

## Part A. PERSONAL INFORMATION

|                                            |                                                           |               |            |
|--------------------------------------------|-----------------------------------------------------------|---------------|------------|
| First Name                                 | Jose A.                                                   |               |            |
| Family Name                                | Iglesias Guitian                                          |               |            |
| Sex                                        | Male                                                      | Date of Birth | 18/10/1980 |
| ID number Social Security, Passport        | 52931729N                                                 |               |            |
| URL Web                                    | <a href="http://www.j4lley.com">http://www.j4lley.com</a> |               |            |
| Email Address                              | j.iglesias.guitian@udc.es                                 |               |            |
| Open Researcher and Contributor ID (ORCID) | 0000-0002-0817-1010                                       |               |            |

## CURRICULUM NARRATIVE SUMMARY

My main scientific contributions focus on the Visual Computing field, I am currently the head of the Computer Graphics & Visual Computing (XLab) research group at UDC-CITIC since 2024. I lead research lines spanned over different domains, i.e. advanced rendering, scientific visualization or virtual reality. My professional trajectory combines academic and industrial research experience at different institutions. The following achievements should serve to summarize the impact of my research work.

## PROFESSIONAL BACKGROUND

2025 - curr. Tenured Professor. UDC, CITIC, Spain  
 2019 - 2025 Ramon y Cajal Scientist and InTalent Fellow. UDC, CITIC, Spain  
 2017 - 2019 Marie Curie Researcher. Computer Vision Center  
 2018 - 2019 Part-time Assoc. Professor, UAB, Spain  
 2014 - 2016 Assoc. Researcher. Disney Research (The Walt Disney Company UK)  
 2012 - 2014 Marie Curie Experienced Researcher. Univ. of Zaragoza, Spain  
 2010 - 2012 Expert Researcher. Visual Computing Group. CRS4, Italy  
 2007 - 2010 Marie Curie Early Stage Researcher. Visual Computing Group. CRS4, Italy  
 2004 - 2007 Researcher and SW Eng. School of Civil Engineering. UDC, Spain

## EDUCATION

2008 - 2011 Ph.D. Degree in Electronic and Computer Engineering, Univ. of Cagliari, Italy  
 1998 - 2006 M.Sc. in Computer Science, UDC, Spain

## AWARDED FELLOWSHIPS

2021 - 2023 Leonardo Fellow BBVA Foundation  
 2019 - 2020 UDC-Inditex InTalent Fellow  
 2017 - 2020 EU Marie Curie COFUND H2020 Expert Researcher (score: 90.50%)  
 2012 - 2014 EU Marie Curie Industry-Academy FP7 Fellow as Experienced Researcher  
 2007 - 2010 EU Marie Curie Fellow of the 3D Anatomical Human RTN

## SCIENTIFIC PUBLICATIONS & PATENTS

Google Scholar h-index: 19. Total citations 1525 (736 from 2020). Most cited paper: 241 cit.  
 20 journal papers (Q1: 9/20, 1st+2nd author: 10/20) and 11 conf. papers and 10 conf. presentations (all international).  
 3 industrial patents (US) +1 (Spain).  
 2 book chapters and 1 Eurographics tutorial +6 invited talks.

## PARTICIPATION IN R+D PROJECTS

As Co-PI for CVC: (1) Audi Electronics Venture GmbH, (1) Unity Technologies, (1) MINECO CVC/UAB: P-Sphere - 4RENA EU-H2020  
The Walt Disney Company UK: InnovateUK  
Univ. of Zaragoza: EU-FP7 MC-IAPP GOLEM, MIMESIS, LIGHTSLICE  
CRS4: EU-FP7 MC-ITN DIVA, EU-FP7 INDIGO, EU-FP6 MC-RTN 3DAH

## FUNDING (LAST 8 YEARS)

2025-27 as PI for the Xlab research group, funded by XdG-GPC (CITIC, UDC ~94K €)  
2021-25 PI for XdG project in Scientific Visualization and Virtual Reality (CITIC, UDC ~115K €)  
2021 PI for GdC project by AEI (PGAS-ADA with CITIC, UDC ~59K €)  
2018 Co-PI for CVC project with Audi Electronic Venture GmbH (~66K €)  
2018 Co-PI for MINECO project (DANA with CVC, UAB ~117K €)  
2018 PI for NVidia GPU Grant Program (hardware ~5k \$)

## PROFESSIONAL REVIEWING SERVICE

Eurographics (EG), ACM SIG. I3D, IJCV, The Visual Computer, ACM SIG. Asia, Computer Graphics Forum, Computer and Graphics, IEEE Vis, Spring Conf. on Computer Graphics, EG Italian Chapter (STAG), EG Spanish Chapter (CEIG), EG/IEEE Eurovis, Pacific Graphics.

## ORGANISATION OF SCIENTIFIC MEETINGS (LAST 7 YEARS)

2024 Congreso Español de Informática Gráfica  
2020 CVPR Workshop on Embodied-AI, Seattle (USA)  
2018-19 ACM SIGGRAPH Work. on Computer Graphics for Autonomous Driving Applications, Vancouver (CA) & L.A. (USA)

## MEMBERSHIPS OF COMMITTEES

2021-curr. Embodied AI Workshop (CVPR). Scientific Advisory Board.  
2019 High Performance Graphics. OC.  
2018, ACM I3D SIGGRAPH Symposium on Interactive 3D Graphics and Games. PC.  
2018, 13th International Symposium on Visual Computing. PC.  
2018, 2015, 2014 EG Italian Chapter STAG. PC.  
2016, 2015 EG Spanish Chapter CEIG. PC.

## MEMBERSHIPS OF SCIENTIFIC SOCIETIES

IEEE Computer Society, ACM SIGGRAPH, Eurographics, MCAA

## OTHER MERITS

Associate Professor Certificates by ANECA. Expert Evaluator for AEI/ANEPE1 Disney Inventor Award (2016)  
1 Best Paper Award at Siggraph Asia 2025

More info at [www.j4lley.com](http://www.j4lley.com)

## 1. RESEARCH, KNOWLEDGE TRANSFER AND EXCHANGE ACTIVITIES

### **1.1. PROJECTS AND CONTRACTS FOR RESEARCH AND KNOWLEDGE TRANSFER AND EXCHANGE**

#### **1.1.1. Projects**

- 1 Project.** Computación gráfica avanzada y visualización científica en entornos de realidad virtual. Generación procedural de escenarios 3D para su uso en simulación e inteligencia artificial.. XUNTA DE GALICIA. (Universidade da Coruña). 01/07/2021-30/04/2025. 115.000 €.
- 2 Project.** Generación Procedural de Escenarios Aumentados con Anotación de Datos Automática (PGAS-ADA) ref. PID2020-115734RB-C22. (Universidade da Coruña). 01/09/2021-31/12/2024. 59.048 €.
- 3 Project.** 3DANATOMICALHUMAN: 3D Anatomical Functional Models for the Human Musculoskeletal System. (CRS4, Center for Advanced Studies, Research and Development in Sardinia). 01/10/2006-30/09/2010. 287.984 €.

### **1.2. RESULTS AND DISSEMINATION OF RESEARCH AND KNOWLEDGE TRANSFER AND EXCHANGE ACTIVITIES**

#### **1.2.1. Research activity**

AC: corresponding author. (nº x / nº y): position / total authors. If applicable, indicate the number of citations

- 1 Scientific paper.** Gu, Jeongmin; (2/3) Iglesias-Guitian, Jose A.; Moon, Bochang. 2022. Neural James-Stein Combiner for Unbiased and Biased Renderings. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2022). 41-6, pp.262:1-262:14. ISSN 0730-0301. Google Scholar (13). JCR (6,20).

#### **Narrative explanation of the contribution**

I contributed to the design of the experiments, analysis of the results, and drafted and revised the manuscript. Received the Best Paper Award ACM SIGGRAPH Asia (2022)

- 2 Scientific paper.** (1/3) Iglesias-Guitian, Jose A. (AC); Mane, Prajita; Moon, Bochang. 2020. Real-Time Denoising of Volumetric Path Tracing for Direct Volume Rendering. IEEE Transactions on Visualization and Computer Graphics. pp.1-14. ISSN 1077-2626. Google Scholar (24). JCR (5,20).

#### **Narrative explanation of the contribution**

I conceived the original idea, implemented the code, designed and conducted most of the experiments, analyzed the results, and wrote the manuscript. Associated patent ES 2 877 410 A1 (Spain) PROCEDIMIENTO, PROGRAMA INFORMÁTICO, SISTEMA Y SISTEMA INFORMÁTICO PARA ELIMINACIÓN DE RUIDO EN UNA SECUENCIA DE IMÁGENES

- 3 Scientific paper.** Bochang Moon; (2/4) Jose A. Iglesias Guitian (AC); Steven McDonagh; Kenny Mitchell. 2017. Noise Reduction on G-Buffers for Monte Carlo Filtering. Computer Graphics Forum. Blackwell Publishing Ltd.. 36-8, pp.600-612. ISSN 1467-8659. Google Scholar (9). JCR (2,046).

#### **Narrative explanation of the contribution**

I designed and conducted several experiments, analyzed the results, and contributed to writing the manuscript and the associated patent. Patent Application US10922872B2: "Noise Reduction on G-Buffers for Monte Carlo Filtering". Pixar / The Walt Disney Company. Status: Active.

**4 Scientific paper.** Bochang Moon; (2/4) Jose A. Iglesias Guitian (AC); Sung-Eui Yoon; Kenny Mitchell. 2015. Adaptive Rendering with Linear Predictions. ACM Transactions on Graphics. Association for Computing Machinery (ACM). 34-4, pp.121-131. ISSN 0730-0301. Google Scholar (55). JCR (4,218).

#### **Narrative explanation of the contribution**

I was a main co-author and contributed to the implementation, design of the experiments, preparation of the supplementary material, and drafting and revision of the main manuscript and its associated patent. Patent Application US9892549B2: Adaptive rendering with linear predictions. Disney Enterprises Inc / Pixar. Status: Active.

**5 Scientific paper.** (1/4) Jose A. Iglesias Guitian (AC); Carlos Aliaga; Adrián Jarabo; Diego Gutierrez. 2015. A Biophysically-Based Model of the Optical Properties of Skin Aging. Computer Graphics Forum. Blackwell Publishing Ltd.. 34-2, pp.45-55. ISSN 0167-7055. Google Scholar (91). JCR (1,542).

#### **Narrative explanation of the contribution**

I was the main author, implemented most of the methods, designed and conducted all the experiments, prepared the supplementary material, and wrote the manuscript.

**6 Scientific paper.** Enrico Gobbetti; (2/3) Jose A. Iglesias Guitian (AC); Fabio Marton. 2012. COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Computer Graphics Forum. Blackwell Publishing Ltd. 31-3pt4, pp.1315-1324. ISSN 1467-8659. Google Scholar (64). JCR (2,831).

#### **Narrative explanation of the contribution**

I contributed to conceiving the original idea, implemented the methods, conducted most of the experiments, analyzed the results, and wrote the manuscript.

**7 Scientific paper.** Susanne Suter; (2/9) Jose A. Iglesias Guitian; Fabio Marton; et al; Renato Pajarola. 2011. Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization. IEEE Transactions on Visualization and Computer Graphics. IEEE Computer Society. 17-12, pp.2135-2143. ISSN 1077-2626. Google Scholar (76). JCR (3,093).

#### **Narrative explanation of the contribution**

I implemented part of the real-time decompression and rendering scheme, conducted most of the experiments, and contributed to drafting the manuscript and preparing the supplementary material.

**8 Scientific paper.** Marco Agus; Enrico Gobbetti; (3/5) Jose A. Iglesias Guitian; Fabio Marton; Giovanni Pintore. 2008. GPU accelerated direct volume rendering on an interactive light field display. Computer Graphics Forum. Blackwell Publishing Ltd. 27-2, pp.231-240. ISSN 1467-8659. Google Scholar (77). JCR (1,421).

#### **Narrative explanation of the contribution**

I contributed to the implementation, prepared some figures, and assisted in drafting the manuscript.

### **1.3. STAYS AT UNIVERSITIES AND RESEARCH CENTRES**

#### **1.3.1. Stays**

**1 Stay:** Computer Vision Center, Universitat Autònoma de Barcelona. (Spain). 23/05/2017-31/08/2019.

#### **Narrative explanation of the contribution**

In 2017, after my time at Disney Research, I decided to join the CVC research centre as Marie Curie Expert Researcher to develop my own research project on 3D volume rendering using photorealistic rendering. I worked at CVC until late 2019, enough time to start a new research line in collaboration with Prof. Antonio M. Lopez, on photorealistic labeled synthetic data generation for AI and computer vision tasks.

**2 Stay:** Marie Curie IAPP Industry-Academia, g.a. 251415. Universidad de Zaragoza. (Spain). 03/10/2012-30/08/2014.

#### **Narrative explanation of the contribution**

During this period, I focused on developing biophysically-based models of human skin. It was also when my interest in physically-based material appearance rendering first emerged. I also had enough time to advance GPU volume rendering techniques for compressed data architectures.

**3 Stay:** Marie Curie Research Training Network, g.a. 035763. CRS4, Visual Computing Group. (Italy). 10/05/2007-09/05/2010.

#### **Narrative explanation of the contribution**

In 2007, I obtained my first Marie Curie grant and joined the 3D ANATOMICAL HUMAN Research Training Network. I finally spent more than 5 years at the Visual Computing group of the CRS4 research center in Italy (2007-2012) where I specialized in massive model and multiresolution rendering. During that time, I had the opportunity to earn my PhD at the University of Cagliari (2011) under the supervision of Dr. Enrico Gobbetti.

## **1.4. OTHER MERITS**

FBBVA Leonardo Fellow (2021) & UDC-Inditex InTalent Fellow (2019)

Disney Inventor Award (2016) Country awarding entity: United States of America. Type of entity: Business. Awarding entity: The Walt Disney Company. Conferral date: 26/07/2016

Three Marie S. Curie grants, once as Early Stage Researcher (2007) & twice as Experienced Researcher (2012, 2017)

## **2. TEACHING ACTIVITY**

### **2.1. TEACHING EXPERIENCE**

#### **2.1.2. Plurality, interdisciplinarity and teaching complexity**

In addition to being qualified to teach foundational subjects in Computer Science, as I demonstrated during my tenure at the UAB, I have independently designed, coordinated, and delivered multiple advanced courses in the fields of Computer Graphics, Rendering, and Extended Reality (XR). Across both undergraduate and postgraduate levels, I have prepared original teaching materials from scratch for five distinct subjects. These courses demand significant technical expertise and pedagogical planning, as they involve integrating theoretical concepts with hands-on practice in advanced software environments such as Unreal Engine and other rendering frameworks. Designing exercises often requires knowledge of GPU programming, shading languages, and real-time visualization, and in several cases, I have implemented and tested content using VR or XR hardware. Such teaching contexts are inherently complex, as they require constant adaptation to emerging technologies, diverse student profiles, and evolving curricular objectives. I have demonstrated an ability to align theoretical and practical components, ensuring coherence between competencies, content, and assessment.

My work for course coordination involves collaboration with colleagues across related subjects to maintain consistency in learning outcomes and methodological approaches. My teaching

practice also includes experience in remote and hybrid settings, which poses additional challenges in sustaining student engagement, ensuring equitable access to learning resources, and providing timely, individualized feedback. I have supervised a significant number of undergraduate and master's theses — several of them with outstanding results — and I currently co-supervise a doctoral candidate, evidencing my sustained commitment to mentorship and research-led teaching. When required, I have adapted teaching methods, workload, and evaluation procedures to meet the specific needs of students with special requirements, while maintaining academic rigor. This personalized attention is complemented by the use of structured tutoring systems, proactive follow-up, and flexible communication channels, both in person and online.

Finally, my involvement in innovative educational initiatives, such as the InstruM3D service-learning project developed in collaboration with a healthcare training center, illustrates my capacity to bridge disciplines and apply computer graphics knowledge to socially relevant contexts. Combined with my ongoing efforts to internationalize my teaching activity and to enhance course interactivity through EMI training, these experiences reflect a sophisticated and multifaceted teaching profile that encompasses technical depth, methodological innovation, and human sensitivity.

### 2.1.3. Educational resources

**1 Tutorial:** 3D Anatomical Modelling and Simulation Concepts. Nadia Magnenat-Thalmann; Jérôme Schmid; Hervé Delingette; Marco Agus; Jose A. Iglesias Guitián. 08/2009. Available on-line at: <<https://diglib.eg.org/items/b13680f5-5a38-45c0-9c48-fec2665fc4f8>>.

#### Narrative explanation of the contribution

Nowadays, a large panel of medical acquisitions devices are made available producing a large amount of information such as high-resolution volumes, temporal sequences or functional images. Although this information helps scientists and physicians better understand the human anatomy and physiology, it becomes more-and-more difficult to analyse and visualise it. In this context, anatomical and functional models that combine multi-modal information are highly demanded. These models are successfully used in medical simulations such as virtual surgical interventions (e.g., bone, liver surgeries) or physiological process analysis (e.g., tumour growth, cartilage degeneration). They improve the diagnosis and assist the physicians. In this tutorial, we will present the current research issues towards the creation of patient-specific anatomical models and their functional simulation. Various topics in medical modelling/simulation will be addressed, focusing on computer-graphics based approaches, such as deformable models in image segmentation, data fusion, interactive physically-based simulation and costefficient visualisation. Examples will be given in the musculoskeletal, cardiac and vascular domains. All speakers are partners of the EU project "3D Anatomical Human" led by MIRALab - University of Geneva.

**2 Chapters of books:** Human computer interaction. Fondamenti e prospettive (Ed. A. Soro). Iglesias-Guitian, Jose A.; Agus, Marco. 2008.

### 2.1.4. Lifelong learning activities

**1 Course:** Microcredential Green Algorithms for Artificial Intelligence: Design and Implementation. (4 hours). 06/10/2025. .

#### Narrative explanation of the contribution

Microcredential Green Algorithms for Artificial Intelligence: Design and Implementation. AI, Graphics & Visual Computing: Usos de la IA para la Reconstrucción 3D. Generación de Datos Sintéticos.

**2 Course:** Volume Rendering para la Reconstrucción y Visualización 3D de Datos Médicos. (8 hours). 11/2024. .

#### **Narrative explanation of the contribution**

Developed and delivered a course for teaching professionals on advanced scientific visualization, integrating theory and practical tools. The course covers CT acquisition, 2D slice reconstruction, common 3D medical visualization techniques, and emerging immersive technologies for medical applications. Students learn fundamental principles of Volume Rendering, including direct and indirect volumetric rendering, radiative transfer models, sampling, transfer functions, accumulation strategies, shading, and illumination. The curriculum also provides an in-depth introduction to ray casting, its theoretical formulation, and numerical implementation. Practical sessions familiarize students with specialized tools such as CineM3D and 3D Slicer.

## **2.2. EVALUATION OF TEACHING QUALITY AND INNOVATION**

### **2.2.1. Quality of teaching activity**

**Evaluation by means of self-report attached at ANECA's site**

### **2.2.2. Teaching innovation projects**

**1 Project:** Proxectos de Aprendizaxe Servizo (APS): TFG solidarios promovidos pola Cátedra NTT DATA en Diversidade e Tecnoloxía. From 2025. Principal investigator.

**2 Project:** Proxectos de Aprendizaxe Servizo (APS): InstruM3D. Desarrollo de contenidos educativos interactivos y reconstrucción 3D de instrumental clínico. From 2024. Principal investigator.

### **2.2.3. Training for teacher improvement received**

**1 Course/seminar:** English for Teaching Purposes (EMI). (30 hours). 14/01/2020.

#### **Narrative explanation of the contribution**

I have also taken the UDC course English for Teaching Purposes (EMI), which qualifies me to teach courses in English. This course placed special emphasis on interactive methodologies to enhance and energize teaching.

## **2.3. TEACHER MENTORING**

### **2.3.1. Formal mentoring**

1 In the 2023/2024 academic year, the following students participated in extracurricular external practices: · Amaia Intxausti Montorio: 10 June 2024 – 31 July 2024, 225 hours · Amanda López López: 10 June 2024 – 31 July 2024, 225 hours · Antía Picos Souto: 10 June 2024 – 31 July 2024, 161 hours · Antía Weiss Prol: 10 June 2024 – 31 July 2024, 225 hours · Claudia Blanco García: 10 June 2024 – 31 July 2024, 225 hours · Diana Álvarez González: 10 June 2024 – 31 July 2024, 225 hours · Ezequiel Riveiro Carrera: 10 June 2024 – 31 July 2024, 225 hours · Jorge Sobrino Mateo: 10 June 2024 – 31 July 2024, 161 hours · María Gabriel Diéguez: 10 June 2024 – 31 July 2024, 225 hours · María Quintela Cortegoso: 8 July 2024 – 31 July 2024, 131 hours For the 2024/2025 academic year, there was a curricular external practice: · Miguel Novoa Cuiñas: 6 March 2025 – 16 May 2025, 225 hours

2 2020/2021 Generación procedural de contenido 3D para plataformas de simulación en motores de videojuegos. Nicolás Alonso Ojea Notable (8.5) 2021/2022 Generación procedural de edificios 3D utilizando el lenguaje VEX/Python (Houdini) a partir de datos georreferenciados por Sistemas de Información Geográfica (SIG). Daniel Jove Díaz (10.0 / MH) 2021/2022 Sistema de visualización interactivo 3D basado en GPU CUDA path-tracing Manuel Fernández Domínguez Notable (8.5) 2023/2024 Segmentación Semántica de Automóviles utilizando Aprendizaje Profundo Manuel Lijo Sánchez Notable (8.7) 2023/2024 Implementación de una interfaz de usuario de realidad virtual para la visualización avanzada de imágenes radiológicas en 3D. Miguel Osorio Fernández Sobresaliente (9.4)

## 2.4. OTHER MERITS

Seminar on Volume Rendering for 3D Reconstruction and Visualization of Medical Data, aimed at instructors from CIFP Anxel Casal.

Public repository InstruM3D (Creative Commons license CC BY-NC-SA 4.0) of 3D surgical instruments.

Educational game for mobile devices (iOS and Android) using the instruments modeled in InstruM3D:

- Apple Store (iOS): <https://apps.apple.com/us/app/instrum3d/id6744351094>
- Google Play (Android): <https://play.google.com/store/apps/details?id=com.CITIC.InstruM3D>

The Empty Museum / El Museo Vacío (2006): A Virtual Reality concept designed for use in museums and interpretation centers.

Member of the Doctoral Thesis Committee for Belén Masiá (University of Zaragoza, 2013) and Jeongmin Gu (Gwangju Institute of Science and Technology, 2025).

## 3. LEADERSHIP

### 3.1. MANAGEMENT OF TEACHING AND RESEARCH TEAMS

1 **Computer Graphics & Visual Computing (XLab):** Universidade da Coruña. 29/07/2024.

### 3.2. SUPERVISION OF DOCTORAL THESES AND MASTER'S THESES

- 1 **Master's Thesis:** Aplicación en dispositivos móviles para la visualización de imágenes médicas en 3D. Universidade da Coruña. 2024. 10.
- 2 **Master's Thesis:** Scientific visualization of numerical simulations of astrophysical processes. Universidad de Oviedo. 2021. Recognition of quality (2021). 10.
- 3 **Master's Thesis:** Multimodal Compression using Deep Learning for Image Reconstruction and Segmentation. Computer Vision Center. 17/08/2019. Recognition of quality (17/08/2019). 9.2.
- 4 **Master's Thesis:** Towards Adaptive Flickering-Sharpness Trade-off for Unreal Game Engine using One Sample-Per-Pixel. Universitat Autònoma de Barcelona. 05/07/2019. 9.
- 5 **Master's Thesis:** A Biophysically-Based Appearance Model for Skin Aging. Universidad de Zaragoza. 2013. 9.

### 3.3. LEADERSHIP IN UNIVERSITY AND SCIENTIFIC MANAGEMENT AND ADMINISTRATION

1 **Profesor Permanente Laboral:** Universidade da Coruña. 2025- actual.

### 3.4. RECOGNITION AND RESPONSIBILITY IN SCIENTIFIC ORGANISATIONS AND SCIENTIFIC-TECHNICAL

- 1 **Scientific Advisory Board (SAB) Embodied AI CVPR Workshop:** Universidade da Coruña. 2021-2025
- 2 **ACM I3D 2020-21 Programme Committee:** Universidad de La Coruña. 2020-2021
- 3 **High Performance Graphics 2019:** Universitat Autònoma de Barcelona. 01/01/2019-2019

### 3.5. OTHER MERITS

**SUMMARY OF CONTRIBUTIONS.** 20 journal articles in reference journals (Q1: 9/20 and Q1+Q2: 18/20). I am co-Founder & Head of the Computer Graphics & Visual Computing Xlab. I am coinventor of 3 US patents with The Walt Disney Company and Pixar. I received one Disney Inventor Award (2016). We received the Best Paper Award at SIGGRAPH Asia (2022). Moreover, I co-authored 10 articles in conferences with doubleblind peer-reviewing process, presented more than 12 times at conferences and gave several invited talks in the last years, including EPCC (Edinburgh), Microsoft (Lisbon) and Siemens Corporate Research (Princeton, US). I am also the cofounder of Deep Design Systems S.L.

### RESEARCH METRICS(as for 13/12/2025):

Google Scholar: Total Citations 1525, Index h 19, Index i10 26

**PROFESSIONAL SERVICE.** Co-organizer of Embodied-AI (CVPR 2020) High Performance Graphics 2019, Organization. Co-organization of ACM SIGGRAPH Work. on Computer Graphics for Autonomous Driving Applications, Vancouver (CA) 2018 & Los Angeles (USA) 2019. ACM I3D 2018-2021 PC Member. Posters chair for Eurographics Symposium on Rendering (2013). EG Spanish Chapter CEIG 2014 Local Chair. PC member for EG Spanish and Italian Chapters. Reviewer for a wide range of conferences and journals in related fields. Expert Evaluator for AEI/ANEP and FEUGA. More info at: <http://www.j4lley.com>.