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Abstract
Response times (RTs) are a ubiquitous variable for assessing cognitive and motor processes. However, variability intro-
duced by keyboards, especially in online experiments, has raised concerns among behavioral researchers. Here, we evaluate 
the impact of keyboard delays on RT measurements using linear mixed-effects models and grouped data t-tests through a 
series of simulations. The results showed that the impact of keyboard delays on statistical power is minimal in most cases. 
Keyboard-induced variability does not inflate type I error rates and has a negligible impact on power, except in rare scenarios 
of RT distribution shifts or in studies focused on individual differences with low signal-to-noise ratios. Thus, commercially 
available keyboards remain suitable for most RT experiments, including those conducted online.

Keywords Response time · Online experiments · Keyboards

Response times (RTs) are often used to measure various 
cognitive and motor processes, with longer RTs typically 
indicating greater processing difficulty (see Luce, 1991, for 
a review of early research). As a result, RTs serve as a criti-
cal dependent variable in numerous experimental paradigms 
involving human participants across diverse fields, includ-
ing psychology, human factors, medicine, and education. In 
RT experiments, most data have been collected using mass-
produced, commercially available keyboards, which might 
introduce variability to the RTs due to their different polling 
and scanning rates. This variability may be exacerbated now 
that RT experiments are increasingly conducted online (see 
Rodd, 2024, for a review), where researchers have limited 
control over the hardware used for data acquisition. These 
hardware issues raise concerns about potential measure-
ment errors caused by keyboard delays. This has generated 
a somewhat prevalent but vague worry among researchers 

regarding their impact on the inferential analyses. The goal 
of this paper is to reduce the vagueness of such concerns and 
to reassure researchers that, in most cases, using keyboards 
is acceptable when the goal is to compare the differences 
between RTs in two or more experimental conditions (see 
Damian, 2010); evidently, if our goal were to obtain the true 
RT, the aforementioned noise would be undesirable.

We can illustrate the issue in question with a well-
meaning statement from a review that has been edited for 
anonymity:

I have some doubts about the use of a keyboard to 
collect the participant responses. Keyboards intro-
duce random errors in reaction time (RT) measure-
ments. As shown by Forster and Forster (2003), a 5-ms 
standard deviation of random error can significantly 
affect results when effects are only 10–20 ms. While the 
current data may not be systematically distorted, this 
raises concerns about replicability. The authors should 
acknowledge this issue or re-run an experiment using 
a mouse or a PIO-12 response box.

Similarly, in journal articles advocating the construction 
or use of response boxes (e.g., Forster & Forster, 2003; Voss 
et al., 2007), the authors correctly point out that USB-based 
responses have a delay compared to real-time parallel port 
response acquisition methods; however, no discussion of the 
size or consequences of this problem is presented.
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In this paper, we hope to show that collecting data via 
keyboards is an appropriate practice in most cases; while 
this is not a new issue, it deserves renewed attention. Three 
decades ago, Ratcliff (1994) stated that the “variability intro-
duced through the use of keyboards for response collection 
[was] a frequently mentioned, but ill-understood problem” 
(p. 95). Through a simple example in which the RT yields 
a standard deviation (SD) of 200 ms and the keyboard has 
an SD of 50 ms, Ratcliff pointed out that the measured SD 
is 
√
2002 + 502 (i.e., approximately 6 ms more). In other 

words, even if the SD added by the keyboard lag is one quar-
ter of that from the latency (50/200 = ¼), the measured SD 
is only 3% larger than the real SD. Perhaps it is this counter-
intuitive proportion that gives rise to the above concern (see 
Damian, 2010, for a similar point).

To illustrate Ratcliff's (1994) statement, we present Fig. 1, 
which shows the measured SD in the data on the y-axis for 
different SDs in the RT (x-axis) and different keyboard 
delays (lines). The graph shows that in most situations, there 
is a barely noticeable increase in the measured SD. Criti-
cally, this was so even at unrealistically high keyboard delays 
and unusually low SDs in real response time experiments. 
Note that we chose the range of SD in the data using, as the 
low end, the latency of corrective saccades (as measured by 

eye trackers; Hollingworth et al., 2008), which is SD ≈ 30 
ms, and as the high end, the latency in a tactile flanker task 
(Baciero et al., 2021), SD ≈ 380 ms.

Since the publication of Ratcliff's (1994) article, two sig-
nificant developments have motivated us to revisit this issue. 
The first is the emergence of a wide range of hardware com-
ponent qualities and the universal use of USB and Bluetooth 
keyboards instead of interrupt-based mechanisms like PS/2 
keyboards. The prevalence of online RT experiments makes 
this issue even more timely. The second development is a 
shift in statistical practices, with the widespread adoption 
of linear mixed-effects models on raw RT data, where items 
and participants are considered random effects with a slope 
and an intercept. Indeed, in most fields of cognitive psychol-
ogy, running t-tests or analyses of variance (ANOVAs) with 
data aggregated by subjects (or items) has become obsolete. 
While issues around averaging obscuring important features 
of data have been known for a long time (e.g., Estes, 1956; 
Clark, 1973), statistical practices have changed dramatically 
since the first decade of this century, notably spearheaded by 
Baayen et al. (2008). Linear mixed-effects models offer sev-
eral advantages over aggregated t-tests, including the ability 
to handle data with more complex structures, account for 
both fixed and random effects, and provide more accurate 

Fig. 1  Total measured standard deviation (SD, y-axis) assuming different delays ~U(0, range) in the keyboard (x-axis) at varying SD in the RT 
(colored lines)
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estimations that might increase power. Relevant to this 
paper, it is possible that the averaging that occurs in the 
aggregated-by-participant t-test might attenuate the effect 
of equipment variability; however, this attenuation might 
not be present in linear mixed-effects models, as they use 
all individual observations in the analyses. For this reason, 
we compare both methods. Note that we use the term aggre-
gated to describe analyses that first find the average per con-
dition and per subject, and then perform a statistical test 
on those averages (i.e., a paired t-test); while there can be 
aggregations across items, for simplicity, here we only use 
aggregation across participants.

We now present some background on why USB and Blue-
tooth keyboards may induce extra variability in the obtained 
RTs. Then we will explore various scenarios to assess the 
potential impact of using these keyboards in RT experi-
ments. To keep the analysis straightforward, and in line 
with Ratcliff (1993, 1994), we examined simulated experi-
ments with only two conditions. Similarly, we assumed that 
the underlying RT distribution corresponds to the convolu-
tion of the Gaussian distribution (with parameters μ and σ 
responsible for the location of the RT distribution) and the 
exponential distribution (with parameter τ responsible for 
the skew), i.e., the ex-Gaussian distribution.

USB and Bluetooth keyboards

The delay in keyboards depends on two factors: polling rate 
and scan rate. The polling rate, a feature of USB connec-
tions, refers to how frequently the computer queries the USB 
device. The scan rate is the frequency of internal checks in 
the keyboard circuitry to detect key presses and releases. 
Both rates are measured in hertz (Hz).

High-end gaming keyboards often boast scan rates of 
1000 Hz, meaning the computer receives updates from the 
keyboard every millisecond. Basic commercial keyboards 
typically have scan rates of 125 Hz, resulting in updates 
every 8 ms, and basic USB ports poll at 125 Hz as well.

It is easy to find gamers using a high-speed camera, a 
mechanical key presser, and a high-refresh-rate monitor 
to measure actual delays on keyboards (e.g., https:// www. 
rtings. com/ keybo ard/ tests/ laten cy). This commentary 
assumes delays are uniformly distributed, with the effective 
polling rate approximately twice the reported mean delay. 
Some tests find the smallest delay to be 0.1 ms with a high-
end gaming keyboard, while the largest delay is about 60 ms 
for a USB connection, so we assume that the measured RT 
is the sum of the real RT plus the scan and the pooling time, 
which have a uniform distribution:

measuredRT = RealRT + �k ∼ U
(
0,

1000

scanrate

)
+ �m ∼ U

(
0,

1000

poolingrate

)

As the extreme case—and using the findings from https:// 
danluu. com/ keybo ard- laten cy/, we can assume that 
measuredRT = RealRT + � ∼ U(0, 66) . For reference, the SD 
of a uniform distribution is defined as =

√
range2

12
 , and when a 

distribution is a convolution of n different components, the 
total standard deviation is �Total =

√
�
2
1
+ �

2
1
+⋯ + �2

n
 . This 

equation becomes particularly relevant for the analyses below, 
where we generate data using the ex-Gaussian distribution 
with two components of variance (one from the normal distri-
bution, �2 , and the other from the exponential distribution, �2 ). 
We then compare it with data generated with a third compo-
nent of variance: the measurement error introduced by the 
equipment.

The simulated experiments

While the above formal analyses can be illuminating, to 
examine the potential cost induced by an increase in the 
variability at detecting a response in the keyboard, we gener-
ated simulated data from a hypothetical experiment featur-
ing a within-participant factor with two levels (like Ratcliff, 
1993); note, however, that the general implications should 
be the same for more complex designs.

The assumptions were the following:

• Subject was a random factor (20 or 40 participants; the 
random structure is explained below).

• Item was a random factor (20 or 40 items).
• There was one experimental effect factor (e.g., a manip-

ulation like presentation time [short, long] of a given 
stimulus).

• The RTs follow the ex-Gaussian distribution1 using the 
following parameters:

� = �Subject + �item + k × �effect

� = 10

� = �Subject + �item + k × �effect

1 Matzke and Wagenmakers (2009) provide an excellent overview of 
the problems in interpreting ex-Gaussian parameters as direct meas-
urements of cognitive processes. However, in our case, we use it as a 
tool to generate data without a commitment to the theoretical mean-
ing of such parameters (see Vadillo & Garaizar, 2016, for a similar 
argument). We use the ex-Gaussian parameters simply as a descrip-
tion of the shape of the RT distribution and the loci of effects.

https://www.rtings.com/keyboard/tests/latency
https://www.rtings.com/keyboard/tests/latency
https://danluu.com/keyboard-latency/
https://danluu.com/keyboard-latency/
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In our simulations, there is variability across subjects 
and within subjects. The variability across subjects comes 
from the fact that each subject has their own �S and �S , each 
normally distributed: ( �S ∼ N(80,14);�S ∼ N(80,14) ). The 
variability within each subject comes from the variability 
across items, as each item has its own �I and �I , which are 
also distributed normally ( �I ∼ N(80,14);�I ∼ N(80,14) ), 
and also from the ex-Gaussian random number generator 
using the function rexGAUS() from the gamlss.dist 
package (Stasinopoulos & Rigby, 2023) in the R environ-
ment (R Core Team, 2023). In addition, k is the contrast 
code for the two conditions of the fixed factor (–.5 and .5).

We carried out two sets of simulations: the first one was 
pre-planned, and the second one was carried out to address 
questions that emerged from outcomes of the first set. For 
the first set of simulations, we explored three scenarios based 
on plausible loci of effects in the ex-Gaussian distribution:

1. Variability across subjects and items with a null effect 
of presentation time (i.e., the manipulated factor). In this 
case, �effect = 0;�effect = 0.

2. Variability across subjects and items with an effect 
of presentation time on the � parameter of the RT 
distribution, which is distributed across subjects as 
�effect ∼ N(5, 5).  This produces a shift in the RT distri-
bution for each participant, equal to the size of the effect 
(e.g., masked priming experiments show such pattern; 
see Gomez & Perea, 2020).

3. Variability across subjects and items with an effect 
of presentation time on the � parameter of the RT 
distribution, which is distributed across subjects as 
�effect ∼ N(5, 5). This produces a change in the tail (and 
the variability) of the RT distribution. When the � param-
eter changes, effects are larger for the slower responses 
(e.g., the effect of word frequency in the lexical decision 
task yields such pattern; e.g., Ratcliff et al., 2004).

Because these simulations aimed to explore an extreme 
case of noise in computer keyboards, we used a relatively 
small standard deviation (SD) in the RT distributions, around 
125 ms, and a small effect of the fixed factor (presentation 
time; for each subject ~N[5, 5]). While our focus was on the 
distribution of t values from the linear mixed-effects (LME) 
models, for comparison, we also report the distribution using 
aggregated by-subject t-tests. Finally, we examined the impact 
of keyboard-induced noise on correlational studies.

Results

We generated 1000 samples for each simulation, and we 
carried out the LME and the aggregated t-test analyses 
for each sample using both the raw RT and the –1000/RT 

transformation—this transformation is a common procedure 
to meet the normality assumption (see Balota et al., 2013; 
Lo & Andrews, 2015). We present the distribution of coef-
ficients for the fixed factor (presentation time) in Fig. 2.2 
The outcome of the simulations is summarized in Tables 1, 
2, 3 and 4, which include the proportion of t values above 
the standard critical value of 1.96 for both the LME and 
aggregated t-tests. For the LME, we implemented the fol-
lowing models:

Both models produce remarkably similar findings, and the 
simpler model generates fewer than .05% singularities, while 
the more complex model yields up to 40% singularities in 
some of the simulations; hence, the results from the simpler 
model are presented in the tables. The code and results for 
the more complex model are available in the OSF site.

Null effect scenario First, the most reassuring aspect of these 
simulations is that when examining the null effect scenario, 
the distributions of coefficients overlap, and the proportion 
of scores above 1.96 is practically identical regardless of 
the number of trials, number of conditions, or data trans-
formation: all are around the .05 level. In short, alpha is not 
inflated by the added variability introduced by keyboard use.

Effect only on the tail of the RT distribution ( � parameter) In 
the case of an effect on � , which affects the tail of the distri-
bution and its SD, some examination is in order. In the ex-
Gaussian distribution, the exponential component of the RT 
will dominate the SD because 

√
�2 + �2  and in most empiri-

cal situations 𝜏 > 𝜎 , which is reflected in our simulations. 
The results of our simulations show that the results using the 
actual RT versus the measured RT are practically identical 
for both LME and aggregated analyses, and no power is lost 
by using the measured RT instead of the real RT.

Effect only on the location of the RT distribution ( � param-
eter) In this scenario, there is a small but measurable loss 
of power in the measured versus the real RT. This loss is 
most evident when using the –1000/RT transformation in the 
40-item, 40-participant simulation, and occurs for both the 
aggregated-by-subject and the LME analyses (both around 
a .05 cost). The loss in statistical power decreases for the 
simulations with fewer trials or fewer items. Thus, for higher 

dv ∼ presentation + (1|item) + (1 + presentation|subject))
dv ∼ presentation + (1|item) + (1|subject))

2 Note that the intercepts show a difference between the meas-
ured and the real RT, which is obvious given that the measured RT 
includes the delay introduced by the uniform noise; the distribution of 
intercepts can be seen in the OSF repository, but they are trivial and 
irrelevant to the question at hand.
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numbers of items and participants, the cost of the keyboard 
delay is higher, even if power, overall, is obviously higher 
as well.

In short, the first set of simulations indicates that there is 
a loss in statistical power induced by equipment when the 
effect is located only in the μ parameter of the ex-Gaussian 
distribution. This led us to a second set of scenarios—each 
involving 1000 simulations—in which we explored the con-
tours of the loss in statistical power, examining whether such 
loss is larger with larger effect sizes and whether it remains 
when there is an effect in τ as well.

1. The effect size on � increased to ~N(10, 5) across par-
ticipants.

2. The effect affected both � and � , both ~N(5, 5) across 
participants.

3. A larger variability in the real RTs, with the same effect 
as in (2), was achieved by increasing the σ parameter 
to 40 and the � parameter to 100. The choice of these 
parameter values is consistent with realistic values in 

lexical decision tasks (see Matzke & Wagenmakers, 
2009, for a variety values of ex-Gaussian parameters in 
different tasks and conditions).

The results are straightforward. When the RT is not trans-
formed, neither the LME nor the aggregated t-tests show a 
sizable power advantage for the real RT over the measured 
RT (i.e., the differences are on the order of < .01). The high-
est cost in statistical power emerges in the case of a larger 
effect size on � ~ N(10, 5), when using the –1000/RT trans-
formation; in this case, the decrease in power produced by 
the keyboard delay is about .05. In the other simulations, 
with effects distributed in  � and � , the cost in power of using 
the keyboard decreases to about .02 in the LME analyses 
with –1000/RT, and it is even smaller in the other analyses.

Naturally, researchers aim to maximize power and 
address the potential power loss due to keyboard noise. As 
stated above, this power loss depends on several experimen-
tal parameters. We chose to examine the scenario with the 
highest power loss and estimated how many additional trials 

Fig. 2  Distributions of t scores for the fixed effect coefficient in the different simulations. Note that only the panel with 40 items and 40 partici-
pants, in which the effect is in μ, has a visible difference between the real and the measured –1000/RTs
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per condition or extra participants would be necessary to 
counteract the impact of slow keyboards. The results are 
presented in Figs. 3 and 4, which depict the power curve 

under the assumptions of Simulation 1 from the second set 
described earlier: an effect size of μ ~N(10, 5) across partici-
pants, using the –1000/RT transformation with grouped data.

Table 1  Results from the simulations in the null scenario. The proportion of statistically significant simulations for each effect type and each 
data transformation is presented in the measured (RT + U[0, 66]) and the real (RT) columns

Proportion of significant simulations

Data transformation No. participants No. items Measured RT Real RT Difference

–1000/RT
 LME 20 20 .055 .053 .002
 LME 20 40 .050 .054 –.004
 LME 40 20 .050 .044 .006
 LME 40 40 .050 .047 .003
Aggregated t-test 20 20 .057 .050 .007
Aggregated t-test 20 40 .042 .043 –.001
Aggregated t-test 40 20 .060 .068 –.008
Aggregated t-test 40 40 .054 .056 .002
Raw RT
 LME 20 20 .057 .052 .005
 LME 20 40 .045 .048 –.002
 LME 40 20 .042 .038 .004
 LME 40 40 .048 .049 –.001
Aggregated t-test 20 20 .056 .049 .002
Aggregated t-test 20 40 .047 .045 .002
Aggregated t-test 40 20 .049 .047 .002
Aggregated t-test 40 40 .065 .055 .010

Table 2  Results from the simulations in the � scenario. The proportion of statistically significant simulations for each effect type and each data 
transformation is presented in the measured (RT + U[0, 66]) and the real (RT) columns

Proportion of significant simulations

Data transformation No. Participants No. items Measured RT Real RT Difference

–1000/RT
 LME 20 20 .068 .073 –.005
 LME 20 40 .090 .089 .001
 LME 40 20 .070 .071 –.001
 LME 40 40 .125 .124 .001
Aggregated t-test 20 20 .070 .072 –.002
Aggregated t-test 20 40 .075 .079 –.004
Aggregated t-test 40 20 .076 .075 –.001
Aggregated t-test 40 40 .113 .114 –.001
Raw RT
 LME 20 20 .074 .076 –.002
 LME 20 40 .093 .095 –.002
 LME 40 20 .086 .082 .004
 LME 40 40 .146 .146 .000
Aggregated t-test 20 20 .067 .068 –.001
Aggregated t-test 20 40 .077 .078 –.001
Aggregated t-test 40 20 .094 .089 .005
Aggregated t-test 40 40 .148 .147 .001
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The figures are straightforward to interpret: the darker 
lines represent power without keyboard delay, while the 
lighter lines show power with keyboard delay. To estimate 
the number of additional participants or items needed to 

achieve a certain power level, one can measure the hori-
zontal offset between the lines. For example, the horizon-
tal offset at the 0.7 power level, highlighted with arrows in 
both figures, indicates that four additional participants are 
needed, as shown in Fig. 3. Similarly, in Fig. 4, the arrow 

Table 3  Results from the simulations in the μ scenario. The proportion of statistically significant simulations for each effect type and each data 
transformation is presented in the measured (RT + U[0, 66]) and the real (RT) columns

Proportion of significant simulations

Data transformation No. participants No. items Measured RT Real RT Difference

–1000/RT
 LME 20 20 .136 .146 –.010
 LME 20 40 .191 .215 –.025
 LME 40 20 .190 .225 –.035
 LME 40 40 .322 .367 –.046
Aggregated t-test 20 20 .110 .123 –.013
Aggregated t-test 20 40 .184 .206 –.022
Aggregated t-test 40 20 .175 .191 –.016
Aggregated t-test 40 40 .294 .332 –.038
Raw RT
 LME 20 20 .081 .082 –.001
 LME 20 40 .101 .102 –.001
 LME 40 20 .098 .106 –.008
LME 40 40 .148 .147 .001
Aggregated t-test 20 20 .074 .076 –.002
Aggregated t-test 20 40 .078 .080 –.002
Aggregated t-test 40 20 .096 .093 .003
Aggregated t-test 40 40 .105 .129 –.024

Table 4  Second set of simulations. The proportion of statistically sig-
nificant simulations for each effect type and each data transformation 
is presented in the measured (RT + U[0, 6]) and the real (RT) col-
umns

Effect Measured Real Difference

−1000/RT LME
mu 10 .856 .899 -.043
mu + tau 10 .859 .877 -.018
mu + tau 10 [larger SD in RT] .856 .879 -.023
Grouped RT. Aggregated T-Test on −1000/RT
mu 10 .826 .876 -.050
mu + tau 10 .701 .703 -.002
mu + tau 10 [larger SD in RT] .710 .714 -.004
Raw RT LME
mu 10 .427 .430 -.003
mu + tau 10 .724 .730 -.006
mu + tau 10 [larger SD in RT] .747 .753 -.006
Grouped RT. Aggregated T-Test on Raw RT
mu 10 .399 .409 -.010
mu + tau10 .701 .703 -.002
mu + tau 10 [larger SD in RT] .704 .707 -.003

Fig. 3  Power curve illustrating the number of additional participants 
needed to compensate for keyboard delay, based on Simulation 1 with 
an effect size of μ ~N(10, 5). The darker line represents power with 
no keyboard delay, and the lighter line represents power with key-
board delay. The arrow indicates the horizontal offset at the 0.7 power 
level, corresponding to four additional participants
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suggests that two extra items compensate for the keyboard 
noise. Notably, the offset between the lines never exceeds 
five units. These results suggest that adding approximately 
five items or five participants per condition can effectively 
compensate for the power loss caused by slow keyboard 
latency.

The case of individual differences In the simulations 
described above, we focused on the effects of keyboard 
noise in experiments that examined group-level effects. To 
investigate this issue in the context of individual differences 
research, we conducted a third simulation. This time, we 
introduced even larger response-induced noise, distributed 
as ~ uniform(0,100), and used the following premise: there 
is a cognitive task for which the RT has a .35 correlation 
with IQ ∼ N

(
100, 152

)
 . In this case, it is useful to think of 

each participant j having a true mean �j , which is distributed 
∼ N

(
M, �2

)
  where M is the overall mean and η2 is the vari-

ance across participants.
The estimation of M is aided by increasing the number 

of participants or the number of trials. However, to locate 
�j (the mean for individual participants), adding additional 
participants does not help; only adding trials matters. Con-
sequently, we carried out simulations to explore the effects 
of adding trials.

When estimating the correlation between a cognitive 
task’s RT and IQ, or even between two cognitive tasks, the 
critical component is locating �j , and to do so we use the 
measured average latency, which is determined by the 
across-trial variability and the number of trials: SE�j =

�√
n
 , 

where σ is the across-trial variability and n is the number of 
trials. The precision of locating �j is very important if there 
is small variability across participants. However, if there is 
large variability across participants, one can tolerate less 
precise location of �j . In other words, the ratio of across 
participant variability and across-trial variability is very rel-
evant. For this reason, we explored those two forms of vari-
ability in our simulations (for a more complete treatment of 
the issues around variability between and within partici-
pants, see Hedge et al., 2018; Rouder et al., 2023).

The simulations are summarized in Fig. 5, where vari-
ability across participants (η) is displayed from left to right, 
and variability across trials is displayed from top to bot-
tom. Importantly, when the variability across participants 
is small, the added variability across trials caused by the 
keyboard delay attenuates the correlations in a sizable man-
ner; when the variability across participants is small, any 
increase in the cross-trial variability incurs a cost. The good 
news is that the attenuation of the correlations diminishes 

Fig. 4  Power curve illustrating the number of additional items needed 
to compensate for keyboard delay, based on Simulation 1 with an 
effect size of μ ~N(10, 5). The darker line represents power with no 

keyboard delay, and the lighter line represents power with keyboard 
delay. The arrow indicates the horizontal offset at the 0.7 power level, 
corresponding to two additional items
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when the variability across participants exceeds η > 80 
(which is not uncommon in tasks like lexical decision; see, 
for example, Mella et al., 2015; Zoccolotti, et al., 2018). 
Importantly, when the individual variation that is submitted 
to the correlation comes from subtractive conditions (e.g., 
incongruent minus congruent trials), the effect will be small, 
and η will also be small.

Discussion

Increasingly, RT experiments are being conducted online, 
raising a recurring concern about whether the (uncontrolled) 
added noise from participants’ keyboards has a sizable det-
rimental effect on statistical power. In previous papers, Rat-
cliff (1994) and Damian (2010) argued that the potential cost 

in experiments with aggregated data is minimal. However, 
a remaining issue is whether the scenario would differ in 
the now prevalent analyses via linear mixed-effects (LME) 
models, which rely on individual RT data rather than data 
aggregated by subjects or items.

The findings from the presented simulations are clear and 
suggest that using mass-produced keyboards in RT experi-
ments generally does not have a detrimental effect in sta-
tistical power, as shown by inferential data analyses with 
both linear mixed-effects models and aggregated by-subject 
t-tests. However, some caveats must be addressed. In the 
LME analyses, the distributions of coefficients were similar 
whether RTs were measured with or without added noise. 
Nevertheless, noticeable but small differences emerged in 
specific situations, which are discussed below.

First, the detrimental consequences of keyboard delays 
can be sizeable for scenarios with very little variability in 
RTs, as shown in the bottom-most line in Fig. 1. Perhaps 

Fig. 5  Simulation results exploring the effects of noise on individual 
differences research, focusing on the correlation between response 
time (RT) and IQ (μ ~N(mean = 100, SD = 15)). The figure displays 
different levels of variability across participants (SD of the RT across 
participants) from left to right and variability across trials from top 
to bottom. The added variability due to keyboard delay attenuates 

correlations, especially when across-participant variability is small. 
However, this attenuation diminishes when the SD across participants 
is > 80. The figure underscores the importance of trial variability in 
estimating individual participant means (μj) and the impact of across-
participant variability on correlation attenuation
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most importantly, if the effects of the manipulation are 
expressed as a shift (only) in the RT distributions (i.e., an 
effect on μ), there is a small but measurable cost in power 
of the LME models and in the aggregated t-test when using 
the –1000/RT transformation. To contextualize the minor 
loss of power when using mass-produced keyboards, our 
simulations suggest that in the worst-case scenario with 
a 0.05 reduction in power, adding just five participants or 
increasing the number of trials by approximately 5–10 would 
restore the original power level. These adjustments represent 
a feasible solution for researchers concerned about hardware 
variability in their RT experiments.

In addition, for correlational or individual variability 
research, researchers should consider the signal-to-noise 
ratio (variability across participants relative to variability 
across trials); lower ratios indicate greater sensitivity to 
keyboard-induced noise. This can be achieved relatively 
simply by computing the SD across participants and across 
trials and comparing those numbers to Fig. 5. Conversely, 
researchers can use methods employing hierarchical trial-
level models suggested by Rouder et al. (2023) to address 
this issue.

While the scenarios that yield this loss in statistical power 
are plausible, they occur in our simulations designed to max-
imize the chances of obtaining a difference between the real 
and the measured RT—specifically, we used the simulations 
with the longest possible pooling and scan times, and rela-
tively small effect sizes in the RT. We must bear in mind that 
in most cases, the power loss would be smaller than the ones 
in the extreme scenario reported here. Furthermore, manipu-
lations that only shift the RT distribution (i.e., an effect on 
� , which corresponds to a shift in the RT distributions) are 
highly infrequent (e.g., masked priming is one of the few 
exceptions; e.g., see Gomez & Perea, 2020). Critically, once 
we simulated the more common scenario of an effect affect-
ing both the location and tail of the distributions (i.e., μ and 
τ parameters), the cost in statistical power was reduced by 
half. Second, our findings apply to behavioral experiments. 
In other scenarios, such as response-locked event-related 
potential (ERP) analyses, it is advisable to use an extremely 
precise measure for RTs via response boxes in the laboratory 
because the averaging of brainwaves is likely to be sensitive 
to the jitter introduced by equipment; in fact, most electroen-
cephalography (EEG)/ERP equipment includes high-quality 
response boxes.

Given the increasing prevalence of online experiments 
in psychology and other fields (Rodd, 2024), revisiting the 
issue of equipment-based noise in RT experiments is par-
ticularly timely. In the last few decades, statistical practices 
have shifted significantly moving from analyses of aggre-
gated RT data to those based on individual RT data, which 
may be potentially more sensitive to measurement noise. 
Related to the present work, Vadillo and Garaizar (2016) 

analyzed the ability to recover ex-Gaussian parameters from 
functional fits and parameters of the diffusion model when 
noise was introduced by imprecise measuring of RTs. They 
found that the recovery of generating parameters was robust 
to this added noise. In this work, we have quantified the 
reduction in power because of added noise, in both linear 
mixed-effects models and aggregated t-test analyses, and 
while one could focus on the situations where the loss in 
power is sizable (when the effect involves a shift in the RT 
distributions or when it occurs in studies of individual dif-
ferences with low signal-to-noise ratios), in most situations, 
the effect of mass-produced equipment is only modestly 
detrimental.

To conclude, while there is some gain for precise meas-
urement of RTs, access to such hardware is not universally 
feasible in online experiments (see Pronk et al, 2020, for an 
in-depth discussion of the different versions of online experi-
ments and their implications). Importantly, commercially 
available keyboards remain suitable for most RT studies, 
provided researchers implement simple adjustments, such 
as increasing the number of trials or participants, to miti-
gate potential variability. On the OSF, we have included a 
script that can easily be modified to estimate, under different 
assumptions, plausible losses in power due to equipment 
variability. This practical approach allows for robust and 
reliable RT data collection, even in the era of widespread 
online experimentation.

Author contributions All authors contributed to the study's conception 
and design. The first draft of the manuscript was written by P.G. and 
M.P. All authors commented on previous versions of the manuscript. 
All authors read and approved the final manuscript.

Funding The research reported in this article has been partially sup-
ported by Grants PID2020-116740 GB-I00 (funded by the MCIN/
AEI/1013039/501100011033) and PID2023-152078NB-100 from the 
Spanish Ministry of Science, Innovation, and Universities to Manuel 
Perea, Grant CIAICO/2021/172 from the Department of Innovation, 
Universities, Science and Digital Society of the Valencian Government 
to Manuel Perea, and NSF grant SMA-2127135 to Pablo Gomez.

Data availability The stimuli, data, scripts, and outputs are available 
at https:// osf. io/ 4z8rn/.

Code availability The stimuli, data, scripts, and outputs are available 
at https:// osf. io/ 4z8rn/.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Ethical approval Not applicable.

No human data was collected, nor used.

Consent to participate Not applicable.

No human data was collected, nor used.

https://osf.io/4z8rn/
https://osf.io/4z8rn/


Behavior Research Methods          (2025) 57:154  Page 11 of 11   154 

Consent for publication All authors consent publication.

References

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects 
modeling with crossed random effects for subjects and items. 
Journal of Memory and Language, 59, 390–412. https:// doi. org/ 
10. 1016/j. jml. 2007. 12. 005

Baciero, A., Uribe, I., & Gomez, P. (2021). The tactile Eriksen 
flanker effect: A time course analysis. Attention, Perception, 
& Psychophysics, 83, 1424–1434. https:// doi. org/ 10. 3758/ 
s13414- 020- 02172-2

Balota, D. A., Aschenbrenner, A. J., & Yap, M. J. (2013). Additive 
effects of word frequency and stimulus quality: The influence of 
trial history and data transformations. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 39, 1563–1571. 
https:// doi. org/ 10. 1037/ a0032 18

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique 
of language statistics in psychological research. Journal of Verbal 
Learning and Verbal Behavior, 12, 335–359. https:// doi. org/ 10. 
1016/ S0022- 5371(73) 80014-3

Damian, M. F. (2010). Does variability in human performance out-
weigh imprecision in response devices such as computer key-
boards? Behavior Research Methods, 42, 205–211. https:// doi. 
org/ 10. 3758/ BRM. 42.1. 205

Estes, W. K. (1956). The problem of inference from curves based on 
group data. Psychological Bulletin, 53, 134–140. https:// doi. org/ 
10. 1037/ h0045 156

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display 
program with millisecond accuracy. Behavior Research Methods, 
Instruments, & Computers, 35, 116–124. https:// doi. org/ 10. 3758/ 
BF031 95503

Gomez, P., & Perea, M. (2020). Masked identity priming reflects an 
encoding advantage in developing readers. Journal of Experimen-
tal Child Psychology, 199, 104911. https:// doi. org/ 10. 1016/j. jecp. 
2020. 104911

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: 
Why robust cognitive tasks do not produce reliable individual dif-
ferences. Behavior Research Methods, 50(3), 1166–1186. https:// 
doi. org/ 10. 3758/ s13428- 017- 0935-1

Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding 
the function of visual short-term memory: Transsaccadic memory, 
object correspondence, and gaze correction. Journal of Experi-
mental Psychology: General, 137, 163–181. https:// doi. org/ 10. 
1037/ 0096- 3445. 137.1. 163

Lo, S., & Andrews, S. (2015). To transform or not to transform: Using 
generalized linear mixed models to analyse reaction time data. 
Frontiers in Psychology, 6, 1171. https:// doi. org/ 10. 3389/ fpsyg. 
2015. 01171

Luce, R. D. (1991). Response times: Their role in inferring elementary 
mental organization. Oxford University Press.

Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpreta-
tion of the ex-Gaussian and shifted Wald parameters: A diffusion 

model analysis. Psychonomic Bulletin & Review, 16, 798–817. 
https:// doi. org/ 10. 3758/ PBR. 16.5. 798

Mella, N., Fagot, D., & de Ribaupierre, A. (2015). Dispersion in cog-
nitive functioning: Age differences over the lifespan. Journal of 
Clinical and Experimental Neuropsychology, 38, 111–126. https:// 
doi. org/ 10. 1080/ 13803 395. 2015. 10899 79

Pronk, T., Wiers, R. W., Molenkamp, B., & Murre, J. (2020). Mental 
chronometry in the pocket? Timing accuracy of web applications 
on touchscreen and keyboard devices. Behavioral Research Meth-
ods, 52, 1371–1382. https:// doi. org/ 10. 3758/ s13428- 019- 01321-2

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. 
Psychological Bulletin, 114, 510–532. https:// doi. org/ 10. 1037/ 
0033- 2909. 114.3. 510

Ratcliff, R. (1994). Using computers in empirical and theoretical work 
in cognitive psychology. Behavior Research Methods, Instru-
ments, & Computers, 26, 94–106. https:// doi. org/ 10. 3758/ BF032 
04600

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A Diffusion Model 
Account of the Lexical Decision Task. Psychological Review, 
111(1), 159–182. https:// doi. org/ 10. 1037/ 0033- 295x. 111.1. 159

R Core Team. (2023). R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing. https:// 
www.R- proje ct. org/

Rodd, J. M. (2024). Moving experimental psychology online: How 
to obtain high quality data when we can’t see our participants. 
Journal of Memory and Language, 134, 104472. https:// doi. org/ 
10. 1016/j. jml. 2023. 104472

Rouder, J. N., Kumar, A., & Haaf, J. M. (2023). Why many studies 
of individual differences with inhibition tasks may not localize 
correlations. Psychonomic Bulletin & Review, 30(6), 2049–2066. 
https:// doi. org/ 10. 3758/ s13423- 023- 02293-3

Stasinopoulos, M., & Rigby, R. (2023). gamlss.dist: Distributions for 
Generalized Additive Models for Location Scale and Shape. R 
package version 6.1–3. https:// github. com/ gamlss- dev/ gamlss. 
dist. Accessed 13 March 2025.

Vadillo, M. A., & Garaizar, P. (2016). The effect of noise-induced vari-
ance on parameter recovery from reaction times. BMC Bioinfor-
matics, 17(1). https:// doi. org/ 10. 1186/ s12859- 016- 0993-x

Voss, A., Leonhart, R., & Stahl, C. (2007). How to make your own 
response boxes: A step-by-step guide for the construction of reli-
able and inexpensive parallel-port response pads from computer 
mice. Behavior Research Methods, 39, 797–801. https://doi.
org/10.3758/BF03192971

Zoccolotti, P., De Luca, M., Di Filippo, G., Marinelli, C. V., & Spinelli, 
D. (2018). Reading and lexical-decision tasks generate different 
patterns of individual variability as a function of condition dif-
ficulty. Psychonomic Bulletin & Review, 25, 1161–1169. https:// 
doi. org/ 10. 3758/ s13423- 017- 1335-3

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.
Open practices statement The code for the simulations and the 
analyses is available at https:// osf. io/ 4z8rn/; https:// doi. org/ 10. 17605/ 
OSF. IO/ 4Z8RN.

https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.3758/s13414-020-02172-2
https://doi.org/10.3758/s13414-020-02172-2
https://doi.org/10.1037/a003218
https://doi.org/10.1016/S0022-5371(73)80014-3
https://doi.org/10.1016/S0022-5371(73)80014-3
https://doi.org/10.3758/BRM.42.1.205
https://doi.org/10.3758/BRM.42.1.205
https://doi.org/10.1037/h0045156
https://doi.org/10.1037/h0045156
https://doi.org/10.3758/BF03195503
https://doi.org/10.3758/BF03195503
https://doi.org/10.1016/j.jecp.2020.104911
https://doi.org/10.1016/j.jecp.2020.104911
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.1037/0096-3445.137.1.163
https://doi.org/10.1037/0096-3445.137.1.163
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.3758/PBR.16.5.798
https://doi.org/10.1080/13803395.2015.1089979
https://doi.org/10.1080/13803395.2015.1089979
https://doi.org/10.3758/s13428-019-01321-2
https://doi.org/10.1037/0033-2909.114.3.510
https://doi.org/10.1037/0033-2909.114.3.510
https://doi.org/10.3758/BF03204600
https://doi.org/10.3758/BF03204600
https://doi.org/10.1037/0033-295x.111.1.159
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.jml.2023.104472
https://doi.org/10.1016/j.jml.2023.104472
https://doi.org/10.3758/s13423-023-02293-3
https://github.com/gamlss-dev/gamlss.dist
https://github.com/gamlss-dev/gamlss.dist
https://doi.org/10.1186/s12859-016-0993-x
https://doi.org/10.3758/s13423-017-1335-3
https://doi.org/10.3758/s13423-017-1335-3
https://osf.io/4z8rn/
https://doi.org/10.17605/OSF.IO/4Z8RN
https://doi.org/10.17605/OSF.IO/4Z8RN

	The keyboards are (still) all right in response time experiments
	Abstract
	USB and Bluetooth keyboards
	The simulated experiments

	Results
	Discussion
	References


