCUMENTO [document]; PRESIDENTE
[president]). Target words were presented in uppercase and were
preceded by (a) a lowercase identity prime (identity condition;
documento–DOCUMENTO, presidente–PRESIDENTE); (b) a
nonword lowercase prime in which the letter ‘m’ (or ‘d’) from the
base word was replaced by ‘rn’ (or ‘cl’; homoglyph condition;
docurnento–DOCUMENTO, presiclente–PRESIDENTE); or (c) a
nonword prime in lowercase, in which the letter initial letter of the
multi-letter homoglyph was replaced by another letter that kept the
same syllabic structure (e.g., rn¡sn; mean bigram token frequency

3 Retrieved from https://msdn.microsoft.com/en-us/library/windows/desktop/
dd374047(v�vs.85).aspx

4 We acknowledge that there may be other options at creating the control
condition. We employed “sn” as a control of the homoglyph “rn” because
the two pairs kept the same syllabic structure and had similar bigram
frequencies.
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per million � 339 vs. 335, respectively, p � .40; control condition;
docusnento–DOCUMENTO; presiglente–PRESIDENTE). We also
created a set of 240 nonwords matched on letter length, transition
frequencies, and subsyllabic elements with the words using Wuggy
(Keuleers & Brysbaert, 2010)—the added constraint was that the
letter m/d should appear in a middle position (e.g., CLIMERO;
VADRO). The prime-target manipulation for the nonword targets
was the same as that for word targets. Prime-target pairs were
rotated across the three priming conditions in a Latin square
manner, thus resulting in three lists. The complete set of words/
nonwords is available at http://www.uv.es/amarhe5/glyphs.pdf.

Procedure. The experimental session took place individually
in a quiet lab. A windows computer equipped with DMDX (Forster
& Forster, 2003) was employed to present the stimuli and register
the responses. Each trial started with a 500-ms pattern mask—a
series of ‘#’ symbols—in the center of a CRT screen for 500 ms.
Then, the mask was immediately replaced by a 50-ms lowercase
prime, which, in turn, was substituted by a target stimulus in
uppercase. The target stimulus remained on the screen until the
participant responded or a 2-s deadline had passed. Participants
were instructed to press, as quickly and accurately as possible, a
key labeled “sí” [yes] if the letter string formed a legitimate word
in Spanish or a key labeled “no” if the letter string did not form a
word. The stimuli were presented in 16-pt Tahoma. Each partici-
pant received a randomized order of trials. There were 16 practice
trials before the 240 experimental trials. The session lasted for
around 18 min.

Results and Discussion

Error responses were omitted from the latency analyses (2.4%
for words and 6.3% for nonwords). To remove anticipatory re-
sponses, correct latencies faster than 250 ms were also excluded
from the analyses (one data point; i.e., less than 0.01% of the data).
The deadline for responding was 2 s, so that there could not be
reaction time (RTs) longer than 2,000 ms. The averages of each of
the three prime-target conditions (identity, homoglyph, control) for
each dependent variable—mean correct RT and accuracy—are
shown in Table 1. Words and nonwords were analyzed separately
because masked form priming is typically restricted to word targets.

For the RT analyses, we employed linear mixed effects models
that included prime–target relationship as a fixed factor, and sub-
ject and item as random factors. We used the maximal random
structure model using the lmer package in R (Bates, Mächler,
Bolker, & Walker, 2015)—LME_RT � lmer(�1,000/RT � prim-
etype � [primetype � 1|item] � [primetype � 1|subject], data �
RTdata)—as these models require that the underlying data follow
approximately a normal distribution, RTs were transformed to
decrease the positive skew of raw RTs. The three priming condi-
tions were encoded in the model as �1, 0, �1 so that we could test

the two planned comparisons: (a) homoglyph condition versus
control condition, and (b) identity condition versus homoglyph
condition. The lmerTest package in R (Kuznetsova, Brockhoff, &
Christensen, 2016) was used to estimate the p values correspond-
ing to the t tests. Similar analyses were conducted on the accuracy
data, except for the use of generalized linear models—accuracy for
each response was encoded as 1 (correct) and 0 (incorrect). For the
interested readers, F1 and F2 ANOVAs yielded the same pattern
of significant results as those reported here.

Word data. On average, responses to target words were ap-
proximately 19 ms faster in the homoglyph condition than in the
control condition (t � 4.67, 	 � 0.056, SE � 0.012, p � .001). In
addition, there was only a small 3-ms nonsignificant advantage of
the identity condition over the homoglyph condition (t � �1.45,
	 � 0.015, SE � 0.013, p � .26). (A post hoc analysis showed that
this pattern of effects was virtually the same for the multi-letter
homoglyphs rn/m and cl/d.) Accuracy was very high (0.976) and
the statistical analyses did not show any significant effects (both
ps � .46).

Nonword data. None of the effects approached significance
in the latency or error data (all ps � .20).

Results showed faster word identification times when the
prime was composed of a multi-letter homoglyph than when it
was preceded by an orthographic control (i.e., docurnento–
DOCUMENTO � docusnento–DOCUMENTO). Furthermore,
the multi-letter homoglyph activated its corresponding visually
similar letter to a very large degree, as deduced from the similar
word identification times for the multi-letter homoglyph condi-
tion and the identity condition (i.e., documento–DOCUMENTO �
docusnento–DOCUMENTO).

The question now is to what extent this pattern of data is due to
specific characteristics of the font employed in the experiment.
Keep in mind that Tahoma is characterized by a narrow spacing
between letters. In Experiment 2, we employed the same materials
and procedure as in Experiment 1 except that we employed Calibri.
This font, being the default font in Microsoft Office, is currently
one of the most prevalent fonts and, importantly, it has a wider
interletter spacing than Tahoma. We acknowledge that another
strategy could have been to increase interletter spacing in Tahoma.
However, we must bear in mind that Tahoma was designed with a
specific interletter spacing in mind. Finally, as the size of the
effects could be smaller than those in Experiment 1, sample size
was increased to 36 participants (i.e., 2,880 data points in each
priming condition).

Experiment 2

Method

Participants. Thirty-six new students from the same pool as
in Experiment 1 participated in the experiment.

Materials and procedure. The materials and procedure were
the same as in Experiment 1, except that the font was 18-pt Calibri.

Results and Discussion

As in Experiment 1, incorrect responses (2.9% for words and
4.9% for nonwords) and RTs shorter than 250 ms (zero data points
for words; four data point for nonwords [�0.05% of the data])

Table 1
Mean Lexical Decision Times (in Milliseconds) and Accuracy
(in Parentheses) for Words and Nonwords in Experiment 1

Identity Homoglyph Control

Words 573 (.979) 576 (.975) 595 (.973)
Nonwords 719 (.937) 716 (.935) 727 (.940)
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were excluded from the RT analyses. The mean correct RT and
accuracy in each condition are shown in Table 2. The statistical
tests paralleled those from Experiment 1.

Word data. Word identification times were, on average, 10
ms faster in the homoglyph condition than in the control condition
(t � 2.40, 	 � 0.020, SE � 0.008, p � .018). Furthermore, the
6-ms advantage of the identity condition over the homoglyph
condition was significant (t � �2.51, 	 � 0.021, SE � 0.008, p �
.017). As in Experiment 1, accuracy was extremely high (0.971)
and neither of the planned comparisons approached significance in
the accuracy analyses (both ps � .24).

Nonword data. There were no signs of priming effects in the
latency or error data (all ps � .19).

Results showed that the identity condition only produced
slightly faster word identification times than the multi-letter ho-
moglyph condition (6 ms; it was 3 ms in Experiment 1). In
addition, we found an advantage of the multi-letter homoglyph
priming condition over the orthographic control condition—note
that it was somewhat smaller than in Experiment 1 (10 vs. 19 ms,
respectively).

To examine the similarities and differences between the findings
with Tahoma (Experiment 1) and Calibri (Experiment 2) fonts, we
conducted a combined analysis of Experiments 1 and 2 with
Experiment as a between-subjects factor. Results showed similar
word response times for the identity and the multi-letter ho-
moglyph conditions (t � �1.35, 	 � 0.015, SE � 0.011, p �
.18)—this pattern was similar in the two experiments, as deduced
from the lack of a significant interaction (t � �0.40, p � .68).
When examining the advantage of the homoglyph condition over
the control condition (t � 5.30, 	 � 0.056, SE � 0.011, p � .001),
the joint analysis showed that it was greater in Experiment 1
(Tahoma) than in Experiment 2 (Calibri; t � �2.56, 	 � �0.036,
SE � 0.014, p � .013). Therefore, albeit to a slightly lesser degree,
Calibri font is subject to letter confusability from multi-letter
homoglyphs.5

General Discussion

The letters that compose the words in printed Roman script are
separated by small whitespaces that signal their boundaries (see
Figure 1). For simplicity, models of printed word recognition
inspired in the interactive activation model assume the existence of
well-defined discrete slots for each letter (e.g., the visual features
of “H” and “A” in HAND would be processed independently).
Alternatively, the Bayesian Reader model (Norris & Kinoshita,
2012) posits that there is some degree of uncertainty at assigning
visual objects to letters in the initial moments of processing. This
latter assumption is consistent with anecdotal evidence that sug-
gests that nonwords composed of multi-letter homoglyphs such as
docurnent can be confusable with their base word. To examine

whether nonwords composed of multi-letter homoglyphs such as
docurnent activate their visually similar base words in the early
stages of word processing, we conducted two masked priming
experiments using two very common fonts: Tahoma (Experiment
1) and Calibri (Experiment 2)—note that Tahoma has a narrow
interletter spacing. Results showed a response time advantage of
the multi-letter homoglyph priming condition over the ortho-
graphic control condition in the two experiments (19 ms in Experi-
ment 1; 10 ms in Experiment 2; i.e., docurnento–DOCUMENTO
faster than docusnento–DOCUMENTO). Furthermore, the identity
condition only showed a minimal advantage over the multi-letter
homoglyph condition (a 3-ms difference in Experiment 1 and a
[significant] 6 ms difference in Experiment 2). That is, in the early
moments of processing, the perceptual system does not accurately
perceive the whitespaces around the “r” and the “n” in docurnento
(i.e., docurnento and documento generate a similar perceptual input).
The greater effectiveness of multi-letter homoglyphs with the Tahoma
than with the Calibri font probably reflects the fact that the visual
features of nearby letters are closer with the Tahoma font (e.g.,
compare the homoglyph “rn” in docurnento [Tahoma] and
docurnento [Calibri]). Taken together, these findings have
important implications both at the theoretical level (i.e., how
visual similarity extends across letters in models of printed
word recognition) and the applied level (i.e., for Internet ad-
ministrators/users and font designers).

At the theoretical level, the presence of faster responses in the
multi-letter homoglyph condition than in the control condition
with easily legible printed script reveals that in the early moments
of word processing, the cognitive processes responsible for visual
word recognition are highly resilient to potentially noisy signal
(e.g., the gap between “r” and “n” in “rn”), and this is the case even
when the stimuli are presented in a visually familiar format (e.g.,
docurnent). Therefore, despite the presence of visual cues (i.e.,
whitespaces) between letters, there is still some ambiguity at
assigning the words’ visual objects to letters at the early moments
of processing. This phenomenon adds to the presence of uncer-
tainty concerning letter identity and letter position during the
initial moments of printed word recognition (e.g., see Gomez et al.,
2008; Norris et al., 2010). The flexibility at tolerating large shape
variations across letter features and letters during orthographic
processing probably arises from the fact that adult readers have
extensive experience with very different forms of writing (e.g.,
handwriting; Barnhart & Goldinger, 2010; Grainger et al., 2016;
Hannagan et al., 2012). Indeed, unlike OCR engines, human read-
ers can read distorted stimuli such as captchas (e.g., ),
partially mutilated words (e.g., ), or low-resolution faxes
(e.g., ) without much trouble (see Hannagan et al.,
2012, for evidence of sizable masked repetition priming effects
when the primes were composed of captchas; see also Perea,

5 Response times for words were, on average, 20 ms faster in Experi-
ment 1 than in Experiment 2 (t � 2.61, 	 � 0.110, SE � 0.042, p � .01).
Nonetheless, this difference should be taken with caution because this is a
post hoc analysis of between-subjects data that were not collected with
random assignment (i.e., we ran Experiment 1, and then Experiment 2).
More important, as masked priming effects reflect a “savings” effect (see
Gomez, Perea, & Ratcliff, 2013, for modeling evidence with the diffusion
model), there is no theoretical reason why the overall difference in word
response times would have affected the pattern of masked priming effects.

Table 2
Mean Lexical Decision Times (in Milliseconds) and Accuracy
(in Parentheses) for Words and Nonwords in Experiment 2

Identity Homoglyph Control

Words 604 (.977) 610 (.965) 620 (.970)
Nonwords 728 (.953) 733 (.947) 726 (.953)
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Comesaña, Soares, & Moret-Tatay, 2012, for similar evidence
with mutilated prime words).

How can models of printed word recognition account for the
present findings? As acknowledged by McClelland et al. (2014), the
interactive activation model—for simplicity— “assumes discrete slots
for letters” (p. 1181). Therefore, as it stands, this model predicts
similar word identification times for docurnent–DOCUMENT and
docusnent–DOCUMENT, which, in turn, would be longer than the
word identification times for document–DOCUMENT. Obviously, a
similar reasoning applies to the other interactive-activation models of
printed word recognition that also use the font designed by Rumelhart
and Siple (1974). Nonetheless, the extension of the interactive acti-
vation model to auditory word recognition (i.e., the TRACE model)
assumes “some spread of phonological features producing overlap
between adjacent slots” (McClelland et al., 2014, p. 1187). If this idea
were extended to the interactive activation model and its successors
(i.e., using visual features instead of phonological features), this
would mean that multi-letter homoglyphs could activate their visually
similar letter representations, thus capturing the observed effects.
However, this modification would also require a letter level more
sophisticated than the Rumelhart and Siple (1974) uppercase font (see
Mewhort & Johns, 1988, for criticism on the oversimplification in the
letter-feature and letter levels in the coding scheme of the interactive-
activation model). Importantly, the Bayesian Reader model (Norris &
Kinoshita, 2012) can readily capture the observed pattern of findings
because this model assumes that, in the first moments of processing,
there is uncertainty when mapping visual features to letters. As Norris
and Kinoshita (2012) indicated, “early in processing, there might be
so much uncertainty as to how many letter objects are present that, for
example, care might be as likely as a three-letter word” (p. 527).
Nonetheless, the current version of the Bayesian Reader model needs
further refinement: For simplicity, it assumes that all letters are
equally confusable and it does not make any specific claims concern-
ing the mapping of visual objects onto letters.

Clearly, the present data call for a refinement of the perceptual
front end of models of printed word recognition. As Balota et al.
(2006) put it, “What is the glue that puts the features together?” (p.
289) This question is related to a fundamental issue in visual
perception: how the varying features from visual objects can be
perceived as a whole (see Wolfe, 2012). A common view is that
the “glue” that combines the letter features into letters is focal
attention (i.e., conscious processing; see Treisman & Gelade,
1980, for discussion). Nonetheless, as Dehaene et al. (2004) pro-
posed, conscious processing may not be a requirement when
binding the visual components of letters or words, as this is a
highly overlearned process that may involve dedicated neural
pathways that combine the letter features into abstract letter units
(see Keizer, Hommel, & Lamme, 2015, for a similar observation;
see also Dehaene, Cohen, Sigman, & Vinckier, 2005, for a neural
model of printed word recognition). Indeed, it has been claimed
that one of the processing deficits of individuals with dyslexia is at
binding the visual features of letters and words (see Pammer,
2014). Although an answer to the binding problem in printed word
recognition would undeniably be beyond the scope of the present
study, the high degree of perceptual similarity between docurnent
and document at the early stages of word recognition suggest that,
as occurs with other visual objects, Gestalt principle of good
continuation of form also apply to letter/word recognition (i.e.,
rn¡m; see Rosa, Perea, & Enneson, 2016, for evidence of this

principle when deleting visual features from letters in printed word
recognition; see also Pelli et al., 2009, for discussion of Gestalt
principles in letter identification). Further research should be con-
ducted to determine, in detail, the role of visual similarity with
multi-letter homoglyphs during visual word recognition and read-
ing. As a reviewer pointed out, one potential avenue would be
to manipulate the interletter spacing of the prime stimuli using
the same font (e.g., docur nent-DOCUMENT vs. docur nent-
DOCUMENT)—importantly, this could combined with the re-
cording of event-related potentials to unfold the time course of
the effect. Another line of research could examine the process-
ing of multi-letter homoglyphs in a more natural scenario:
Although participants read sentences and their eyes are moni-
tored, this could be combined with a gaze contingent boundary
change paradigm (Rayner, 1975) to assess the processing of
multi-letter homoglyphs in the parafovea.

At an applied level, the present data offer empirical support to
the suspicion that nonwords composed of multi-letter homoglyphs
such as docurnent are perceptually very similar to their base
words. That is, a domain name such as rnicrosoft.com could be
easily misread as microsoft.com (or sarnsung.com instead of sam-
sung.com, ibrn.com instead of ibm.com, etc.). Therefore, poten-
tially malicious imposters can buy these domain names instead of
the real names to let innocent users into thinking that they are on
the proper website. The result is that naïve users may give away
passwords and private information. How can Internet administra-
tors avoid these potentially threatening issues? An initial obvious
solution is to buy those domain names that may be potentially
confusable with the real ones. This would involve not only those
domain names that employ multi-letter homoglyphs (e.g., rni-
crosoft.com) but also single-letter homoglyphs (e.g., “0” and “O,”
as in MICR0S0FT.COM). A complementary option would be to
design fonts that minimize this type of letter confusion when
reading a domain name in a web browser (e.g., zero could be
written as “0,” as in Consolas font) together with a wide interletter
spacing (e.g., rnicrosoft.com would not be easily confusable with
microsoft.com).

In summary, we found that, at the early moments of word process-
ing, nonwords created by replacing a letter with a multi-letter ho-
moglyph (e.g., “m” with “rn,” as in docurnent) are quite effective at
activating their corresponding base words. At the theoretical level,
this finding is a demonstration that there is some degree of ambiguity
at mapping the visual objects that constitute the words onto letters,
thus requiring more elaborated accounts of the links between the
visual feature level and the letter levels in future implementations of
models of printed word recognition. At an applied level, Internet users
should be aware that malicious attackers might trick them with do-
main names that visually resemble the real websites (e.g., rnicrosoft-
.com), with the risk of exposing confidential information.
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