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Orthographic processing is characterized by location-invariant and location-specific

processing (Grainger, 2018): (1) strings of letters are more vulnerable to transposition

effects than the strings of symbols in same-different tasks (location-invariant processing);

and (2) strings of letters, but not strings of symbols, show an initial position advantage in

target-in-string identification tasks (location-specific processing). To examine the

emergence of these two markers of orthographic processing, we conducted a same-

different task and a target-in-string identification task with two unfamiliar scripts (pre-

training experiments). Across six training sessions, participants learned to fluently read

and write one of these scripts. The post-training experiments were parallel to the pre-

training experiments. Results showed that the magnitude of the transposed-letter effect

in the same-different task and the serial function in the target-in-string identification tasks

were remarkably similar for the trained and untrained scripts. Thus, location-invariant and

location-specific processing does not emerge rapidly after learning a new script; instead,

they may require thorough experience with specific orthographic structures.

Reading is an acquired skill that involves some functional brain changes and requires, in

alphabetic scripts, associating the letters that compose each word with their appropriate

speech sounds. A common assumption in the literature is that, for a mature word

recognition system, the process of identifyingwords comprises a series of stages that map
the visual input onto abstract letter representations and, subsequently, onto whole-word

representations (see Dehaene, Cohen, Sigman, & Vinckier, 2005; Grainger, 2008; but see

Price & Devlin, 2011, for an alternative account). The processing of orthographic

representations connects the low-level stages of visual processing to the higher-level

linguistic processing of words. These orthographic representations contain information

about the identity and order of each of the word’s constituent letters, thus allowing

readers to distinguish similarly spelled words like cure and core, which differ in the

identity of just one letter, orwords like slat and salt, which differ in the order of two of the
letters (seeGrainger, 2018, for review). Indeed, the question of how the brain encodes the

identity and order of the letters that constitute each word is a central issue for all leading
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models of visual word recognition (e.g., Spatial Coding model: Davis, 2010; Overlap

model: Gomez, Ratcliff, & Perea, 2008; Open Bigram model: Grainger & Van Heuven,

2004; Bayesian Reader model: Norris, Kinoshita, & van Casteren, 2010; SERIOL model:

Whitney, 2001).
In the present experiments, we examined the emergence of two fundamental markers

of orthographic processing after learning a new script: 1) location-invariant processing

and 2) location-specific processing (see Grainger, 2018). For simplicity, the above-cited

models focus on an extant perspective (i.e., they assume a fully developed word

recognition system frozen in time) rather than on a developmental perspective. (We defer

a discussion of the research focused on the development rather than the emergence of

orthographic representations [e.g., Castles, Davis, Cavalot, & Forster, 2007; Grainger,

L�et�e, Bertrand, Dufau, & Ziegler, 2012; Marinus, Kezilas, Kohnen, Robidoux, & Castles,
2018] until the Discussion section.) We first describe in some depth how location-

invariant and location-specific processing differs between letters and other visual objects

(e.g., symbols, unknown letters). Then, we describe how acquiring a new script may

affect both phenomena. Finally, we offer a rationale for the two experiments proposed in

the current paper.

Location-invariant processing refers to the mechanisms responsible for encoding the

‘relative positions of a set of object identities’ (Grainger, 2018, p. 345) (i.e., the encoding

of the order of visual objects [letters] in a string composed of several objects [a word]).
This has often been examined with the same-different matching task (see Krueger, 1978;

Ratcliff, 1981, for early evidence), as it allows researchers to compare the processing of

letters vs. the processing of other types of visual objects. In this task, participants have to

decide if two strings of characters presented subsequently are the same or not (see

Figure 1). The most studied phenomenon of location-invariant processing is the

transposed-letter effect (henceforth, TL effect; see Grainger, 2018, for review). The TL

effect refers to the insensitivity of readers to the position of letters compared to the

identity of the same letters: ‘no’ responses to the transposed-letter pair FGJM-FJGM
(the underline is to emphasize the manipulation) in a same-different matching task are

slower andmore error prone than the responses to the replacement-letter controlFGJM-

FPCM. These effects also occur with strings composed of symbols or unknown letters

(e.g., £§?@-£?§@ is slower and more error prone than £§?@-£#<@), which suggests

that there is some positional noise in the representations of visual objects in a string (see

Gomez et al., 2008; Norris & Kinoshita, 2012). But the critical finding is that transposition

effects are substantially larger for strings of letters than for strings of other visual objects

(e.g., numbers, symbols, pseudoletters; Du~nabeitia, Dimitropoulou, Grainger, Hern�an-
dez, & Carreiras, 2012; Massol, Du~nabeitia, Carreiras, & Grainger, 2013; see also Garc�ıa-
Orza, Perea, & Mu~noz, 2010; Mu~noz, Perea, Garc�ıa-Orza, & Barber, 2012). To explain the

greater transposition effect for strings of letters than for strings of other visual stimuli,

Grainger (2018; see also Marcet, Perea, Baciero, & Gomez, 2019; Massol et al., 2013)

suggested that, on top of positional noise, there is an orthographic-specific mechanism

used to encode location-invariant letter-in-word order. Critically, this orthographic-

specific mechanism has been posited to emerge with literacy acquisition (Dandurand,

Grainger, & Dufau, 2010; Du~nabeitia, Lallier, Paz-Alonso, & Carreiras, 2015; Du~nabeitia,
Orihuela, & Carreiras, 2014). Therefore, when learning a new script, the emergence of

location-invariant orthographic processes would produce an increase of letter transpo-

sition effects in a same-different task.

Location-specific processing of visual information refers to the parallel processing of

the position of characters (e.g., letters) within one object (e.g., a word). This type of
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processing has usually been examined with a post-cued partial report target-in-string

identification task (henceforth, TSI task), based on the two-alternative-forced-choice task

first introduced by Reicher (1969) andWheeler (1970). In the typical set-up of the TSI task
applied to location-specific processing (e.g., Tydgat & Grainger, 2009), a string of five

characters (e.g., letters: FGJGM; symbols: £§?%@) is presented briefly while the

participant is looking at the middle of the string. The string is subsequently followed by a

pattern mask with a cue indicating one of the positions in the string (see Figure 2 for

illustration). The participants’ task is to choose, from the two alternatives, the one that

matches the identity of the character at the cued location.When presentedwith strings of

symbols, adult readers typically show aΛ-shape function (i.e., an advantage of themiddle,

fixated position) (Tydgat & Grainger, 2009; see also Chanceaux & Grainger, 2012;
Chanceaux, Mathôt, & Grainger, 2014; Grainger, Tydgat, & Issel�e, 2010; Scaltritti, Dufau,
& Grainger, 2018; Vejnovi�c & Zdravkovi�c, 2015). In contrast, for letter strings, adult

readers typically show a W-shape serial position function of accuracy (see Tydgat &

Grainger, 2009). That is, there is an advantage not only for the fixated, middle letter, but

also of the exterior letters – primarily the initial letter. The dissociation in serial position

function for strings of symbols vs. letters has also been obtained with developing readers

(see Ziegler, Pech-Georgel, Dufau, & Grainger, 2010). To explain this pattern, Tydgat and

Grainger (2009) proposed the Modified Receptive Field (MRF) theory. The idea is that, at
the onset of learning-to-read, the status of letters changes from being independent visual

objects to becoming parts of a higher-order object (i.e., the string). This is attained by

adapting the mechanisms of visual object processing to the constraints of visual word

processing (see Grainger, 2018; Grainger & Hannagan, 2014; see also Dehaene et al.,

2005, for neural correlates). Specifically, the MRF theory assumes that, with reading

acquisition, location-specific letter detectors are developed and their receptive fields

become reduced in size and elongated to the left – note that the initial letter is critical to
translating orthographic representations into phonological representations (Grainger,
Bertrand, L�et�e, Beyersmann, & Ziegler, 2016). Thus, the emergence of location-specific

processing when learning a new script is expected to produce an initial position

advantage in a TSI task.

The empirical data on the emergence of location-invariant and/or location-specific

processing are very scarce (seeDu~nabeitia et al., 2015, for an exception). Du~nabeitia et al.
(2015) examined the emergence of location-invariant processing in a longitudinal same-

!"#$

Letters Symbols

Target (until response 
or 2000 ms)

Probe (300 ms)

Fixation point (500 ms)

Figure 1. Depictionof the same-different task. [Colour figure can be viewed atwileyonlinelibrary.com]
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different experiment with children from four years (i.e., pre-literate children) to six years

(i.e., children who had acquired orthographic representations). In the accuracy data,

Du~nabeitia et al. (2015) found a significant TL effect for the older children, but not for the
pre-literate children, and claimed that the ‘the skills related to the processing of internal

characters’ identities and positions are inherently dependent on literacy’ (p. 548).

However, d’ (i.e., a measure of sensitivity) did not differ from zero in the experiment with

pre-literate children (i.e., children were performing at chance level), which raises

questions about any interpretation of the data (see Perea, Jim�enez, & Gomez, 2016, for
discussion)1.

The main goal of the present experiments was to overcome this gap by examining

whether acquiring a new script affects location-invariant processing and location-specific

processing by using a same-different task and a TSI task, respectively. We designed a

laboratory analogue of children’s reading acquisition in which adults were trained to read

and write in a new, unfamiliar script. As Chetail (2017) indicated, the use of artificial

scripts (i.e., sets of characters either from unknown scripts or newly devised) provides a

unique opportunity to ‘examine the developmental course of a given orthographic
process which is stable in adults’ (p. 103). Furthermore, recruiting adults as subjects

allows us to control the participants’ prior knowledge (i.e., we can make sure that

participants are not familiarized with the characters; see Maurer, Blau, Yoncheva, &

McCandliss, 2010; Taylor, Davis, & Rastle, 2017), and it also enables us to increase the

number of conditions and trials of the experiments: Adult participants can carry out

longer experimental sessions than children, and this allows us to ensure appropriate

reliability. Additionally, comparing the results of pre-literate children and developing

readers may lead to intricate interpretative issues, as the accuracy and latency data vary
dramatically across groups (see Perea et al., 2016). Critically, the behavioural effects of

learning an unfamiliar script in adults can be generalized to the effects elicited on children

when learning their first language (see Taylor, Plunkett, & Nation, 2011, for discussion).

Letters Symbols

Fixation point (500 ms)

(500 ms)

(116 ms)

Target (until response 
or 2000 ms)

Figure 2. Depiction of the target-in-string identification task. [Colour figure can be viewed at wiley

onlinelibrary.com]

1While the Perea et al. (2016) experiment with pre-literate children rules out an interpretation of TL effects as being fully
dependent on literacy acquisition, it does not provide any insights as to the emergence of location-invariant processing. To test
whether location-invariant processing is influenced by literacy in young children, onewould need to run a retest– ideally with letters
vs. symbols (or letters from a new alphabet) – after these children learn to read.
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In the current study,we employed a classic designwith a pre-training phase and a post-

training phase. The pre-training phase comprises two experiments: a same-different

experiment on the TL effect (i.e., testing location-invariant processing; Experiment 1) and

an experimentwith a TSI task on the serial position function (i.e., testing location-specific
processing). The pre-training experiments were conducted using eighteen consonant

letters from an artificial monospaced font (BACS2serif; Vidal & Chetail, 2017). This font

was used to create two different scripts: Script 1 (11 letters; two vowels and nine

consonants) and Script 2 (11 letters; two vowels and nine consonants) (see Figure 3). One

of the scripts was learned via print-to-sound training along five days, and the other was

used as a control. An important issue is the choice of the appropriate control script. Keep

in mind that the letters in the trained script would not only activate print-to-sound

correspondences, but they would also be visually familiar. That is, after training, the
pseudoletter ‘ ’ would not only correspond to a phoneme, but it also would become a

familiar object. Thus, one could argue that any effects from the trained script in the post-

training phase could bemerely due to visual familiarity. To separate the effects of learning-

to-read from the effects of visual familiarity, participants were familiarized with the visual

form of the characters of the control script.

Figure 3. Association between the letters of the new scripts and their corresponding phonemes.
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In the pre-training phase of Experiment 1, we conducted a same-different task using

five-letter strings. In the pre-training phase of Experiment 2, we conducted a TSI taskwith

five-letter strings. In both experiments, Script 1 and Script 2 were presented in separate

blocks. Subsequently, each participant received training in one of the scripts (trained
script) andwas familiarizedwith the characters of the other script (control script). For the

print-to-sound training, each individual learned the grapheme–phoneme associations of

nine consonant letters and twovowel letters fromoneof the two scripts across six training

sessions: Half of the participants learned the letters in Script 1 and the other half learned

the letters in Script 2. Prior research has shown that readers can show some expertise in a

new script quite rapidly. For instance, Chetail (2017) found that individuals acquired new

regularities (e.g., letter and bigram frequency effects) after a relatively short amount of

time, even in unfamiliar and complex scripts. Likewise, Brem et al. (2018) reported that
two hours of training were enough for individuals to show some expertise for a novel

script (e.g., an increase of theN1 amplitude). For the visual familiarizationwith the control

script, participants were exposed to the eleven characters of the script, but without

mentioning any orthographic or phonological information.

On day 1, participants first learned the grapheme–phoneme associations in the trained

script. As in Spanish – their native language, all the grapheme–phoneme associations are

transparent (e.g., the letter ‘i’ always corresponds to the phoneme/i/). Importantly, the

print-to-sound training allows us to ensure that participants will learn the new script as a
group of letters and not as mere symbols or shapes. As Chetail (2017) pointed out, ‘a

critical feature that distinguished letters from other symbols or shapes is that letters are

used to transcribe speech according to a structure code’ (p. 110). To consolidate the

learning of the trained script over the next five sessions, which took place in a window of

fiveworking days, participants were asked to read aloud andwrite down series of items of

increasing length, from 4-letter to 8-letter strings. Furthermore, the participants were

familiarized with the visual forms of the characters of the control script. To that end, on

each training session, each individual performed a character detection task and a
character count task (see Figure 4 for depiction of each task; see also Chetail, 2017, for a

similar strategy).

Finally, all participants had to pass a final test on the sixth day to show that they

successfully acquired the experimental script. Once the individuals had passed this test

(the criterionwas set at 20 ormore correct responses out of 24 in reading/writingwithin a

time limit), they took part in the post-training experiments. What we should note here is

that the print-to-sound training occurred in absence of semantics. Recent research has

emphasized the role of sound-based strategies when learning-to-read a new script (e.g.,
see Brem et al., 2018; Taylor et al., 2017, for evidence with adults). This print-to-sound

training also enabled us to isolate the orthographic processes from semantic processes,

thus minimizing any influences from top-down processes.

The post-training experiments were parallel to the experiments from the pre-training

phase. They were designed to test whether location-invariant and location-specific

processing has emerged in the trained script – for comparison purposes, we also

conducted a block with stimuli in an overlearned script (i.e., Roman alphabet). The

predictions were clear. If location-specific orthographic processes emerge after literacy
acquisition – as proposed by Dandurand et al. (2010) and Du~nabeitia et al. (2014, 2015),
we would expect a greater TL effect in a same-different task for the trained script in the

post-training phase than in the pre-training phase. Keep in mind that, in the post-training

phase, the TL effect for the newly learned scriptwould have two constituents: a positional

noise component – shared with the pre-training phase – and an orthographically based
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component. For the control script, the TL effect should remain similar inmagnitude in the

pre- and post-training phases: the TL effect would be due to perceptual uncertainty.

Alternatively, if TL effectswere similar inmagnitude in the pre- and post-training phase for

the two scripts, this would reveal that the emergence of location-invariant processing

does not emerge quickly after learning print-to-sound correspondences in a new script.

Second, if location-specific letter detectors are formed with literacy acquisition – as

proposed by the MRF theory (Tydgat & Grainger, 2009), the trained script would elicit a

first-letter advantage in the TSI task when measuring the serial position function in the
post-training phase. This would be accompanied by an advantage of the fixed, middle

position (i.e., aΛ-shape function) for the two scripts in the pre-training phase and for the

control script in the post-training phase. Alternatively, if the pattern of data still shows aΛ-
shape function for both the trained and untrained scripts in the post-training phase, this

would suggest that print-to-sound training does not rapidly lead to the emergence of

location-specific orthographic processing.

EXPERIMENT 1: LOCATION-INVARIANT PROCESSING

Method

Participants

The samplewas composed of twenty-eight university students, all of themnative speakers

of Spanish with normal/corrected-to-normal vision and with no history of reading or

Figure 4. Depiction of the character count task (top panel) and the character detection task (lowpanel).

[Colour figure can be viewed at wileyonlinelibrary.com]
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hearing disorders. All of them signed an informed consent form before participating in the

experiment. Participants received a small monetary compensation after the experiment.

In consonance with the registered protocol, the final number of participants was

determined via a sequential Bayes factor design maximal n (see Sch€onbrodt &
Wagenmakers, 2018, for the advantages of this approach) starting with a sample size of

28 participants. To compute the Bayes factors for the critical interaction (i.e., the three-

way interaction between Phase 9 Script 9 Probe-target relationship in the accuracy

data) required for the sampling procedure, we obtained the Bayes factors in the by-

subjects BayesianANOVA –note that all the stimuliwere strings of randomconsonants (or

consonants from artificial scripts) so generalization over participants wasmore important

than generalization over random consonants. This Bayes factor was computed in JASP

(Wagenmakers et al., 2018) as the ratio of the model that contained the factor of interest
(i.e., all the main effects, two-way interactions, and the three-way interaction) vs. the

model that did not contain the effects of interest (i.e., all themain effects and the two-way

interactions). This Bayes factor exceeded 6 (i.e., the criteria established in the pre-

registered protocol) in favour of the null hypothesis (BF10 = .081 ? BF01 > 12), so

sampling was stopped with n = 28.

Materials

We created 240 five-consonant string pairs (probe and target) in Script 1 (see Figure 3),

240 five-consonant string pairs in Script 2 (see Figure 3), and 240 five-consonant string

pairs in Roman alphabet (using Courier New font; e.g.,STNGB). The two artificial scripts

stemmed from the same font: BACS2serif (Vidal &Chetail, 2017). The string pairs in Script

1 and Script 2were presented in separate, counterbalanced blocks – the string pairs in the
Roman script were presented at the end of the post-training phase. All character strings

were composed of non-repeated letters. There were 120 ‘different’ pairs and 120 ‘same’

pairs for each character string type. For the ‘different’ pairs in each script, 60 pairs were
created by transposing two adjacent letters (e.g., - ; 1st-2nd, 2nd-3rd, 3rd-4th,

4th-5th), and 60 pairs were created by replacing two adjacent letters (e.g.,

; 1st-2nd, 2nd-3rd, 3rd-4th, 4th-5th). Thus, each block contained 240 pairs

of character strings. In total, each participantwas given 480 trials in the pre-training phase

(240 string pairs in Script 1 and 240 string pairs in Script 2) and 720 trials in the post-

training phase (240 string pairs in Script 1, 240 string pairs in Script 2, and 240 string pairs

in Roman script). The proportion of transpositions/replacements was the same in all

possible locations. To counterbalance the probe-target pairs, we created two lists for each
script (see Massol et al., 2013, for a similar procedure). For the practice phase, we also

created eight five-consonant string pairs for each block (eight pairs in the Script 1 block,

eight pairs in the Script 2 block, and eight pairs in the Roman alphabet block).

For the learning-to-read sessions, we created a template in a standard presentation

software with the graphemes of the new script and the associated phoneme (see

Figure 3), which were recorded by a female voice and digitalized at a sampling rate of

44.1 kHz. For each script, we created 18 items and 18 utterances of 4 characters and 5

characters, respectively, 30 items and 30 utterances of 6 characters, 66 items and 66
utterances of 7 characters, and 120 items and 120 utterances of 8 characters. The items

and utterances were grouped separately by lists of 12 items that were presented with

standard presentation software.

To have the participants familiarized with the characters of the control script, we

employed a character detection task and a character count task (see Figure 4). For the
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character detection task, we created a total of 144 pairs of items in each script (i.e., probe

and target). The probewas always a single character and the target consisted of a string of

artificial characters with different length (18 items of four and five characters,

respectively, 30 items of 6 characters, 66 items of 7 characters and 120 items of 8
characters). For the character count task, we employed, for each script, 18 items of four

and 5 characters, respectively, 30 items of 6 characters, 66 items of 7 characters and 120

items of 8 characters. Each string could be composed by artificial characters or by

artificial and Roman characters.

Procedure

Pre-training-test. Participants were tested either individually or in groups of two in a

quiet room. DMDX software (Forster & Forster, 2003)was used to display the sequence of

stimuli and to register the timing/accuracy of the responses. Response times were

measured from target onset until the participant’s response. On each trial, a fixation point
(*) was displayed for 500 ms in the centre of a computer screen. Next, the fixation point

was replaced by aprobe,whichwaspresented for 300 ms andpositioned 3 mmabove the

centre of the screen. Then, the target item appeared one line 3 mm below the centre of

the screen. The target remained on the screen until the response or 2,000 ms had passed.

All stimuli were presented in a monospaced font (15 pt BACS2serif for Scripts 1 and 2; 15

pt Courier New for the Roman letters) in black on a white background. Participants were

told that they would be presented with two strings of consonants and that they would

have to press the ‘yes’ key if they were the same, and they were asked to press the ‘no’
button if they were different (see Figure 1). Participants were instructed to make this

decision as quickly and as accurately as possible. Eight practice trials preceded the 240

experimental trials in each block. Participants did not receive feedback during the

experiment. The session lasted for 18–22 min.

Training. Participants were trained individually in the presence of the experimenter

along awindowof sixworking days in a quiet room (see Figure 5). Half of the participants
learned the grapheme–phoneme associations in Script 1 and the other half learned the

grapheme–phoneme associations in Script 2. There were two blocks in each session: For

the trained script, participants received print-to-sound training (i.e., grapheme–phoneme

association) and, for the control script, they participated in tasks that entailed visual

familiarizationwith the control characters – the order of each blockwas counterbalanced

across sessions.

On the first day, after the pre-training experiments, participants learned the

association between the spoken forms of each grapheme in one of the unknown scripts
(i.e., the experimental script: Script 1 or Script 2; see Figure 3) and they also familiarized

with the visual form of the control script (i.e., the script not used for the grapheme–
phoneme association). For the print-to-sound training, the characterswere presented on a

computer screen with their corresponding sound (participants could click on the

character with the mouse and listen to its associated phoneme). Participants were also

asked to hand-copy the new letters on a sheet of paper and they were given as much time

as they needed to learn these associations.

For the visual familiarization part, the characters of the control script were presented
one by one on a computer screen in absence of any orthographic or phonological
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information. Participants had to hand-copy the control characters on a sheet of paper,

without a time deadline. Then, all the characters of the control script were presented and

participants took asmuch time as theywanted to familiarizewith them (see Chetail, 2017,

for a similar procedure). The experimenter checked and corrected (when necessary) the

writing of the letters and characters to minimize the differences in handwriting quality2.

On the second day, participantswere presentedwith items of four and five characters;

on the third day, theywere presentedwith items of six and seven characters; on the fourth

day, they practised with items of eight characters and, on the fifth day, participants were
presented with items of six, seven and eight characters (see Figure 5). For the print-to-

sound training, the general procedure was as follows. Participants had to read aloud and

write down 36 items without time deadline. The items were presented on the computer

screen, divided into alternating blocks (reading and writing) of 12 items. For reading

aloud, a list of 12 items was presented on the screen (e.g., ‘ ’) and participants were

asked to read the items one by one (e.g.,/daki/). During this task, the experimenter

provided feedback after each item (i.e., correct/incorrect response). If the participant

made a mistake, the experimenter encouraged her/him to read it again on her/his own. If
the participant could not figure out the correct response, the experimenter indicated it,

remarking the grapheme–phoneme correspondences. For the writing blocks, a list of 12

‘loudspeaker’ signs ( ) were presented on the screen. Participants were asked to press

the sign, listen to the pronunciation (e.g.,/daki/), and then write down the

corresponding graphemes in a sheet of paper (e.g., ‘ ’). As blocks of 12 items were

presented simultaneously, participants were able to see and listen to each item as many

times as needed. The experimenter provided feedback after each item (i.e., correct/

Figure 5. Schematic depiction of the training sessions. [Colour figure can be viewed at wileyonline

library.com]

2 Exact handwritten copies of the character were not required, as neither are exact copies of the letters when children learn to
write. It was enough if the handwritten copy of the character approximated to the original to be identified and distinguishable from
the other characters.
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incorrect response). If the participantmade amistake, the experimenter asked her/him to

listen the item again. If the participant could not figure out themistake onher/his own, the

experimenter told her/him the correct response remarking the grapheme–phoneme

correspondences.
For each block in both tasks (i.e., reading aloud and write down), the experimenter

annotated the mistakes (if any), the order of the tasks, performing times, and other

comments (e.g., the most repeated errors) in an assessment form. Moreover, after each

block of 12 items, the experimenter provided general feedback of performance (i.e.,

correct responses, type of errors, and timing). Importantly, on the first sessions (days 2

and 3), the learning goal was to correctly establish the grapheme–phoneme correspon-

dences. Thus, the experimenter focused mainly on the errors made by the participants.

Then, on sessions 4 and 5, when the participants hardly made any mistakes, the
experimenter encouraged them to read and write down as fast as possible.

For the visual familiarization block with the control script, participants completed a

character detection task and a character count task in each training session. The items had

the same length as the items of its corresponding print-to-sound training session. For both

tasks, DMDX software (Forster & Forster, 2003) was used to display the sequence of

stimuli and to register the timing/accuracy of the responses. On each trial of the character

detection task (see Figure 4), a probe was presented for 1,000 ms one line 3 mm above

the centre of the screen. The probe was subsequently replaced by a pattern mask with
same length as the subsequent target (‘#####’) on the centre of the screen for 500 ms.

Then, the target appeared and remained on the screen until response or 2,000 ms had

passed. All stimuli were presented in a monospaced font (15 pt BACS2serif) in black on a

white background. Participants were told that they would be presented with a character

and then with a string of characters (both in the control script) and they would have to

press the ‘yes’ key if the probe appeared in the subsequent string, and they were asked to

press the ‘no’ button if the single character did not appear in the string.

On each trial of the character count task (see Figure 4), a fixation point (*) was
displayed for 500 ms on the centre of a computer screen. Next, the fixation point was

replaced by the target (i.e., a character string). The target remained on the screen until the

response or 2,000 ms had passed. All stimuli were presented in amonospaced font (15 pt

BACS2serif and 15 pt Courier New) in black on a white background. Participants were

asked to press the ‘yes’ key only when the item presented was composed of 3 or more

characters of the control script – keep in mind that the target items consisted of only

control script characters (BACS2serif) or amixture of characters of the control and Roman

scripts. 30% of the items consisted of only one or two control script characters and Roman
characters (i.e., participants should not press the ‘yes’ key). Participants received

feedback on the general accuracy after each task.

Finally, on the sixth day, before conducting the post-training experiments, partici-

pants received a final test with 24 items of 8 characters (12 for reading aloud and 12 for

writing) presented in the same format as in the training. They had to do the test in less than

1 min and 30 s, and 3 min and 30 s, respectively3. Those participants who passed the

assessment with at least 84% of accuracy (20 out of 24 correct responses) took part in the

post-training experiments4.

3 The time limit was set by averaging the reaction times of two pilot participants and adding 30 s more – keep in mind that the
pilot participants were members of the laboratory and they were highly motivated.
4 A minimum of 70% accuracy was required in the visual control tasks. All participants met this criterion.
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Post-training test. The post-training test was the same as in Experiment 1a, with a final

additional block with Roman letters. The post-training tests lasted for approximately 25–
30 min.

Results

All participants were able to write and read the newly learned script fluently and passed

the final training test at the first attempt (see Appendix B, for performance of participants

along the training sessions). In accordance with the pre-registered protocol, one

participant was replaced because of an overall accuracy level below .60 in the

replacement-letter condition.

Confirmatory analysis

The dependent variables were response time and accuracy. Error and extremely short

responses (less than 250 ms: 0 responses) were omitted from the latency analyses – there
were no responses longer than the 2-s deadline (i.e., they were automatically categorized

as errors). Themean RTs for the correct responses and the accuracy in each experimental

condition are presented in Table 1 (see also Figures 6 and 7).We performed the statistical

inference not only using (generalized) linearmixed-effects models, butwe also computed
Bayes factors. Table 2 presents a summary of the main points of the experiment (i.e.,

research question, key comparisons, predictions, statistical analyses, main findings, and

conclusions).

Different trials

In the inferential analyses,we focused on ‘different’ trials, as these are the oneswith theTL

manipulation. The main research question in the experiment was whether location-
invariant processing – as measured by the TL effect – emerges in the trained but not in the

untrained script in the post-training phase. To test this hypothesis, we employed

(generalized) linear mixed-effects (LME) models in R (R Core Team, 2019) using the lme4

1.1-21 package (Bates, Maechler, Bolker, &Walker, 2019) and the BayesFactor 0.9.12-4.2

package (Morey & Rouder, 2018) with three fixed factors: Phase (pre- vs. post-training),

Script (trained vs. untrained), and Probe-target relationship (transposed, replaced).

Regarding the LME analyses, because of the normality assumption required, the raw RTs

were inverse-transformed (�1000/RT). The most complex fitted model that converged

Table 1. Mean correct response times (in ms) and accuracy (in brackets) in the different conditions of

Experiment 1

Untrained Script Trained Script

Different

Same

Different

SameTransposed Replaced Transposed Replaced

Pre-training 624 (.550) 602 (.714) 550 (.908) 639 (.551) 624 (.733) 581 (.868)

Post-training 585 (.603) 566 (.783) 540 (.888) 600 (.603) 572 (.795) 538 (.910)

Note. For the Roman script, the correct response times and accuracy (in brackets) were 590 ms (.529)

for transposed pairs, 574 ms (.812) for replaced pairs, and 511 ms (.931) for same pairs.
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was: �1000/RT ~ script*condition*phase + (1 + script+phase|subject) + (1|item). For

the generalized linear mixed analyses of the accuracy data, responses were coded as

binary values (1 = correct, 0 = incorrect) and we used the glmer function in the lme4

package (family = binomial). The most complex fitted model that converged was as

follows: accuracy ~ script*condition*phase + (1 + script|subject) + (1|item). (In

Appendix A, we report the [non-pre-registered] analyses using Bayesian linear mixed-

effects models with the maximal random structure – the results were essentially the same
as those reported here.) To compute the Bayes factors on the latency data, we used lmBF

function from the BayesFactor package with the default Cauchy distribution (centred

around 0 and with a width parameter d = 0.707) (see Rouder, Speckman, Sun, Morey, &

Iverson, 2009; Wagenmakers et al., 2017, for discussion). To compute the Bayes factors

on the accuracy data, we calculated the Bayes factors from Bayesian analyses of variance

(ANOVAs)with the aggregated data byparticipants –note that itemswere strings of letters

in an artificial script. For the computation of the Bayes factors for each effect, we followed

the same logic as in prior research (see Leinenger, Mysl�ın, Rayner, & Levy, 2017; Staub &
Goddard, 2019, for illustration). For the numerator, we compared themaximalmodel that

included the effect of interest vs. a null model that does not assume any fixed effects or

interactions. For the denominator, we compared the maximal model after excluding the

effect of interest vs. a null model that does not assume any fixed effects or interactions.

The ratio between these two Bayes factors was the Bayes Factor of the effect.
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Figure 6. Mean reaction times (top panel), accuracies (bottompanel), and standard errors in the trained

and untrained scripts of Experiment 1.
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Latency analyses. Responses were, on average, 21 ms faster for the RL condition than

for the TL condition (i.e., overall TL effect; 591 vs. 612 ms; b = .08; t = 6.18 p < .001;

BF10 = 6.69e + 05) and participants responded, on average, 41 ms faster in the post-

training tests than in the pre-training tests (581 vs. 622 ms; b = .13; t = 4.55 p < .001;

BF10 = 20.34).We foundnooverall differences in response times between the trained and

untrained script (b = �.01; t = �.60, p = .55; BF10 = 1.48). The interaction between

Phase and Script barely reached the significance level in the frequentist analyses

(b = �.04; t = �2.43, p = .02), but the Bayes factors indicated anecdotal evidence
towards a null effect (BF10 = 0.55). None of the other interactions approached

significance (all ts < .78, ps > .59; all BF10 < .35) (see Figure 6).

Accuracy analyses. Accuracy was higher for the RL condition than for the TL condition

(.756 vs. .577; b = �1.05; z = �12.73, p < .001; BF10 = 1.071e + 39), and participants

weremore accurate in thepost-training phase than in thepre-training phase (.696 vs. .637;

b = �.38; z = �4.44, p <.001; BF10 = 415911). Neither the effect of Script (b = �.08;
z = �.83, p = .41; BF10 = .21) nor any of the interactions approached significance (all

zs < 1.19, ps > .23; all BFs10 < .26) (see Figure 6).

Exploratory analyses

As indicated in the pre-registration, we also compared the TL effect of the trained script

(post-training phase) and the TL effect in an overlearned script (i.e., the Roman script).

The two fixed factors in the analyses were Script (Trained [post-training] vs. Roman) and
Probe-target relationship (transposed, replaced) – the inferential analyses were parallel to
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Figure 7. Mean reaction times (left panel), accuracies (right panel), and standard errors in the trained

(post-training phase) and Roman scripts of Experiment 1.
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those described above. The most complex fitted model that converged was: Depen-

dent_Variable [�1000/RT or accuracy] ~ script*condition + (1 + script|subject) + (1|
item) (see Figure 7).

Latency analyses. Participants responded, on average, 22 ms faster in the RL condition

than in the TL condition (573 vs. 595; b = .077 t = 6.00, p < .001; BF10 = 129.80). There

were no overall differences between the trained script and the Roman script (b = .02

t = .38, p = .71; BF10 = 0.53). The interaction between probe-target relationship and

script was not significant (b = �.01; t = �.41, p = .68; BF10 = 0.54).

Accuracy analyses. Participants were more accurate in the RL condition than in the TL

condition (.804 vs. .566; b = �1.12; z = �13.06, p < .001; BF10 = 3.308e + 22),

whereas the effect of scriptwas not significant (b = .22; z = 1.14, p = .25; BF10 = 0.734).

We found a significant interaction between the two factors (b = �.58; z = �4.67,

p < .001; BF10 = 7.758), which reflects that the TL effect was greater in the Roman script

than in the trained script (.283 vs. .192).

Same trials

While not indicated in the pre-registered protocol, the examination of ‘same’ responses

in the pre- and post-test phases for the trained and untrained scripts may shed some light

on the role of orthographic-phonological training when processing letter strings. To

analyse ‘same’ responses, we employed (generalized) linear mixed-effects models on the

latency and accuracy data. The two fixed effects were Script (trained vs. untrained) and

Phase (pre-training, post-training). The most complex model that converged in the

(generalized) linear mixed-effects models was: Dependent_Variable [�1000/RT or
accuracy] ~ script * phase + (1 + phase | subject) + (1 | item). These analyses were

complemented with Bayesian linear mixed-effects models using the maximal random

factor structure (see Appendix A).

Latency analyses. Responses were, on average, 26 ms faster in the post-training phase

than in the pre-training phase (539 vs. 565 ms; b = .14; t = 2.93, p = .01), whereas there

were no signs of an effect of script (b = .01; t = �.51, p = .61). More important, the
interaction between Script and Phase was significant (b = �.12; t = �8.09, p < .001).

This reflected that responseswere faster in the post-training than in the pre-training phase

for the trained script (41 ms; 537 vs. 581 ms), but not for the untrained script (9 ms; 540

vs. 549 ms) (see Figure 6).

Accuracy analyses. Participantsweremore accurate in the post-training than in the pre-

training phase (i.e., main effect of phase; b = �.48; z = �2.97, p = .003) and with the
untrained than with the trained script (i.e., main effect of script; b = �.27; z = �3.17,

p = .001) – note that the effect of script was .009 and was not corroborated by the

Bayesian linear mixed-effects analyses (see Table A3). More important, mimicking the

latency analyses, we found an interaction between the two factors (b = .72; z = 6.16,

p < .001): Participants were more accurate in the post-training test than in the pre-
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training test for the trained script (.910 vs. .868, respectively), but not for the untrained

script (.888 in the post-training vs. .908 in the pre-training test) (see Figure 6).

Discussion

As usual, we found a substantial transposed-letter effect for ‘different’ responses in the

same-different task: Participants’ responses were faster and more accurate for replace-

ment-letter pairs than for transposed-letter pairs (see Krueger, 1978; Ratcliff, 1981, for

early evidence; see also Du~nabeitia et al., 2012; Massol et al., 2013; Perea et al., 2016).

More important for the purposes of the experiment, the magnitude of the transposed-

letter effect was similar for the trained script and for the (visual) control script in both

latency and accuracy data. We did find that the responses to ‘different’ trials were, on
average, faster andmore accurate in the post-training phase than in the pre-training phase.

However, this occurred similarly in both the trained and visual control scripts; hence, it

could have been due to the participants’ beingmore visually familiar with the new letters.

In addition, the size of the transposed-letter effect was greater in the Roman script than in

the newly learned script in the accuracy analyses (28.3% vs. 19.2% of errors, respectively)

– note that previous studies on the transposed-letter effect also showed significant effects

on accuracy, but not on response latencies (e.g., Massol et al., 2013; Perea et al., 2016;

Perea & Lupker, 2004)5. This is consistentwith the idea of orthographic location-invariant
mechanisms being at work in the Roman script, but not in the newly learned script (see

Du~nabeitia et al., 2012;Massol, et al., 2013; see also Garc�ıa-Orza et al., 2010; Mu~noz et al.,
2012, for greater transposed-letter effect for letters than for other visual objects [symbols,

digits, false fonts]).

The above results may offer the impression that training a new script did not create

any stable orthographic representations. However, this interpretation is difficult to

reconcile with the fact that ‘same’ responses were substantially faster and more

accurate in the post-training phase than in the pre-training phase for the trained script
(538 vs. 581 ms; .910 vs. .868), but not for the untrained script (540 vs. 549 ms; .888

vs. .908). This finding strongly suggests that learning-to-read in the new script helped

encoding the letter strings, thus reflecting the emergence of rudimentary orthographic

representations.

In sum, the current same-different experiment favours the view that location-invariant

processing, as measured by the transposed-letter effect, does not emerge rapidly after

learning-to-read in a new script. We defer a more detailed discussion of this issue in the

General Discussion.

EXPERIMENT 2: LOCATION-SPECIFIC PROCESSING

Method

Participants

They were the same as in Experiment 1. To compute the Bayes factors for the critical

interaction (i.e., the three-way interaction between Phase 9 Script 9 Position in the

5 Furthermore, for the Roman script, we found that size of the transposed-letter effect was considerably smaller for external than
for internal transpositions: 14.5% vs. 42.1%, respectively (e.g., see Gomez et al., 2008, for a similar pattern). In contrast, for the
trained script, the size of the transposed-letter effect was only slightly lower for external transpositions than for internal
transposition (17.0% vs. 21.4%, respectively). This again suggests that the transposed-letter effect in the Roman script and the
trained script reflects different underlying processes.
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accuracy data) required for the sampling procedure, we obtained the Bayes factors in the

by-subjects Bayesian ANOVA. This Bayes factor exceeded 6 (i.e., the criteria established in

the pre-registered protocol), BF10 = .05 ? BF01 = 20, so sampling was stopped with

n = 28.

Materials

Based on the design and procedure used by Tydgat and Grainger (2009), we created a set

of 180 five-consonant strings in twounfamiliar scripts: 90 in Script 1 and 90 in Script 2, and

– for the post-training phase – a set of 90 five-consonant strings in Roman alphabet (e.g.,

STNGB). None of the letter strings contained repeated characters.

We designed three different blocks (one for script: Script 1, Script 2, and Roman
script) with 90 experimental and 9 practice trials each one. The order of the artificial

script blocks was counterbalanced between subjects. We manipulated the target

position in the array (1st, 2nd, 3rd, 4th, and 5th position). As in the Tydgat and Grainger

(2009) experiments, each of the target characters was presented 2 times at each of

the five target positions (once above and once below the backward mask), and 40

times at a non-target position (i.e., each target character played as alternative at each

of the five positions). Importantly, the incorrect alternative was never presented in

the stimulus array. We created two lists for each of the artificial scripts, manipulating
the orientation of the target character (i.e., in List 1, the target was presented above

the array, whereas in List 2 the same target was presented below the array). These

two lists were presented to all participants, one for the pre-training test and the other

for the post-training test. The sub-experiment with the Roman script was presented at

the end of the post-training test.

The learning sessions materials were the same as in Experiment 1.

Procedure

Pre-training test. Participants were tested individually or in groups of two in a quiet

room. DMDX software (Forster & Forster, 2003) was used to display the sequence of
stimuli and to record the timing and accuracy of the responses. Each trial began with a

fixation point (i.e., ‘+’) that stayed on the screen for 500 ms andwas followed by a 500-ms

with the blank screen. Then, a string of five letters was presented for 116 ms (see Scaltritti

et al., 2018, for the same set-up). The array of characterswas followedby a backwardmask

(‘#####’) accompanied by twocharacters, above and below themask, respectively, at one

of the five possible array positions (i.e., characters position as a post-cue) (see Figure 2).

The stimuli were displayed on the screen until the participant responded or 2 seconds

had passed. All stimuli were presented in black on a white background. We employed a
monospaced font for the two scripts. Participants were asked to decide which of the two

characters was present in the corresponding position of the preceding array. They were

required to press the ‘up arrow’ key on the keyboard for the character above and the

‘down arrow’ key for the character below the array. They were explicitly instructed to

fixate at the centre of the array and make the decision as quickly and as accurately as

possible. The two scripts were presented in separated blocks, counterbalanced by

subjects. Nine practice trials preceded the 90 experimental trials in each of the

experimental conditions (90 trials in Script 1 and 90 trials in Script 2). Participants did not
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receive feedback during the experiment. There was a short break between blocks. The

session lasted for around 20–25 min.

Training. It was the same as in Experiment 1 (see Figure 5).

Post-training-test. It was the same as in the pre-training test, except for the addition of a

third block with stimuli in the Roman script. The session lasted for around 30 min.

Results
As indicated in the pre-registration, those participants with less than .60 of accuracy in

the middle position in the pre- and post-training experiments were replaced – this

occurred with four participants. Mean accuracies (and standard errors) for all target

types and target positions are presented in Figure 8. The three fixed factors were Phase

(pre- vs. post-training), Script (trained vs. control), and Position (1st, 2nd, 3rd, 4th, 5th). By-

subjects and by-items classical and Bayesian ANOVAs were performed on the accuracy

data. The computation of the Bayes factors was parallel to that described for accuracy in

Experiment 1. In Appendix A, we report supplementary [non-pre-registered] analyses
using Bayesian linear mixed-effects models (see Table 3 for a summary of the main

points of Experiment 2).

Confirmatory analyses

The ANOVAs showed that accuracy was a function of serial position, F1(4, 108) = 67.87,

p < .001, BF10 = 2.497e + 66; F2(4,175) = 106.45, p < .001, BF10 = 9.445e + 36. Accu-

racy levelswere higher in the central, third position (.778) than in the first, second, fourth,
and fifth positions (with mean accuracy levels of .535, .502, .510, and .507, respectively).

Furthermore, the overall accuracy levels were virtually the same for the pre- and post-

training phase, F1(1, 27) = 1.18, p = .29. BF10 = .10; F2 < .001, BF10 = .09, and for the

trained and control scripts (both Fs < 1; both BFs10 < .11) (see Figure 6).

Figure 8. Mean accuracies and standard errors in the trained and untrained scripts of Experiment 2.
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The serial position function differed in the pre-training and post-training phase

(Position 9 Phase interaction; F1(4, 108) = 8.65, p < .001, BF10 = 241.21; F2(4,

175) = 6.22, p < .001, BF10 = 53.42): This occurred because accuracy in the third

position was higher in the post-training phase than in the pre-training phase (.828 vs
.728, respectively). Neither the interaction between Position and Script (F1(4,

108) = 2.65, p = .04, BF10 = .23; F2 < 1, BF10 = .01) nor the interaction between Script

and Phase (F1(1, 108) = 3.22, p = .08, BF10 = .50; F2 < 1, BF10 = .12) were significant.

Finally, there were no signs of a Phase 9 Script 9 Position interaction (both Fs < 1;

BFs10 < .09).

Exploratory analyses

We also compared the serial position function of the trained script (in the post-

training phase) and an overlearned script (i.e., Roman script) (see Figure 9). The

two fixed factors in the ANOVAs were Script (Trained [post-training] vs. Roman)

and Position (1st, 2nd, 3rd, 4th, 5th). The analyses were parallel to those described

above.

Accuracy was a function of serial position, F1(4, 108) = 154.29, p < .001,

BF10 = 4.104e + 48; F2(4, 260) = 60.82, p < .001, BF10 = 7.918e + 23. Participants

were substantially more accurate on the third position (.841) than on the other letter
positions (.540, .504, .525, and .527, in the first, second, fourth, and fifth positions,

respectively). In addition, we did not find any clear signs of a difference in the overall

accuracy levels in the trained script and the Roman script (.574 vs. .601; F1(1, 27) = 3.14,

p = .09; BF10 = .17; F2 < 1; BF10 = .78). Finally, as can be seen in Figure 9, the serial

position functions of the Roman and trained scripts were remarkably similar and the

interaction between the two factors was not significant, F1(4, 108) = 2.28, p = .09;

BF10 = .09; F2(4, 260) = 2.05, p = .09, BF10 = .31).

Discussion

The current experiment, using a target-in-string identification task, showed an advantage

of the middle, fixated position over the other positions for the trained and control scripts

Figure 9. Mean accuracies and standard errors in the trained (post-training phase) andRoman scripts of

Experiment 2.
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not only in the pre-training phase, but also in the post-training phase. We did find a small

numerical advantage of the initial position over the second position (see Figure 8), but

this difference was similar for the trained and untrained script in the pre-/post-training

phases – this pattern was also corroborated in the analyses with Bayesian linear mixed-
effects models (see Appendix A). We also found that accuracy was higher in the post-

training than in the pre-training session – this occurredmainly in the central, fixated letter.

This effectwas similar for the trained script and for the visual control script; thereby, it can

be parsimoniously explained in terms of visual familiarity. Taken together, these findings

strongly suggest that location-specific letter detectors do not emerge rapidly after

learning-to-read and write in an artificial script.

Finally, in the exploratory analyses, we failed to find a stronger initial-letter advantage

in the Roman script when compared to the trained script. We prefer to keep cautious
about this latter finding. First, in the instructions, we emphasized that participants should

be looking at the fixation point at the beginning of each trial. Second, because it was an

exploratory analysis, participants always performed the taskwith Roman letters in the last

block. As a result, the attentional capture at the middle position that occurred in initial

blocks with the artificial scripts could have been dragged into the last block. A more

comprehensive explanation is presented in the General Discussion section below.

GENERAL DISCUSSION

We designed two experiments to track the emergence of early orthographic processes in

the first stages of learning-to-read through the examination of two markers of

orthographic processing (Grainger, 2018): location-invariant processing (Experiment 1)

and location-specific processing (Experiment 2). To that aim, we employed a design with

a pre-training phase and a post-training phase in which adults were trained in reading and
writing nonsense words in an artificial script along six sessions. Participants successfully

mastered the trained script after the learning-to-read training (seeAppendixB). All of them

passed the final assessment in the prescribed time with no errors in the reading aloud and

writing down tasks. To control for visual familiarity, participants were also familiarized

with the visual form of the characters of the control script during the training sessions.

The emergence of location-invariant processing
The first research questionwaswhether readers show some location-invariant processing

for the newly learned script on top of the position uncertainty that may affect all visual

objects in a string. As stated in the Introduction, location-invariant processing has been

proposed to emerge with literacy acquisition (Dandurand et al., 2010; Du~nabeitia et al.,
2014, 2015).

To our knowledge, the only published study that directly examined this issue was

conducted byDu~nabeitia et al. (2015). They employed a longitudinal design using a same-

different experiment inwhich a group of childrenwas tested in their antepenultimate pre-
school year (i.e., pre-literate children;mean age = 4.24 years), in their last pre-school year

(i.e., pre-literate children; mean age = 5.21 years), and in the first year of primary school

(i.e., they had already acquired literacy skills; mean age = 6.32 years). They used four-

letter strings in which, for ‘different’ trials, they had transposed-letter and replaced-letter

pairs. Du~nabeitia et al. (2015) only found a transposed-letter effect when the children

were in first grade (42.9% vs. 30.6% of errors, for transposed vs. replaced-letter pairs) and
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concluded that ‘position uncertainty emerges as a consequence of literacy training’ (p.

549). However, the null effects obtained with the children in their pre-school years faced

interpretative difficulties because these children did not adequately perform the task (d’

was close to zero; see Perea et al., 2016). Indeed, Perea et al. (2016) found robust
transposed-letter effects in pre-literate children with a simplified version of the same-

different task.Nevertheless, they did not run a retestwhen these children learned to read –
note that first graders could have been at ceiling with this simplified task, thus making the

comparison uninterpretable.

To test the emergence of location-invariant processing,while avoiding the interpretive

difficulties of comparing performance of pre-school vs. school children, we conducted a

same-different matching task with adult participants using transposed-letter vs. replaced-

letter pairs as ‘different’ trials before and after learning-to-read in a new script (Experiment
1). To control for mere visual familiarity, we included an untrained script that was also

presented during training. Results showed transposed-letter effects of similar size for the

trained and untrained scripts in both the pre- and post-training phases. Furthermore,

Bayesian analyses offered substantial evidence in favour of a null interaction between

training, phase, and script. Thus, learning-to-read andwrite in a newscript does not lead to

the rapid emergence of location-invariant processing.

Importantly, we did find some training benefit in the trained script for ‘same’

responses in both response times and accuracy,which suggests the emergence of an early
and basic visual specialization for letter strings. However, the newly acquired expertise in

the new script was not sufficient to induce location-invariant processing. Indeed, the

transposed-letter effect was greater for the Roman script than for the trained script (i.e.,

28.3%vs. 19.2%of errors, respectively). This is the typical patternwhencomparing strings

of letters vs. strings of other visual objects (e.g., symbols, unknown letters)6. This pattern

can be parsimoniously explained in terms of an orthographically specific location-

invariant component in the Roman script over and above the location uncertainty

common to all visual objects (see Massol et al., 2013).
Our findings can also shed some light on the early developmental trajectory of the

letter-specific position coding when learning-to-read. The absence of the emergence of

location-invariant processing in the very early stages of learning-to-read can be

accommodated by the dual-route model of orthographic development proposed by

Grainger and Ziegler (2011; see also Grainger et al., 2012; Ziegler, Bertrand, L�et�e, &
Grainger, 2014). This model assumes that, in the first stages of reading acquisition, the

processing of letters in a word is serial, thereby letter position coding is very strict (i.e.,

fine-grained orthographic coding). It is only when readers have more extensive reading
experience that a more parallel processing of letters is developed, thus speeding the

mapping of letters onto orthographic representations and producing greater transposed-

letter effects (i.e., coarse-grained orthographic coding; see Grainger et al., 2012). In the

context of the current experiment, participants acquired some basic orthographic skills,

as revealed by better performance for ‘same’ responses in the post-training phase.

However, this expertise did not suffice for a coarse-grained processing to emerge. Indeed,

in a lexical decision experiment that compared the error rates to pseudohomophone and

6 Furthermore, for the Roman script, we found that size of the transposed-letter effect was considerably smaller for external than
for internal transpositions: 14.5% vs. 42.1%, respectively (e.g., see Gomez et al., 2008, for a similar pattern). In contrast, for the
trained script, the size of the transposed-letter effect was only slightly lower for external transpositions than for internal
transposition (17.0% vs. 21.4%, respectively). This again suggests that the transposed-letter effect in the Roman script and the
trained script reflects different underlying processes.

Emergence of orthographic processing 75



orthographic controls, Grainger et al. (2012) found effects greater than 30% in Grade 1

andGrade 2 children – these effectswere smallerwith older children (i.e., the effectswere

20% in Grade 3, 21% in Grade 4 and 16% in Grade 5). That is, beginning readers use

phonological recoding (i.e., a fine-grained orthographic coding) rather than the coarse-
grained coding responsible for location-invariant processing. Thus, the greater trans-

posed-letter effect in the Roman (overlearned) script than in the newly learned script

obtained in the current experiments suggests that the emergence of location-invariant

processing requires a more complete establishment of a written orthographic code (see

Grainger et al., 2012; Grainger & Ziegler, 2011; Ziegler et al., 2014)7.

The emergence of location-specific processing
The second research question was whether location-specific processing emerges rapidly

for the newly learned script using a target-in-string identification task. The dissociation in

the accuracy serial position functions of letters (W-shape function) and symbols (Λ-shape
function) is this task is assumed to be to an adaptation of the mechanisms of visual object

processing to cope with visual word processing (i.e., location-specific letter detectors

creation). Importantly, Dandurand et al. (2010; Grainger et al., 2016) hypothesized that

the conversion of themechanisms of simple visual object processing into location-specific

detectors occurs with reading acquisition.
Results in the target-in-string identification task (Experiment 2) showed a clear

advantage of the middle position for both the trained and control scripts in all scenarios.

More critically, we found no signs of an interaction in accuracy between training, phase,

and position, as shown in the Bayesian analyses. We also found a small advantage of the

initial-letter position over the other letter positions (see Figure 6; see also Appendix A),

but this difference was not modulated by training (i.e., the difference was approximately

constant in the pre- and post-training phases and in the trained and untrained scripts).

Finally, the overall accuracy in the post-training phasewas greater than in the pre-training
phase for both, the learned and the control script, but this occurred essentially for the

middle, fixated, letter. This latter finding can be parsimoniously explained in terms of

better performance due to increased visual familiarity rather than on location-specific

processing.

To our knowledge, unlike for location-invariant processing, no study has directly

examined the emergence of location-specific processing – neither with children nor with

adults. Nevertheless, for comparison purposes, it may be relevant to briefly discuss the

studies that examined the developmental trajectory of the first-letter advantage in the very
early stages of learning-to-read.Grainger et al. (2016) showed a small increase in the initial-

letter advantage across school grades (from 1st to 4th) (see also Schubert, Badcock, &

Kohnen, 2017, for a similar pattern of results). Importantly, the accuracy in the first and

second position for 1st- to 3rd-grade children was very similar, around 55% and 60% in the

Grainger et al.’s (2016) experiment. The lack of a sizeable first position advantage in the

initial grades in developing readers is in consonance with the results of Experiment 2.

Taken together, these findings suggest that location-specific processing does not emerge

7 An alternative account of orthographic development is Castles et al.’s (2007) lexical tuning model. The model assumes that
acquiring more and more words in the lexicon involves an increasingly dense neighbourhood of orthographically similar words. To
efficiently identify these words, the orthographic representations become increasingly fine-tuned – this includes more precise
positional representation of the visual input. Our experiments, however, were not designed to test the development of the
orthographic lexicon (i.e., participants were trained to read and write pseudowords).
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in the first stages of learning-to-read; instead, there appears to be a long route for this

mechanism to emerge and develop.

Nevertheless, the lack of the sizeable first-letter advantage in the (overlearned) Roman

script suggests that some caution when interpreting the findings of Experiment 2. In the
experimental set-up, participants always received the blocks with the artificial scripts

(i.e., the main blocks for the purposes of the experiment) before the final block with the

Roman script, and furthermore, instructions stressed that they should fixate at the centre

position at the beginning of each trial. Thus, a parsimonious explanation of the lack of a

substantial first-letter advantage in the Roman script is that, to cope with the highly

demanding blocks with the artificial scripts, participants’ attention was focused on the

middle position and this strategy was dragged into the Roman block. Thus, one might

argue that the settings of Roman block were not optimal to capture a W-serial position
function in the Roman block. Future research should examine to what degree the

accuracy function in target-in-string identification tasks is modulated by task context and

instructions (e.g., see Winskel et al., 2014, for evidence of different accuracy functions

depending on the nature of the writing system).

On the emergence of orthographic processing when learning-to-read a new script

Recent research with adult readers has shown that orthographic processes can emerge
rapidly after learning a script during a relatively short amount of time (e.g., Chetail, 2017;

Lally, Taylor, Lee & Rastle, 2020; Taylor et al., 2011). For instance, in the Taylor et al.’s

(2011) experiments, adults learned 36 words in an artificial script during 30–45 min. In

the post-training phase, participants had to discriminate between trained and untrained

items (i.e., an analogue to lexical decision). Results showed that participants could

successfully discriminate trained fromuntrained items and,more important, the response

times to the trained items were sensitive to vowel frequency. In a subsequent

generalization phase, participants were asked to read aloud a series of new (untrained)
items. Results showed an effect of both vowel frequency and consistency. All and all, the

Taylor et al. (2011) experiments suggest that participants can quickly and efficiently

extract sub-word spelling–sound regularities in a new script (see Chetail, 2017, for a

similar pattern of results regarding letter and bigram frequency).

More recently, Lally et al. (2020) conducted an experiment in which participants

learned 24 five-letter pseudowords either in a sparse or in a dense artificial orthography,

using a between-subject design, during a four-day training. (The 24 pseudowords in the

dense orthography included 12 anagram pairs, whereas none of the 24 pseudowords
sparse included anagrams.) When tested in an old–new recognition task (i.e., they had to

discriminate between trained and untrained items), participants made fewer false

positives for untrained items created by transposing two letters in the dense orthography

than in the sparse orthography. Therefore, the findings reported by Lally et al. (2020) are a

demonstration that the properties of thewriting systemsmaymodulate how letter order is

encoded in a newly learned script.

In the current experiments, participants were able to read and write in the trained

script with some fluency. Notably, in line with above-cited studies with artificial script
training, we found some letter-specific processing as a consequence of learning-to-read:

responses to ‘same’ trials in the same-different task were faster and more accurate in the

post-trained phase for the trained script, but not for the untrained script. As Krueger

(1978) indicated, fast and accurate responses for ‘same’ trials imply that participants

require an exhaustive processing of the letter string. Thus, this pattern suggests that early
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literacy induced some specialization for letter strings that made the identification of same

pairs more effortless. However, we found no signs reflecting the emergence of location-

invariant and location-specific processing in the newly learned script.

In addition, we found an improvement in performance in the post-training phase for
both the learned script and the visual control script that can be parsimoniously explained

in terms of visual familiarity. Indeed, previous event-related potentials (ERP) experiments

have shown that theN1component (i.e., a component related to familiarwritten language

processing) emerges right-lateralized in preschoolers at the start of reading training (e.g.,

Maurer et al., 2006). Crucially, this early emergence of the N1 effect has been associated

with letter knowledge and it also likely reflects visual familiaritywith print (Maurer, Brem,

Bucher, & Brandeis, 2005). The development of the characteristic left-lateralization of the

component is assumed to occur via the automatization of orthographic-phonological
mappings established during learning-to-read (Maurer &McCandliss, 2007; McCandliss &

Noble, 2003; Maurer et al., 2006; Posner &McCandliss, 2000; see also Maurer et al., 2010,

for evidencewith adults learning an artificial script; Brem et al., 2005, for the samepattern

with visual training of symbols). Thus, the increase in performance in the post-training

phase, coupled with the absence of differences in location-invariant and location-specific

processing between the twophases, favours the idea that these effects are associatedwith

visual expertise with the novel scripts (i.e., a reading-related perceptual expertise; see

Maurer et al., 2010, for similar claims).
What we should also note is that, although both the same/different matching task and

target-in-string identification task have been widely used to demonstrated orthographic

effects (e.g., see Du~nabeitia et al., 2012; Massol et al., 2013; Perea et al., 2016; Scaltriti &

Balota, 2013; Tydgat & Grainger, 2009), they can be performed on the basis of visual

representations of the stimuli – this is the reason why these tasks can be used in both pre-

training and post-training phases. As a result, some effects obtained from newly learned

scriptsmay reflect amixture of increased visual familiarity to the new letters togetherwith

some incipient orthographic representations (i.e., a specific to letters visual expertise, see
Maurer, Brandeis, & McCandliss, 2005). Instead, skilled readers, who have already

automatized the orthographic-phonological mappings, would perform these tasks not

only on the basis of visual familiarity, but also on the activation of the orthographic

representations of the stimuli. In other words, the patterns observed in beginner readers

may rely on visual familiarization with the learned scripts, whereas the effects of skilled

readers may represent an interaction between early visual processing at the letter level

and feedback from orthographic representations (see Marinus et al., 2018).

Taken together, our findings suggest that in order to boost the automatization of the
orthographical–phonological mappings and a more parallel coarse-coding processing, a

much longer learning-to-read period may be required. We now discuss several options for

further research. Thefirst optionwouldbe to run a large-scale longitudinal experimentwith

pre-literate children – for the sake of the argument, we assume that the experimental tasks

wouldallowameaningful comparisonacross age (seePerea etal., 2016, for discussion). The

experimental designwould include three scripts: Roman letters, digits (i.e., a familiar visual

object), and a control artificial script. This would allow us to examine not only the

emergence of location-invariant and location-specific processing in a natural setting (i.e.,
children learning-to-read), but also how these orthographic markers vary as a consequence

of literacy acquisition. Furthermore, this design would also allow examining the variations

due to orthographic processing (i.e., specific to letters) vs. visual familiarity (numbers vs.

artificial letters). A second option would be to train adult participants for a long period of

time in an ecological setting – instead of the ecological limitations of learning an artificial
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script. The most realistic design would be run the experiment with adults who are starting

to learn a new language that uses anunfamiliar alphabetic script (e.g., Georgian, Armenian).

In either scenario, it would be desirable to complement the behavioural tasks with the

recording of brain activity during training, as this may help to disentangle the effects due to
orthographical–phonological decoding from the effects due to visual training (e.g., see

Maurer, Brem, et al., 2005, 2006; Pleisch et al., 2019, for evidence of print sensitivity in the

N1 ERP amplitude; see Pleisch et al., 2019, for evidence of changes in the activation of

crucial orthographic processing brain regions [ventral occipitotemporal cortex and left

fusiform gyrus] in the first steps of reading acquisition).

To sum up, we conducted two experiments that examined whether two markers of

orthographic processing (location-invariant and location-specific processing) arise

rapidly after learning-to-read and write a new script. Notably, examining when these
effects emerge is essential to help interpret the subsequent developmental trajectory of

orthographic effects. While participants were able to read andwrite with some fluency in

the new script and showed some rudimentary orthographic processing, we found no

evidence favouring the hypotheses that location-invariance and location-specific

processing emerge quickly after learning-to-read. Instead, the emergence of these two

markers of orthographic processing may take much more time, probably via the

automatization of orthographic-phonological mappings.
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Appendix A:

Supplementary analyses with Bayesian linear mixed-effects models

Experiment 1: location-invariant processing

For the sake of completeness, we also examined the latency and accuracy data of the

confirmatory analyses using Bayesian linear mixed-effects models using the brms package

inR (B€urkner, 2016). An advantageof this procedure – via Stan – is that it allowsus to fit the

models using the maximal random-effect structure (see Bates, M€achler, Bolker &Walker,

2015, for arguments in favour of maximal models).

Different trials

Trained script vs. Untrained script. The fitted model was: Dependent_Variable [i.e.,

�1000/RT or accuracy] ~ script * condition * phase + (1 + script * condition * phase |
subject) + (1 + condition * phase | item). More complex random-effects terms resulted in

model non-convergence. Furthermore, these models offer the Bayesian 95% credible

intervals for each parameter based on the posterior distributions. For the latency data, we

employed the same response time transformation as in LME analyses (i.e., �1000/RT;

family = gaussian), whereas for the accuracy data, we used the Bernoulli distribution
(family = bernoulli) – this is the parallel to family = binomial in GLME models. We
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Table A1. Parameter estimates in latency and accuracy supplemental analyses of Experiment 1

(‘different’ trials: trained vs. untrained script)

Latency data Estimate SE 95% Credible Interval

Intercept �1.84 0.06 [�1.95, �1.73]

Script �0.01 0.02 [�0.05, 0.02]

Condition 0.08 0.01 [0.05, 0.10]

Phase 0.13 0.04 [0.06, 0.21]

Script 9 Condition �0.01 0.02 [�0.05, 0.03]

Script 9 Phase �0.05 0.04 [�0.12, 0.03]

Condition 9 Phase �0.01 0.02 [�0.05, 0.03]

Script 9 Condition 9 Phase 0.01 0.03 [�0.04, 0.06]

Accuracy data

Intercept 1.56 0.15 [1.27, 1.87]

Script �0.07 0.10 [�0.28, 0.13]

Condition �1.06 0.11 [�1.28, �0.84]

Phase �0.35 0.12 [�0.60, �0.10]

Script 9 Condition 0.07 0.12 [�0.17, 0.31]

Script 9 Phase �0.04 0.13 [�0.29, 0.21]

Condition 9 Phase 0.12 0.13 [�0.13, 0.37]

Script 9 Condition 9 Phase 0.03 0.17 [�0.29, 0.36]

Note. Those effects with 95% credible intervals beyond 0 are in bold.

Accuracy dataLatency data

SCRIPT

CONDITION

PHASE

SCRIPT x CONDITION

SCRIPT x PHASE

CONDITION x PHASE

SCRIPT x CONDITION x PHASE

–0.2 0.0 0.2 –1 0

Figure A1. Posterior effects estimates from the Bayesian linear mixed models for ‘different’ trials in

Experiment 1 (Trained vs. Untrained script) (left panel: latency analysis; right panel: accuracy analysis). The

thick black line corresponds to an effect of zero, the dark grey line corresponds to the estimates, and the

shaded area corresponds to the 95% credible interval. [Colour figure can be viewed at wileyonline

library.com]
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employed 4 chains, each with 10,000 iterations after a warm-up of 1000 iterations. The

maximal random-effect structure models converged successfully: the values of Rhat were

1.00 for all parameters.

As can be seen from the estimates and 95% credible intervals presented in Table A1,
we found robust evidence of an effect of Condition (i.e., probe-target relationship) and

Phase in both latency and accuracy analyses, thus corroborating the pre-registered

Table A2. Parameter estimates in latency and accuracy supplemental exploratory analyses of

Experiment 1 (‘different’ trials: Roman vs. trained script)

Latency data Estimate SE 95% Credible Interval

Intercept �1.83 0.04 [�1.91, �1.74]

Condition 0.07 0.02 [0.04, 0.11]

Script �0.02 0.05 [�0.13, 0.09]

Condition 9 Script 0.00 0.02 [�0.04, 0.05]

Accuracy data

Intercept 1.86 0.17 [1.55, 2.20]

Condition �1.66 0.14 [�1.92, �1.39]

Script �0.26 0.21 [�0.69, 0.16]

Condition 9 Script 0.56 0.17 [0.23, 0.90]

Note. Those effects with 95% credible intervals beyond 0 are in bold.

Figure A2. Posterior effects estimates from the Bayesian linear mixed models in ‘different’ trials in

Experiment 1 (Roman vs. Trained script) (left panel: latency analysis; right panel: accuracy analysis). The

thick black line corresponds to an effect of zero, the dark grey line corresponds to the estimate, and the

shaded area corresponds to the 95% credible interval. [Colour figure can be viewed at wileyonline

library.com]
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analyses. Similarly,wedidnot find any evidenceof a three-way interactionbetween Script,

Condition, and Phase (see Figure A1, for the posterior distributions).

Roman script vs. trained script

The fixed factors were Script (Trained [post-training] vs. Roman) and Condition

(transposed, replaced). We followed the same procedure as above, with 5,000 iterations

(Rhat = 1.00 in all cases). Table A2 shows the estimates and 95% credible intervals from

the latency and accuracy models, and Figure A2 shows the posterior distributions of the

parameters. Together with a substantial transposed-letter effect in the latency data, these

analyses confirmed the interaction between Script and Condition in accuracy data.

Same trials

Trained script vs. Untrained script. The general procedure was the same as above (i.e.,
the maximal random-effect structure model with 5,000 iterations; Rhat = 1.00 in all

cases). As shown in Table A3 (estimates and 95% credible intervals) and Figure A3

(posterior distributions of the parameters), these analyses corroborated the interaction

effect for between Phase and Script in the latency and accuracy data.

Experiment 2: location-specific processing

Trained vs. Untrained script

As in Experiment 1, we examined the data with Bayesian linear mixed-effects models

using the brms package (B€urkner, 2016) in R. The three fixed factors were the same as in

the pre-registered analyses. The initial letter was set as the reference level for the factor
Position. We fitted the maximal random-effect structure model (i.e., accuracy ~ script *

position * phase + (1 + script * position * phase | subject) + (1 + position * phase | item))

using 4 chains, each with 5,000 iterations after a warm-up of 1,000 iterations. The priors

were the same as in Experiment 1. The model converged successfully (Rhat = 1.00 for all

parameters).

As can be seen in Table A4, accuracy in the initial-letter position was substantially

lower than in the middle, fixated position. The accuracy advantage of the middle position

Table A3. Parameter estimates in latency and accuracy supplemental analyses of Experiment 1 (‘same’

trials: trained vs. untrained script)

Latency data Estimate SE 95% Credible Interval

Intercept �1.99 0.08 [�2.14, �1.84]

Script 0.00 0.03 [�0.05, 0.05]

Phase 0.13 0.06 [0.02, 0.24]

Script 9 Phase �0.13 0.06 [�0.24, �0.01]

Accuracy data

Intercept 2.70 0.21 [2.31, 3.12]

Script �0.23 0.14 [�0.51, 0.05]

Phase �0.43 0.19 [�0.81, �0.05]

Script 9 Phase 0.64 0.26 [0.11, 1.15]

Note. Those effects with 95% credible intervals beyond 0 are in bold.
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SCRIPT

CONDITION

SCRIPT x 
CONDITION

–0.3 –0.2 –0.1  0.0     0.1     0.2     –1.0  –0.5    0.0      0.5      1.0      1.5

Latency data Accuracy data

Figure A3. Posterior effects estimates from the Bayesian linear mixed models in ‘same’ trials of

Experiment 1. The thick black line corresponds to an effect of zero, the dark grey line corresponds to the

estimates, and the shaded area corresponds to the 95% credible interval. [Colour figure can be viewed at

wileyonlinelibrary.com]

Table A4. Parameter estimates in the accuracy supplemental analyses of Experiment 2 (trained vs.

untrained script)

Estimate SE 95% Credible Interval

Intercept 0.16 0.09 [�0.03, 0.34]

Script �0.05 0.13 [�0.29, 0.20]

Position 2nd �0.22 0.14 [�0.50, 0.06]

3rd 1.89 0.26 [1.38, 2.41]

4th �0.20 0.14 [�0.48, 0.07]

5th �0.14 0.14 [�0.41, 0.13]

Phase 0.04 0.14 [�0.22, 0.31]

Script x 2nd position 0.07 0.18 [�0.29, 0.42]

3rd position �0.36 0.22 [�0.80, 0.08]

4th position 0.13 0.18 [�0.22, 0.49]

5th position �0.03 0.18 [�0.39, 0.33]

Script 9 Phase �0.06 0.18 [�0.41, 0.29]

Phase 9 2nd position 0.07 0.20 [�0.33, 0.46]

3rd position �0.80 0.29 [�1.38, �0.22]

4th position �0.03 0.20 [�0.42, 0.37]

5th position 0.09 0.20 [�0.29, 0.49]

Script 9 Phase 9 2nd position 0.08 0.25 [�0.41, 0.58]

3rd position 0.23 0.31 [�0.38, 0.83]

4th position 0.21 0.25 [�0.28, 0.71]

5th position �0.02 0.26 [�0.52, 0.48]

Note. Those effects with 95% credible intervals beyond 0 are in bold.
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increased in the post-trained phase, as deduced from the interaction with Phase. In

addition, the parameter estimates showed some advantage of the initial position over the

other letter positions (see Figure A4, for the posterior effects). Therefore, these analyses

corroborate the findings obtained in the ANOVAs indicated in the pre-registered analyses.

Roman script vs. learned script. The procedure was the same as above, except that the

twofixed factorswere Script (Roman vs. Trained) andPosition – the reference level for the
factor Position was also the first letter. The maximal model converged successfully

SCRIPT
POSITION 2nd
POSITION 3rd
POSITION 4th
POSITION 5th

PHASE
SCRIPT x POSITION 2nd
SCRIPT x POSITION 3rd
SCRIPT x POSITION 4th
SCRIPT x POSITION 5th

SCRIPT x PHASE
POSITION 2nd x PHASE
POSITION 3rd x PHASE

POSITION 4th PHASE
POSITION 5th PHASE

SCRIPT x POSITION 2nd x PHASE
SCRIPT x POSITION 3rd x PHASE
SCRIPT x POSITION 4th x PHASE
SCRIPT x POSITION 5th x PHASE

-2   -1    0     1   2   3

Figure A4. Posterior effects estimates from the Bayesian linear mixed models in Experiment 2. The

thick black line corresponds to an effect of zero, the dark grey line corresponds to the estimate, and the

shaded area corresponds to the 95% credible interval. [Colour figure can be viewed at wileyonline

library.com]

Table A5. Parameter estimates in the accuracy supplemental analyses of Experiment 2 (Roman script

vs. learned script)

Estimate SE 95% Credible Interval

Intercept 0.15 0.10 [�0.04, 0.35]

Script 0.01 0.14 [�0.25, 0.29]

Position 2nd �0.22 0.15 [�0.51, 0.06]

3rd 1.90 0.28 [1.38, 2.47]

4th �0.20 0.14 [�0.49, 0.08]

5th �0.14 0.15 [�0.43, 0.15]

Script x 2nd position 0.15 0.21 [�0.25, 0.55]

3rd position �0.14 0.33 [�0.77, 0.53]

4th position 0.29 0.20 [�0.11, 0.69]

5th position 0.18 0.21 [�0.24, 0.59]

Note. Those effects with 95% credible intervals beyond 0 are in bold.
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(Rhat = 1.00 for all parameters). As can be seen from the 95% credible intervals (see

Table A5; see also Figure A5, for the posterior distributions), we found a substantial

advantage of the third letter position. In addition, there was a numerical advantage of the

first-letter position relative to the second letter position – this effect did not interact with

script.

SCRIPT

POSITION 2nd

POSITION 3rd

POSITION 4th

POSITION 5th

SCRIPT x POSITION 2nd

SCRIPT x POSITION 3rd

SCRIPT x POSITION 4th

SCRIPT x POSITION 5th

–2   –1    0     1   2   3

Figure A5. Posterior effects estimates from the Bayesian linear mixed models in Experiment 2 (Roman

vs. Trained script). The thick black line corresponds to an effect of zero, the dark grey line corresponds to

the estimate, and the shaded area corresponds to the 95% credible interval. [Colour figure can be viewed

at wileyonlinelibrary.com]
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Appendix B:

Figures B1 and B2 provide a visual representation of how training improved participants’
performance along the learning days (fromday 2 to day 6 –note that, on day 1, participants
only had to listen to and write down the phoneme–grapheme correspondences).
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Figure B1. Participants performance on the reading aloud and writing tasks along the training days

(from Day 2 to Day 6).
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Figure B2. Participants performance on the visual familiarization tasks along the training days (fromDay

2 to Day 6).
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