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SUMMARY

Reconstructing a patient-compatible Purkinje Network from electroanatomical maps is a challenging
task, that could help improve models for electrophysiology simulation. In this study, we present a
method to build a Purkinje network from estimated Purkinje-myocardial junctions, that is compatible
with patient’s electroanatomical map with an average error below 1ms. We carry out a simulation
study to show the effect of PMJ density on the estimated times and Purkinje network morphology.
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1 INTRODUCTION

The reconstruction of the ventricular cardiac conduction system (CCS) from patient-specific data is a
challenging problem [} 2]]. High-resolution imaging techniques have allowed only the segmentation
of proximal sections of the CCS from images acquired ex-vivo [6]]. Some methods have already been
presented to estimate the Purkinje Network (PKN) from electro-anatomical maps (EAMs) [4, 3]]. In
this paper, we present an algorithm that estimates a set of Purkinje-myocardial junctions (PMJs) from
EAMs, and builds a PKN compatible with the the location and activation time of PMJs. The algorithm
is tested on several PKN configurations, with simulated and clinical data. The results show that the
set of PMJs built explains the observed activation map for different synthetic CCS configurations.
The average error in the predicted activation time is below the amplitude of the error in the data.

2 MATERIAL AND METHODS

An EAM was acquired at Bordeaux University Hospital using the CARTO system (Webster Biosense)
from a patient showing idiopatic ventricular fibrilation. Each sample acquired was postprocesed to
obtain the local activation time (LAT) as the maximum negative deflection in monopolar and biopolar
signals, and subsequently performing a manual validation, and filtering of samples that do not show
spatio-temporal correspondence.

2.1 Algorithm

The goal of the algorithm is to find the PKN branching configuration that is able to reach all the
estimated PMJs minimizing both the estimated LAT at the PMJ and the length of the whole PKN



Name | PMJs | PMJs<4.0 | PMJIs<1.0 | Error at PMJs Distance error | Error at mesh
PK6 1224 96.32% 84.23% | 0.69 £ 0.6 ms | 0.87 &= 1.32 mm | 0.52 &+ 0.3 ms
PK3 831 94.83% 79.42% | 0.72 £0.6ms | 1.76 = 2.61 mm | 0.63 £ 0.5 ms
PK11 442 96.83% 88.20% | 0.65 £ 0.6 ms | 1.19 = 1.39 mm | 0.63 &+ 0.5 ms
PK4 362 95.86% 78.45% | 0.70 £ 0.6 ms | 1.53 + 1.58 mm | 0.65 £+ 0.5 ms
PK15 206 95.63% 80.58% | 0.81 =2 0.7ms | 1.89 =2.06 mm | 0.72 = 0.8 ms

Table 1: Estimation of the PKN directly from the real PMJs.

structure. The endocardium is represented as a triangle mesh in a three-dimensional space,  C R>.
We have a set of estimated PMJs © = {61, ...,0,} CV xR, where V is the set of vertices of §2. For
each PMJ ¢; € R is the estimated Local Activation Time (LAT) at the PMJ. A connected, acyclic
graph = represents the PKN. Every vertex in = has an activation time according to the PKN and the
propagation velocity. The terminal vertices of = have to be locations of the estimated PMJs.

We build the estimated PKN iteratively. An initial branch =g, corresponding to the His bundle and
Left Bundle Branch (LBB), is built before the algorithm generates any further branch. The initial
branch starts always from a location determined by the user and expands to the apex through the
septal wall following the shortest path [3]. Then, we process the PMJs ordered by LAT, starting by
the earliest one. Therefore, we start building the PKN from the region closer to the LBB, which is
expected to show smaller LAT errors due to the shorter path from the Atrioventricular Node (AVN).
After step 4, we have processed i — 1 PMJs in © and have built an estimated tree Z~! that connects
them. We pick 6; and solve the Eikonal problem on {2 starting from 6; to obtain the distance from
the estimated PMJ to all the vertices on Z~!. Then, we try to connect the PMJ 6; with = using a
geodesic that ends at a point & € Z'~!. The connection point is chosen so that it minimizes the
difference between the activation time of 6; through =; and the value of ¢;. We use the constraint that
the path cannot intersect the PKN created so far. We only connect #; with a new branch if the error is
below a threshold. Once the iteration ends with the last 6;, the process is restarted trying to connect
the disregarded PMJs to the estimated PKN, using a larger threshold. The algorithm stops when all
the PMJs have been connected to = or when the error threshold reaches a predefined bound.

2.2 Experimental setup

We have built a series of synthetic PKNs on the geometry of a left ventricular endocardium recon-
structed from MRI, using the stochastic method described in [5], and have generated the correspond-
ing tissue activations. More information about the different PKN generated and some images can
be found in [1]]. For the evaluation of the algorithm, we have performed two sets of experiments.
First, we have used the actual PMJs of each PKN to build an estimated PKN and compare it with the
original. Second, we have simulated an EAM acquisition registering the activation time, according
to the different PKNs, at a number of measurement points uniformly distributed. A Gaussian error is
added to the actual LAT on the measurement points. We estimate the PMJs from this information us-
ing [1l], which are used as the input data for our algorithm. In order to have a quantitative assessment
of the algorithm we consider several measures of quality, summarized in Tables [T] and 2] We have
considered: the number of nodes in © that have been successfully connected to = (error < 4.0ms);
the mean absolute error of the activation time at PMJs ; according to the activation resulted from the
propagation through the estimated PKN and a given conduction velocity, in ms; the average distance
from the estimated branches and the real branches per branch subsegment.

3 RESULTS AND CONCLUSIONS

For the estimation of PKNs, we compared the results using real (Table[I]) and estimated PMJs (Table
[2) as input to the algorithm. As expected, the real PMJs yield smaller errors, and the PKN structure is
better reproduced (see Fig. [I). The difference in LAT at PMJs when using the real PMJs is below 1ms
for all scenarios, as it is the average errors after propagating the signal to all mesh nodes. The average
distances between tree segments is less than 1mm, due to the close match of real and estimated PKN's
in most tree sections. In addition, around 95% of the PMJs can be connected to the three with an error



angle

(a) (b) (d)

angle

LATEmor

-9.0e+01

(8)

Figure 1: Graphical results for PK11 and o0 = 0.5. The original PKN is depicted as a tubular structure in grey
color, while PMJ are represented with spheres. First row correspond to estimated PKNs using the real PMJs,
while second row are the PKN estimated from estimated PMJs (also included). PMIJs in (b) and (f) are color
coded to show the error (ms) when the estimated PKN is used. PKN in (c) and (d) show the differences in angle
(degrees) between the real and the estimated PKN branches, while (d) and (h) show the distance (mm) between
the elements of the real and the estimated PKN.

Name | PMJs | CV | PMJs<4.0 | PMJs<1.0 | Error at PMJs | Distance error | Error at mesh
PK6 114 | 1.1 76.32% 62.28% | 0.79 = 0.9ms | 2.20 £2.7mm | 1.67 £+ 1.8ms
PK3 95 | 1.2 77.89% 60.00% | 0.66 +0.7ms | 2.11 £2.4mm | 1.20 £+ 1.4ms
PK11 111 | 1.0 81.98% 63.96% | 0.76 £ 0.8ms | 1.92 £ 1.8mm | 1.40 £+ 1.4ms
PK4 9 | 1.0 85.86% 69.70% | 0.72 £0.6ms | 2.17 =2.1lmm | 1.18 & 1.2ms
PK15 83 | 1.1 79.52% 57.83% | 0.72 £ 0.5ms | 3.09 & 3.6mm | 1.38 & 1.6ms

Table 2: Estimation of PKN from estimated PMJs and error ¢ = 0.5ms. Conduction velocities (CV) in m/s.

below 4.0ms. When estimated PMJs are used to build the PKN, the conduction velocity in the PKN
has to be estimated. Since we only have a subset of the PMJs, the algorithm tends to overestimate the
conduction velocity (see Table(CV)), where most cases have values above the real value of 1.0m/s.
The percentage of estimated PMJs successfully connected to the PKN decreases, due to errors in their
location and activation time (note that error was inserted in the samples as described in [1]]), but it is
always above 75%. Although errors at PMJs are still below 1ms in all scenarios, the average error
across the mesh increases to around 1.3ms due to the underestimation in the overall number of PMJs.
The same explanation applies to the increase in distance error, since the low number of PMJs and
associated branches in the estimated PKN leads to larger distances to the real PKNN.

The estimation of PKN was carried out in an exemplary patient, based on the EAM data collected
from the LV endocardium. The electrical signals were filtered and processed to detect LATs. A total
of 210 samples manually validated, and projected to a reference endocardial surface mesh, were used
as an input for the algorithm. The conduction velocities (CV) that produced a meaningful PKNs were
in the range between 2.5 and 4.0 m/s, which are within a physiological range, although overestimation
was expected since only a total of 22 PMJs was estimated. This low number was obtained because
estimated PMJs were discarded if they did not meet criteria related to correlation with sample points.
Best case was obtained using a CV of 3m/s (see Table [3), with a full connection of PMJs and an
average error of 0.27ms at PMJs. Since we do not have ground truth data for LAT at all the mesh
point (CARTO data is interpolated), we could not obtain the associated error. The structure of the
estimated PKN changed depending on the CV used, as can be observed in Fig. [2| since the path
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Figure 2: PKN Estimated from patient’s EAM using different conduction velocities (CVs). CVs were (a)
2.5m/s, (b) 3.0m/s, (c) 3.2m/s, and (d) 4.0m/s. As can be observed, the structure of the PKN and the errors at
the PMJs change depending on the conduction velocity chosen.

CV (m/s) 2.5 3.0 32 3.5 4.0
PMJs<4.0 100.0% 100.0% 95.5% 94.4% 100.0%
PMJs<1.0 72.2% 83.3% 50.0% 38.9% 54.6%
Error at PMJs | 0.33 & 0.5ms | 0.27 &2 0.3ms | 0.99 & 1.5ms | 0.69 £ 1.19ms | 0.64 + 1.0ms

Table 3: Estimation of the PKN from EAM data.

length from the atrio-ventricular node to a given PMJ is affected by this parameter. Overall, the
errors obtained at PMJs are small enough to apply this method to estimate the PKN for patient-
specific cardiac modeling. Due to the under estimation of PMJs, the CV in PKN is expected to
be overestimated, as well as the overall activation of the endocardium. One of the most important
drawbacks of the method is the dependence on the estimation of LATs at PMJs, which have to be
carefully reviewed to avoid spatio-temporal inconsistent maps.
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