
https://doi.org/10.3758/s13428-020-01424-1

Are divergence point analyses suitable for response time data?
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Abstract
Estimating the time course of the influence of different factors in human performance is one of the major topics of research
in cognitive psychology/neuroscience. Over the past decades, researchers have proposed several methods to tackle this
question using latency data. Here we examine a recently proposed procedure that employs survival analyses on latency data
to provide precise estimates of the timing of the first discernible influence of a given factor (e.g., word frequency on lexical
access) on performance (e.g., fixation durations or response times). A number of articles have used this method in recent
years, and hence an exploration of its strengths and its potential weaknesses is in order. Unfortunately, our analysis revealed
that the technique has conceptual flaws, and it might lead researchers into believing that they are obtaining a measurement
of processing components when, in fact, they are obtaining an uninterpretable measurement.

Keywords Latencies · Divergence · Mental chronometry

Perhaps the most common cognitive psychology experiment
is one inwhich participants are presentedwith stimuli that vary
in a dimension of theoretical interest (e.g., stimuli repetition,
word frequency, etc.). The stimulus elicits a response, and
researchers measure response times (RTs) to draw inferences
about hypothesized latent cognitive processes. This form of
mental chronometry is commonly used in the analyses of
data from a broad range of experimental paradigms such as
choice tasks, naming, eye-tracking, and many others.

A critical intellectual endeavor is justifying the logic of the
experimental inference—why specific data patterns inform
conclusions about latent processes. The most popular model
of analysis is tests of mean RTs, which are justified for fairly
coarse conclusions. To draw a more fine-grained inference,
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however, researchers often consider the distributional proper-
ties of RTs (Balota & Yap, 2011; Heathcote et al., 1991; Rat-
cliff, 1979; Rouder et al., 2005). While more fine-grained
conclusions are possible, inference based on distributional
models often relies on secondary parametric assumptions
(Luce, 1986) or commitments to specific processing mod-
els such as the diffusion model for choice response times
(Ratcliff, 1978) or the EZ-reader model for eye fixation
durations during reading (Reichle et al., 1998).

Recently, Sheridan and colleagues (Reingold, Reichle,
Glaholt, & Sheridan, 2012; Reingold & Sheridan, 2014,
2018; Sheridan, 2013; Sheridan et al., 2013) proposed a
novel mental chronometry method, termed divergence point
analysis (DPA from now on), which is claimed to provide
finer-grained descriptions of distributional effects without
strong assumptions about functional form or a processing
mechanism.

The setup for divergence point analysis applies to the
comparison of two experimental conditions (e.g., low
predictability vs. high predictability words). The dependent
measure is a latency, and this latency can be for a
manual response, an event-related component, or an eye-
fixation duration. Divergence point analysis is applied to the
distributions of latencies across the two conditions. In the
broadest definition, the point of divergence is the smallest
response time value where the two distributions differ.
Figure 1 provides an example in which the cumulative
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Fig. 1 Example of a divergence point. Cumulative distribution
functions (CDFs) of observed latencies for two conditions that are
identical until the marked point. Thereafter, two functions diverge.
This representation is typical of plots from Reingold and Sheridan
(e.g., Figure 2 of Reingold & Sheridan, 2018)

distribution functions (CDFs) are the same below the
accentuated point but diverge after it.1

Reingold et al. (2012) offered the following interpreta-
tion (in the context of their experiments on the effects of
word frequency on eye fixation durations): “[The diver-
gence point] might provide a promising and unique estimate
for the earliest significant influence of word frequency on
first fixation durations” (p. 185). By extension, the diver-
gence point is the earliest point at which any manipulation
first influences a response-time measure.

As we show below, our examination of divergence point
analyses lead us to conclude that they are difficult to use
for inference about cognitive processes. There are two main
problems in the DPA: (1) it has poor construct validity
because in most cases the divergence point is trivial; and
(2) it has poor statistical properties, as most empirically
obtained divergence points are spurious.

Construct validity of divergence points

Reingold et al. (2012) refer to the divergence point as an
estimate of first influence. Underlying all estimates is a
concept of a true quantity. For example, when we compute
the sample mean of a set of observations, we are estimating
a true mean for the distribution underlying the sampling
of these observations. Likewise, sample variances, sample

1Reingold, Sheridan, and colleagues define divergence on survival
functions rather than on cumulative distribution functions. The survival
function S is 1 − F , where F is the cumulative distribution
function. Hence, divergence may be defined equivalently on survival
or cumulative distribution functions (CDFs). We choose CDFs because
we expect more readers are familiar with cumulative distribution
functions than with survival functions.

percentiles, and sample effect sizes all have a true value
in the underlying sampling process. Estimates serve as
surrogates or best guesses at these true values, and these true
values are the target of inference.

In some applications, however, it is difficult to know if
the estimate corresponds to anything meaningful. Consider
the concept of intelligence. It is always possible to
administer tests and tally the scores. The act of tallying the
scores, however, does not guarantee that the test measures
intelligence or even that a true concept of intelligence exists
(Gould, 1996). Whether a test measures its intended target
is its construct validity, and construct validity stands as a
critical part of measurement.

In the case of divergence point analyses, we believe that
criteria for construct validity are in order. In our review
of the method, we identified a basic criterion: There must
be one true divergence point that the method estimates.
Such a divergence point should be non-trivial, which means
that it gives us information about the manipulation at hand.
Figure 1 shows an example with good construct validity in
that there is an actual divergence point that is not trivial.
However, as will be shown below, such cases are rare,
and not compatible with current information-processing
theories.

Trivial divergence points

The lack of construct validity is understood by considering
the lower bound of support of a distribution. This lower
bound refers to the point below which latencies are not
possible; for example, if latencies follow an exponential
distribution that admits only positive response times, the
lower bound is zero. Lower bounds need not be finite; for
example, the lower bound for the normal and ex-Gaussian
distributions are −∞. In most process models, the lower
bound is a free parameter, called the irreducible minimum,
which denotes a minimum time for encoding the stimulus
and making a motor response (Dzhafarov, 1992; Luce,
1986; Ratcliff, 1979). Examples of such models include
the diffusion model (Ratcliff, 1978) where the lower bound
is Ter , race models (Rouder et al., 2005) where the lower
bound is ψ , and the linear ballistic accumulator (Brown &
Heathcote, 2008) where the lower bound is T0.

We call a divergence point trivial if (a) both distributions
share the same lower bound of support, and (b) the diver-
gence point is at this lower bound of support. Consider the
divergence point of two ex-Gaussian distributions that only
differ in τ (i.e., the tail parameter) while the values of μ and
σ are identical in both conditions. One might expect a diver-
gence point in this setup, as the underlying factor seemingly
affects a late component in the distribution. Figure 2a and
b show the density functions and the CDFs, respectively,
for this setup. Perhaps counter-intuitively, the CDFs have

50 Behav Res (2021) 53:49–58



0 500 1500

0
.0

1
.0

2
.0

Response Time (ms)

D
e
n
s
it
y

a

0 500 1500

0
.0

0
.4

0
.8

Response Time (ms)

C
u
m

u
la

ti
v
e
 P

r
o
b
a
b
il
it
y

b

Fig. 2 Density functions and cumulative distribution functions for ex-Gaussian distributions that have trivial divergence points. For both
distributions mu = 300 and sigma = 100, tau is 150 for the distribution is represented with black lines, and tau = 300 for the distribution represented
with a light line

no common points to diverge from. Instead, the distribution
with the smaller exponential scale is faster everywhere. If one
is to talk about a divergence point at all, it would be at −∞,
which in this case is the lower bound of support.

As it turns out, trivial divergence points are the norm in
experimental situations. For example, this triviality holds
in situations in which the μ parameter is affected in the
same direction as the τ parameter by an experimental

manipulation. This situation is quite ubiquitous, particularly
for first-order effects like word frequency (see for example
Table 1 in Staub, 2011, in which the frequency effects in
first fixation duration are �μ = 16ms, and �τ = 10ms).

Trivial divergence points are common in distributionswith
finite lower bounds of support. Take, for example, the diffu-
sion model. Trivial divergence points occurwhen any param-
eter is affected, except for the Ter , the lower bound. The

RT (ms)

0 200 400 600 800 1000

a

RT (ms)

0 200 400 600 800 1000

b

RT (ms)

0 200 400 600 800 1000

c

RT (ms)

0 200 400 600 800 1000

d

Fig. 3 Four scenarios for plausible mechanisms of decision-making under a simplified linear activation function. For each of the panels, the
bottom part represents the activation processes, the middle part represent the density function for the latencies, and the top panel represents the
cumulative density functions. In the four panels, the distributions that have trivial divergence points. See the main text for an explanation of each
of the mechanisms
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usual experiment is designed to affect drift rate, bound, or
starting points, and these usual cases imply a trivial divergence.

Figure 3 shows some processes that result in trivial diver-
gence. Each of the panels represents a process model with
different assumptions regarding the source of variability in
the latency distribution. In Fig. 3a, the first mechanism is the
same for the two conditions, it has a mean of 382 ms, and a
standard deviation of 50 (analogous to the T0 & ST param-
eters in diffusion models). The beginning of the second
process (the linear activation function) occurs at the end of
the first process, and the latency is the point in time at which
the activation reaches the threshold. Even if we assume that
there is no variability in the activation rate within a category,
the true divergence point is the shift value, which is trivial.

In the scenario represented by Fig. 3b, we changed the
locus of variability. In this case, the ending of the first process
is constant at 382 ms, while the rate of activation of the sec-
ond process varies within each condition. Again, the diver-
gence point is trivial and corresponds to a cumulative prob-
ability value of zero. For Fig. 3c, we included variability
in the ending time of the first process and variability in the
activation level of the second process; again, while the two
conditions are identical for the first component, and vary only
on the second component, the divergence point is trivial and
corresponds to a cumulative probability value of zero.

Figure 3d represents the assumption of activation
beginning at time zero, and the second process affecting
such activation only after the divergence point. We assume
some variability in the first process, but no difference
between conditions, and a difference between conditions
for the second process but without variability. In other
words, the variability in this mechanism is restricted to the
beginning activation. Again, the divergence point is trivial.
Any combination of variability like the ones explored in
Fig. 3a–d will generate a trivial divergence point. These
examples raise the question of whether any process models
yield a true non-trivial divergence points like that in Fig. 1.

Valid divergence points

The above cases show that typically there will only be trivial
divergence point to analyze—that is, there is no construct
validity to the estimate; however, we challenged ourselves
to come up with a model where there was a true divergence
point that was not trivial. We were able to generate cases
such as those in Fig. 4a and b. Figure 4a is constructed as
a horse race: Let the response latency be the fastest of two
processes (represented by the dashed and the solid lines).
One of the two processes is identically distributed in the two
conditions (we will refer to it as the “D” process, as in the
Dashed lines in the figure); the other process has, on average,
lower activation rates and is represented in the figure by the
solid lines (we will refer to is as the “S” process for the Solid
lines in the figure). Critically, there is a difference between
conditions for the “S” process. The shortest RTs come from
the “D” process, and because this process does not vary
between conditions, the density and the CDF are identical
for the two conditions until a divergence point. This non-
trivial divergence point emerges only under very specific
parameter combinations and under the assumption of no
other sources of variability in the latencies.

The second example of non-trivial divergence point is
presented in Fig. 4b. In this case, the assumption is that the
first process is identical between the two conditions and that
the activation threshold can be reached with this process
alone. The second process does not come into play until a
later point in time (the vertical dashed line) and only if the
threshold has not been reached. In this second process, there
is a difference between the two conditions. As can be seen,
this example does generate a non-trivial divergence point.
Unfortunately, we believe that this is an unrealistic scenario.
The density functions look unusual (see Fig. 4b). The reason
is apparent—the divergence point marks a sudden change
in derivative in the CDFs. This derivative of the CDF is the
density function, and these sudden changes imply violations
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Fig. 4 Density function and the cumulative distribution function for distributions that have a non-trivial divergence point. See main text for an
explanation of each of the mechanisms
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of the absolute continuity of the density. The result is
awkward distributions.

We can think, however, of some theoretical claims that
could be consistent with Fig. 4b. In recognition memory
tasks, some researchers have posited that familiarity is
somewhat independent of recollection and that familiarity
occurs earlier that recollection processes (Rotello & Heit,
1999). One could conceivably construct an experimental
manipulation in which there are no familiarity differences
between conditions, while there is a recollection advantage
for one of the conditions. We suspect that in almost all other
applications, the true divergence point will be trivial and that
the estimate will lack construct validity. It remains an open
challenge for proponents of the DPA to show that non-trivial
true divergence points are plausible.

Statistical properties of divergence point
analyses

In the previous section, we made a case for more in-depth
scrutiny of the construct validity of DPA; in this section, we
describe some problematic statistical properties that emerge
from the lack of construct validity. First, we analyze the
behavior of the DPA under the assumption of a null effect;
then, we examine two scenarios that have been reported in the
literature and appear to yield non-trivial divergence points.

Spurious divergence points

The lack of construct validity of DPA manifests itself as
poor statistical properties that take slightly different forms
depending on the specific implementation of the method.
It is important to emphasize that we believe that these
statistical issues are a consequence of the lack of construct
validity in the method.

In Reingold & Sheridan’s (2014) bootstrapping method,
in each iteration the latencies for each participant in each
condition are randomly re-sampled with replacement. Each
participant’s survival curves are then computed, to be
averaged across subjects (à la Vincentile). Next, for each
time bin t, the differences between conditions: �ti are
computed (i stands for the number of iteration of the
bootstrapping method), and then sorted. The range between
the 5th and the 9995th value becomes the confidence
interval CI(�t ) and the divergence point becomes the
shortest t at which the CI(�t ) does not include 0.
Researchers can decide the size of the bins.

A number of researchers have recently used this method
(e.g., Leinenger 2018; Schmidtke & Kuperman 2019;
Schmidtke, Matsuki, and Kuperman, 2017); however,
Reingold & Sheridan (2014) abandoned this original
bootstrapping method to find the first point of divergence.
They realized that “. . . divergence point would be delayed
relative to the actual point of divergence. This would be
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Fig. 5 Different panels display the proportion of found divergence points assuming that there is no difference between the two conditions under
comparison. The columns of panels represent the values of the mu parameter, and the rows represent the value of the tau parameter; sigma = 60
for all simulations. As would be expected, the rate of spurious divergence points is determined by the number of trials per condition (the x-axis
within each panel), and the number of participants (the lines within each panel)
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especially the case under low experimental power (i.e.,
a small number of participants and observations)” (p. 3),
hence the bias of the bootstrapping method will not be
discussed here.

The new method, termed ex-Gaussian DPA relies on a
two-step process. In the first step, latencies are fit with ex-
Gaussian distributions, and then the parameters are used to
generate CDFs. When the CDFs vary by more than .015, the
method detects a divergence point.

What happens if there is no true divergence because
the true distributions for the two conditions are identical?
We carried out a set of simulations with this scenario in
mind. There are many ways to carry out these simulations
with many parameters to vary; here, we present best-case
scenarios with the following assumptions: (1) for both
conditions under comparison, the latencies were sampled
from identical ex-Gaussian distributions; (2) although we
varied the μ, σ and τ parameters across simulations,
within each simulation the values were identical for all
participants; and (3) we varied the number of participants
and number of items per condition.

Given that the latencies from both conditions come from
the same distribution, there is no true divergence point
(not even at T0). If the DPA produces a divergence point,
we refer to it as a spurious divergence point. We carried
out simulations with three levels of μ values (50,100,150),
three levels of σ values (30,60,90), three levels of τ values
(50,100,150), four levels of number of trials per condition
(20, 40, 80, 160), and four levels of number of participants
(20, 40, 80, 160), for a total of 432 simulations (3 × 3 ×
3×4×4 = 432), for each combination of parameters, there
were 500 simulated experiments. The RTs were generated
with the rexGAUS function of the gamlss.dist package, and
the ex-Gaussian fits were done with the timefit function of
the of the retimes package in R.

Figure 5 shows the rate of spurious divergence points
for different numbers of trials and participants and for the
three levels of μ and τ (in the figure we present only the
simulations with σ = 60ms; other values of σ do not lead
to different conclusions, but the complete set of simulations
is available in the online appendix). In Table 1, we present
an illustrative subset of the simulations (μ = 100, σ =
60 and τ = 50), the rate of spurious divergence points
can be quite large, particularly for the number of trials
and participants that are common and feasible in cognitive
psychology experiments and psycholinguistics studies, in
which there might be a limited number of possible materials
to study the phenomenon of interest.

The reason for such a large rate of spurious divergence
points is straightforward: even small deviations in the
sample data relative to the population parameters will
yield differences in the ex-Gaussian parameters of the fits,
and even very small differences in those parameters, for

Table 1 Rate of spurious divergence points for simulations with null
effects

Number of participantsNumber of trialsRate of spurious DPMean DP

40 40 0.544 95

40 80 0.336 105

40 160 0.096 115

80 40 0.264 112

80 80 0.124 98

80 160 0.012 120

160 40 0.088 118

160 80 0.050 59

160 160 0.000 NA

The latencies were generated with parameters mu = 100, sigma = 60,
and tau = 50

example a difference of a couple of milliseconds, will
yield differences of .015 in the CDF/survival function. The
ex-Gaussian fits are done on noisy data, and the method
picks up the divergence in the noisy data. At large number
of trials and participants, the DPA does a very good job
of not returning a spurious point; the method does have
consistency in that respect: as the number of observation
increases, the method is less likely to give researchers an
incorrect answer.

Divergence points that are CDF crossings

In recent work, Reingold & Sheridan (2018) have described
CDF crossing points in simulation as divergence points.
Thinking of these situations in terms of ex-Gaussian
parameters is useful. Sheridan and Reingold consider cases
with interacting effects where μ and τ are affected in
opposite directions. Figure 6 is taken from the table in
the Appendix of Sheridan and Reingold, and it shows a
series of differences from their simulations. Each point is
for a simulation run. Note how positive differences in one
parameter are associated with negative differences in the
other. The overlaid table shows, as an example, the values
for one data point. In this chosen point, the value of the
μ parameter of the ex-Gaussian for the “slow” condition is
smaller than the value for the “fast” condition. In contrast,
the value of the τ parameter is larger in the slow than in the
fast condition. Such crossovers seem quite informative, as
they indicate that the same manipulation has a facilitative
effect in one component of processing, while it was an
inhibitory effect in another.

The claim by Reingold and Sheridan is that these
scenarios give rise to cases that have nontrivial divergence
points, which are accurately localized by their divergence
point analytic methods.We have three critiques of this. First,
crossover points are not divergence points. They are not the
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Fig. 6 Effects on mu and on tau taken from Reingold and Sheridan (2018) Appendix 1. These were parameters used to find non-trivial divergence
points in their simulations. While this would represent an interesting set of parameters in their own right, they are somewhat unusual; this is
because across many experiments, the effects on mu and on tau tend to be positively correlated, not negatively correlated, as in the figure. The
shade of the points relates to the location of the divergence point according to the DPA method

earliest point at which distributions differ. The distributions
differ throughout the range, and in this case, the divergence
is trivial. Second, crossover points are exceedingly rare in
practice. There are a few examples in the literature (Rouder,
2000; Yantis et al., 1991), but the vast majority of studies
show no such crossover. Third, crossovers are diagnostic of
a mixture of processes (Everitt & Hand, 1981; Falmagne,
1968). In such a scenario, the main theoretical implication is
not the time of crossover, but what is the interpretation of the
components and how are they affected by the manipulations
at hand (See Fig. 7).

If researchers are looking for ways to describe these
types of crossovers and dissociations between components

of latency distributions, we believe that delta plots (e.g., De
Jong, Liang, & Lauber, 1994; and particularly Ellinghaus &
Miller, 2018 for delta plots with negative slopes) provide a
far more cohesive and informative view.

Furthermore, the estimates from the DPA method in the
crossover situation can be quite volatile. An example is
provided by Reingold and Sheridan (2018) in their appendix
for a divergence point of 180 ms. Figure 8 shows the
survival functions using parameters similar to those in their
table: for Condition 1: μ1 = 150, σ1 = 60, τ1 = 78, and for
Condition 2; μ=147, σ2 = 64, τ2 = 91.

Critically, even minuscule changes in the parameters
generate radically different divergence points. For example,

250 500 750 1000

Time

250 500 750 1000

Time

Fig. 7 We present two examples of divergence points. Panels a and b show crossovers in the survival functions; the fast condition is shown with
dashed lines
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Fig. 8 Illustration of how small changes can yield large fluctuations in the DPA results. The three panels show distributions with small variations
in the mu parameter (150 ms to 160 ms to 161 ms) for one of the conditions, which yields widely different divergence points

if the μ1 parameter goes from 150 ms to 160 ms, to 161 ms,
the divergence point goes from 183 ms to 287 ms in favor
of Condition 1, to 75 ms in favor of Condition 2.

This finding complements the analysis shown in the
previous subsection on spurious divergence points. Small
variations due to sampling can produce radically different
results, from spurious divergence points, to large swings in
the value and direction of the divergence point.

Conclusions

Divergence points have limited interpretation. The apparent
lack of true divergence points may seem counter-intuitive.
For example, if we consider a reading task where participants
decide if presented words are nouns or verbs, then we might
expect that forming a representation in visual cortex occurs
before the influence of the part-of-speech manipulation.
This hypothetical might imply the plausibility of a divergence
point. The part of speechmanipulation does not affect the time
course of processing before semantic meaning evaluation.

This hypothetical, which we find compelling, highlights
the difficulty in interpretation. Divergence point analysis is
not about moment-to-moment processing (see Estes, 1956
for another example of the difficulty in the interpretation
of grouped data). It is possible, even likely, that there are
manipulations that do not affect the moment-to-moment
processing up to a specific point in time, after which there
is a divergence in processing, yet, there are no divergence
points in the collection of response time distributions.
Divergence point analysis is about the response time
distributions, and such a point cannot be interpreted in terms
of latent moment-to-moment processing. Reingold and
Sheridan (2018) acknowledge this issue; but this limitation
is severe, and it constrains the usefulness and attractiveness

of the method greatly. For the utmost transparency, users of
the method should be explicit about these issues.

In most situations, the divergence point will be trivial,
as in most experimental manipulations there is stochastic
dominance: meaning that across all quantiles, the CDF
for a fast condition will be to the left of the CDF for
the slow condition regardless of what component (early
vs. late) of processing is being tapped into. In the minority
of experimental manipulations, there can be a dissociation
between early components and late components; this can
be easily implemented in process models like the EZ
reader or evidence accumulation models. In these cases,
the CDF might cross, and that crossing might be picked
up by the DPA. We believe that if researchers want a
purely descriptive, exploratory data analysis (EDA, Tukey,
1967) method, delta plots are better suited than DPA. Also,
researchers could use linear mixed effects to explore the
slope and intercept of the delta plots if inferential methods
are in order (this, of course, deserves further examination).

In yet a smaller proportion of cases, there might be a
true non-trivial divergence point. These situations are rare,
and we had to think hard to come up with architectures that
yield this type of effects. If the researcher’s model of the
task is indeed one that generates a non-trivial divergence
point, we believe that a DPA method might provide useful
information. Note, however, that such architectures do not
generate ex-Gaussian distributions, and hence fitting such
functional form to the data might, or might not recover the
true, non-trivial divergence point (we present examples in
the online appendix). Nevertheless, we remain skeptical that
such cases exist.

In sum, the divergence point analysis methods suffer
from poor construct validity, and hence, also of poor
statistical properties. For these reasons, its usefulness is
limited, and researchers should pause before using it.
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available at https://osf.io/ghw37/ R (Version 3.6.1, R Core
Team, 2019).2

Acknowledgements Funded by a grant PSI2017-86210-P from the
Spanish Ministry of Science, Innovation, and Universities, and by
the grant 0115/2018 (Estades d’investigadors convidats) from the
Universitat de València.

References

Aphalo, P.J. (2016). Learn R...as you learnt your mother tongue.
Leanpub. Retrieved from https://leanpub.com/learnr.

Aust, F. (2018). papaja: Create APA manuscripts with R Markdown.
Retrieved from https://github.com/crsh/papaja.

Balota, D.A., & Yap, M.J. (2011). Moving beyond the mean in studies
of mental chronometry: The power of response time distributional
analyses. Current Directions in Psychological Science, 20(3),
160–166.

Brown, S.D., & Heathcote, A. (2008). The simplest complete model
of choice reaction time: Linear ballistic accumulation. Cognitive
Psychology, 57, 153–178.

De Jong, R., Liang, C.C., & Lauber, E. (1994). Conditional and
unconditional automaticity: A dual-process model of effects of
spatial stimulus-response concordance. Journal of Experimental
Psychology: Human Perception and Performance, 20, 731–750.

Dzhafarov, E.N. (1992). The structure of simple reaction time to
step-function signals. Journal of Mathematical Psychology, 36,
235–268.

Ellinghaus, R., & Miller, J. (2018). Delta plots with negative-
going slopes as a potential marker of decreasing response
activation in masked semantic priming. Psychological Research
Psychologische Forschung, 82(3), 590–599.

Estes, W.K. (1956). The problem of inference from curves based on
group data. Psychological Bulletin, 53(2), 134–140.

Everitt, B.S., & Hand, D.J. (1981). Finite mixture distributions.
London: Chapman; Hall.

Falmagne, J.-C. (1968). Note on a simple fixed-point property of
binary mixtures. British Journal of Mathematical and Statistical
Psychology, 21, 131–132.

Gould, S.J. (1996). The mismeasure of man. New York: WW Norton
& Company.

Heathcote, A., Popiel, S.J., & Mewhort, D. (1991). Analysis of
response time distributions: An example using the Stroop task.
Psychological Bulletin, 109(2), 340–347.

2We, furthermore, used the R-packages dplyr (Version 0.8.3, Wickham
et al., 2019), forcats (Version 0.4.0, Wickham, 2019a, b), gamlss.dist
(Version 5.1.4, Stasinopoulos & Rigby 2019), ggplot2 (Version
3.2.1, Wickham 2016), ggpmisc (Version 0.3.1, Aphalo, 2016),
MASS (Version 7.3.51.4, Venables & Ripley 2002), papaja (Version
0.1.0.9842, Aust, (Aust, 2018)), purrr (Version 0.3.2, Henry &
Wickham, 2019), readr (Version 1.3.1, Wickham et al., 2018),
retimes (Version 0.1.2, Massidda, 2013), scales (Version 1.0.0,
Wickham, 2018), stringr (Version 1.4.0, Wickham, 2019a, b), tibble
(Version 2.1.3, Müller & Wickham 2019), tidyr (Version 0.8.3,
Wickham & Henry, 2019), tidyverse (Version 1.2.1, Wickham, 2017),
and truncnorm (Version 1.0.8; Mersmann, Trautmann, Steuer, and
Bornkamp, 2018).

Henry, L., & Wickham, H. (2019). Purrr: Functional programming
tools. Retrieved from https://CRAN.R-project.org/package=purrr.

Leinenger, M. (2018). Survival analyses reveal how early phonolog-
ical processing affects eye movements during reading. Journal of
Experimental Psychology, Learning, Memory, and Cognition.

Luce, R.D. (1986). Response times. New York: Oxford University
Press.

Massidda, D. (2013). Retimes: Reaction time analysis. Retrieved from
https://CRAN.R-project.org/package=retimes.

Mersmann, O., Trautmann, H., Steuer, D., & Bornkamp, B. (2018).
Truncnorm: Truncated normal distribution. Retrieved from https://
CRAN.R-project.org/package=truncnorm.

Müller, K., & Wickham, H. (2019). Tibble: Simple data frames.
Retrieved from https://CRAN.R-project.org/package=tibble.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85(2), 59–108.

Ratcliff, R. (1979). Group reaction time distributions and an analysis
of distribution statistics. Psychological Bulletin, 86(3), 446–461.

R Core Team (2019). R: A language and environment for statis-
tical computing, Vienna, Austria. R Foundation for Statistical
Computing. Retrieved from https://www.R-project.org/.

Reichle, E.D., Pollatsek, A., Fisher, D.L., & Rayner, K. (1998).
Toward a model of eye movement control in reading. Psychologi-
cal Review, 105(1), 125–157.

Reingold, E.M., & Sheridan, H. (2014). Estimating the divergence
point: A novel distributional analysis procedure for determining
the onset of the influence of experimental variables. Frontiers in
Psychology, 5, 1432.

Reingold, E.M., & Sheridan, H. (2018). On using distributional
analysis techniques for determining the onset of the influence
of experimental variables. Quarterly Journal of Experimental
Psychology, 71(1), 260–271.

Reingold, E.M., Reichle, E.D., Glaholt, M.G., & Sheridan, H. (2012).
Direct lexical control of eye movements in reading: Evidence from
a survival analysis of fixation durations. Cognitive Psychology,
65(2), 177–206.

Rotello, C.M., & Heit, E. (1999). Two-process models of recognition
memory: Evidence for recall-to-reject? Journal of Memory and
Language, 40(3), 432–453.

Rouder, J.N. (2000). Assessing the roles of change discrimination
and luminance integration: Evidence for a hybrid race model of
perceptual decision making in luminance discrimination. Journal
of Experimental Psychology: Human Perception and Performance,
26, 359–378.

Rouder, J.N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005).
A hierarchical model for estimating response time distributions.
Psychonomic Bulletin & Review, 12(2), 195–223.

Schmidtke, D., & Kuperman, V. (2019). A paradox of apparent brain-
less behavior: The time-course of compound word recognition.
Cortex, 116, 250–267.

Schmidtke, D., Matsuki, K., & Kuperman, V. (2017). Surviving blind
decomposition: A distributional analysis of the time-course of
complex word recognition. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 43(11), 1793.

Sheridan, H. (2013). The time-course of lexical influences on fixation
durations during reading. Evidence from distributional analyses
(PhD thesis).

Sheridan, H., Rayner, K., & Reingold, E.M. (2013). Unsegmented text
delays word identification: Evidence from a survival analysis of
fixation durations. Visual Cognition, 21(1), 38–60.

Stasinopoulos, M., & Rigby, R. (2019). Gamlss.dist: Distributions
for generalized additive models for location scale and shape.
Retrieved from https://CRAN.R-project.org/package=gamlss.dist.

Staub, A. (2011). The effect of lexical predictability on distributions
of eye fixation durations. Psychonomic Bulletin & Review, 18(2),
371–376.

57Behav Res (2021) 53:49–58

https://osf.io/ghw37/
https://leanpub.com/learnr
https://github.com/crsh/papaja
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=retimes
https://CRAN.R-project.org/package=truncnorm
https://CRAN.R-project.org/package=truncnorm
https://CRAN.R-project.org/package=tibble
https://www.R-project.org/
https://CRAN.R-project.org/package=gamlss.dist


Venables, W.N., & Ripley, B.D. (2002). Modern applied statistics with
S (Fourth.), Springer, New York. Retrieved from http://www.stats.
ox.ac.uk/pub/MASS4.

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis.
New York: Springer. Retrieved from https://ggplot2.tidyverse.org.

Wickham, H. (2017). Tidyverse: Easily install and load the ‘tidyverse’.
Retrieved from https://CRAN.R-project.org/package=tidyverse.

Wickham, H. (2018). Scales: Scale functions for visualization.
Retrieved from https://CRAN.R-project.org/package=scales.

Wickham, H. (2019a). Forcats: Tools for working with categorical
variables (factors). Retrieved from https://CRAN.R-project.org/
package=forcats.

Wickham, H. (2019b). Stringr: Simple, consistent wrappers for com-
mon string operations. Retrieved from https://CRAN.R-project.
org/package=stringr.

Wickham, H., & Henry, L. (2019). Tidyr: Easily tidy data with
‘spread()’ and ‘gather()’ functions. Retrieved from https://CRAN.
R-project.org/package=tidyr.

Wickham, H., Hester, J., & Francois, R. (2018). Readr: Read
rectangular text data. Retrieved from https://CRAN.R-project.org/
package=readr.

Wickham, H., François, R., Henry, L., & Müller, K. (2019). Dplyr:
A grammar of data manipulation. Retrieved from https://CRAN.
R-project.org/package=dplyr.

Yantis, S., Meyer, D.E., & Smith, J.EK. (1991). Analysis of
multinomial mixture distributions: New tests for stochastic models
of cognitive action. Psychological Bulletin, 110, 350–374.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

58 Behav Res (2021) 53:49–58

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=forcats
https://CRAN.R-project.org/package=forcats
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

	Are divergence point analyses suitable for response time data?
	Abstract
	Construct validity of divergence points
	Trivial divergence points
	Valid divergence points

	Statistical properties of divergence point analyses
	Spurious divergence points
	Divergence points that are CDF crossings

	Conclusions
	Open practices statement
	References


