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Abstract. We study the class of weight functionsW in the unit disk for
which the averaging operators Arφ(z) = 1

|D(z,r)|

∫
D(z,r)

φ(w)dA(w) are

bounded on Lp(W ), where D(z, r) is the disk centered at z and radius
r in the hyperbolic metric. We also show the atomic decompositions on
weighted Bergman-Herz spaces Apq(W ) for weights in the above class for
which the Bergman projection is continuous on the Herz spaces Kpq(W ).

1. Introduction and preliminaries

The purpose of this paper is to study weights W in the unit disk D for
which the averaging operators

(1) Arφ(z) =
1

|D(z, r)|

∫
D(z,r)

φ(w)dA(w)

are continuous in Lp(W ) of the disk, where dA denotes the normalized
Lebesgue measure in D and D(z, r) is the disk centered at z and radius
r with respect to the hyperbolic metric in D

D(z, r) = {w ∈ D : |ϕz(w)| ≤ tanh(r)}, 0 < r <∞,
where, as usual, we write ϕz(u) = z−u

1−z̄u for the Möbius transformation. It is

well known and easy to see that Ar is bounded on Lp(dAα) for any α > −1
and 1 ≤ p ≤ ∞, where dAα(z) = (α+1)(1−|z|2)αdA(z). For further results
about its boundedness for radial weights and on more general spaces the
reader is referred to [1] and references therein.

We will also study Berezin-type operators of the form b(ε1,ε2)

b(ε1,ε2)(φ)(z) = (1− |z|2)ε1
∫
D

(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
φ(w)dA(w).

The operators Ar and b(ε1,ε2) are comparable, in fact for φ ≥ 0

Ar(φ) ≤ Crb(ε1,ε2)(φ)
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and for certain weights they share some continuity properties. It is of spe-
cial interest the case b(0,α) = P ∗α associated to the Forelli-Rudin Bergman
projections Pα and b(α,α) that are the α-Berezin transforms used to study
Toeplitz operators on the Bergman space.

The weighted inequalities for the averaging operators Ar will be based
on two properties of the weights: on one hand a weak doubling property
denote by Dr given by W (D(z, 2r)) ≤ CrW (D(z, r)) where D(z, r) is the
disk centered at z in the hyperbolic geometry in D, and on the other hand the
property that we denote by brp which is the Muckenhoupt class Ap restricted
to hiperbolic disks of the same radius r. Weights in these classes (even the
Lebesgue measure) are not in general doubling in the hyperbolic geometry
making impossible the treatment of the averaging operators via the Hardy-
Littlewood maximal function acting in a space of homogeneous.

In this paper we shall also study Bergman-Herz spaces and in particular
we shall prove that atomic decompositions are possible in these spaces. The
Bergman-Herz spaces, that we denote by Apq(W ) consist of all the holomor-
phic functions belonging to the Herz space on D defined by the norm

‖f‖Kpq(W ) =

( ∞∑
n=1

‖f‖qLp(An,W )

)1/q

<∞,

with An = {z ∈ D, 1 − 2−(n−1) ≤ |z| < 1 − 2−n}. Atomic decomposition
on weighted Bergman spaces have been extensively studed and constructed
for Békollé weights by Békollé-Bonami [4], Luecking [10] and Constantin
[5]. In this work we use the classes brp to propose ”weighted Kellog spaces”
as the natural sequence space to base atomic decompositions for weighted
Bergman-Herz spaces.

In Section 2 we introduce classes of weakly doubling weights and study
the continuity of the Berezin-type transforms b(ε1,ε2) in L1(W ). In Section 3
we obtain a full characterization of weights W for which there exists r > 0
such that Ar is continuous in Lp(W ). Weights in Dr where the doubling
constant Cr grows like eMr will be called M-doubling. We will prove that for
these weights Ar and b(ε1,ε2) have common continuity properties in L1(W ).
Then in Section 4 we study Bergman-Herz spaces with weights satisfying
the property brp including the sequence space where the sample sequences

(f(zk))k taken from an r-lattice (zk)k lie for f ∈ Apq(W ). In Section 5 we
prove that that atomic decompositions are posible for the elements the Herz
space Apq(W ), 1 ≤ p, q < ∞, provided the operator P ∗ is continuous in the
Herz space Apq(W ).

By a weight we will always mean a function W : D → (0,∞) which
is locally integrable with respect to dA. We write dW (z) = W (z)dA(z),
dWε(z) = (1 − |z|2)εdW (z). For 1 ≤ p ≤ ∞ we denote ‖f‖Lp(W ) =

(
∫
D |f(z)|pW (z)dA(z))1/p and W (E) =

∫
EWdA.

Throughout the paper hol(D) is the space of all holomorphic functions in
D and Ap = Lp(D) ∩ hol(D ) the Bergman space for 1 ≤ p ≤ ∞.
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We write Ap(W ) for the space of all holomorphic functions in Lp(W ).
Since we want that the polynomials (in particular constant functions)

belong to Ap(W ) we assume that W ∈ L1(dA) when dealing with spaces of
holomorphic functions. We have the chain of inclusions A∞(D) ⊂ Ap2(W ) ⊂
Ap1(W ) for p1 ≤ p2 ≤ ∞.

Denote the Bergman-type projections, for α > −1,

Pαf(z) =

∫
D

f(w)

(1− zw)α+2
dAα(w).

Pα is the orthogonal projection of L2(dAα) onto L2(dAα) ∩ hol(D).
The case α = 0 is the standard Bergman projection. We also denote

P ∗αf(z) =

∫
D

f(w)

|1− zw|α+2
dAα(w).

We will write P = P0 and P ∗ = P ∗0 . It is well known that Pα and P ∗α are

continuous on Lp(D, (1 − |z|2)εdA(z)) for 0 < ε + 1 < p(α + 1), (see [8,
Theorem 1.9]).

In fact, for 1 < p <∞, the complete characterization of weights for which
Pα and P ∗α are bounded on Lp(Wα) was given by D. Bekollé (see [3]). By
using the pseudo-distance

d(z, w) =
∣∣∣|z| − |w|∣∣∣+

∣∣∣ z|z| − w

|w|

∣∣∣
and writing B(z,R) = {w : d(w, z) < R}, it was shown that a P ∗α is bounded
on Lp(Wα) is equivalent to the existence of a constant Cαp (W ) > 0

(2)
( 1

Aα(B)

∫
B
WdAα

)( 1

Aα(B)

∫
B
W−1/(p−1)dAα

)p−1
≤ Cαp (W )

for any B = B(z,R) such that B ∩ ∂D 6= ∅.
Let us finally recall the notion of r-lattice (see [12]) : for every 0 < r <∞

there exists a set that we will call an r-lattice Dr = {zi} of points in D and
an integer N (independent of r) such that

P1) {D(zi, r/4)}i are disjoint,
P2) D = ∪iD(zi, r),
P3) Every point of D belongs to at most N elements of {D(zi, 2r)}i.
For this set Dr we can find subsets Dn such that

(3) D(zn, r/4) ⊂ Dn ⊂ D(zn, r)

for all n ≥ 1, and {Dn}n∈N is a disjoint covering of D.
We will write A ∼ B if there exists C > 1 such that C−1A ≤ B ≤ CA.

2. Doubling weights and Berezin-type transforms

We will consider two doubling conditions for the measures defined by
weights. To start off we mention a basic estimate for the area measure. We
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first recall that D(z, r) = ∆(C(z, r), R(z, r)) with

C(z, r) =
1− s2

1− s2|z|2
z, R(z, r) =

1− |z|2

1− s2|z|2
s

where we use the notation s = tanh r ∈ (0, 1) and ∆(w, r′) for the euclidean
ball of center w and radius r′.

In particular,

(4) |D(z, r)| = (1− |z|2)2s2

(1− |z|2s2)2
, s = tanh(r).

From (4) we can obtain uniform estimates in z for |D(z,2r)|
|D(z,r)| , in fact

|D(z, 2r)|
|D(z, r)|

=

(
tanh(2r)

tanh(r)

)2
(

1− |z|2 tanh2(r)

1− |z|2 tanh2(2r)

)2

≤ C
(

1− |z| tanh(r)

1− |z| tanh(2r)

)2

.

Since 1−|z| tanh(r)
1−|z| tanh(2r) is increasing in |z| we find that

(5)
|D(z, 2r)|
|D(z, r)|

≤ C
(

1− tanh(r)

1− tanh(2r)

)2

≤ Ce4r.

Definition 1. Let 0 < r <∞. We say that a weight W ∈ Dr if there exists
Cr > 0 such that

(6) W (D(z, 2r)) ≤ CrW (D(z, r))

for all z ∈ D.

Using (5) we have that condition W ∈ Dr is equivalent to

A2r(W )(z) ∼ Ar(W )(z).

Observe that W = 1 ∈ ∩r>0Dr and that if W ∈ ∩r>0Dr then for each
0 < r1 < r2 <∞ one has

(7) W (D(z, r1)) ∼W (D(z, r2)), z ∈ D.

A special subclass of weights in ∩r>0Dr is given by those where Cr =
CeMr for certain M ≥ 0.

Definition 2. Let 0 < W (z) <∞ be locally integrable and M ≥ 0. We say
that W is M-doubling if there exists C > 0 such that

(8)
W (D(z, 2r))

W (D(z, r))
≤ CeMr,

for all z ∈ D and r > 0.

Remark 3. If W satisfies the M-doubling condition then there exists β > 0
such that

W (D((z, kr)) ≤ kβeMkrW (z, r)

for k ≥ 2.
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Indeed, assume W (D(z, 2r)) ≤ CeMrW (D(z, r)) and set N = [log2k].
Then for each r > 0

W (D(z, kr))

W (D(z, r))
≤ CNΠN

j=1(e
Mkr

2j ) ≤ eMkrkβ,

with β = log2(C).

Proposition 4. Let α > −1. Then dAa satisfies an (4 + 6|α|)-doubling
condition.

Proof. Let |z| < 1 and r > 0 and set s = tanh r. Due to the fact that we
deal with radial weights we have that Aα(D(z, r)) = Aα(D(|z|, r)). Since

D(|z|, r) ∩ R = (
|z| − s
1− s|z|

,
|z|+ s

1 + s|z|
)

then

D(|z|, r) ⊂ {w : max{ |z| − s
1− s|z|

, 0} ≤ |w| < |z|+ s

1 + s|z|
}.

In particular

(9)
(1− |z|)(1− s)

2
≤ 1− |w| ≤ min{1, 21− |z|

1− s
}, w ∈ D(|z|, r).

By (9) we have for any α > −1,

(10)

(
2

1− s

)−|α|
(1− |z|)α ≤ (1− |w|)α ≤

(
2

1− s

)|α|
(1− |z|)α,

Now observe that if s′ = tanh(2r), we have that s′ = 2s
1+s2

. Hence, using

that (1−s)2
2 ≤ 1− s′ = (1−s)2

1+s2
≤ (1− s)2 and 1− s = 2

e2r+1
we conclude that

Aα(D(z, 2r)) ≤ C (1− |z|)α

(1− s′)|α|
A(D(z, 2r)) ≤ Ce4r (1− |z|)α

(1− s′)|α|
A(D(z, r))

≤ C e4r

(1− s)|α|(1− s′)|α|
Aα(D(z, r)) ≤ C e4r

(1− s)3|α|Aα(D(z, r))

≤ Ce(4+6|α|)rAα(D(z, r)).

�

Recall that for α > −1 one defines the α-Berezin transform of φ ∈
L1(dAα) by the formula

Bα(φ)(z) = (1− |z|2)2+α

∫
D

φ(w)

|1− zw̄|4+2α
dAα.

Let us consider the following definition (see [8]) which allows to consider
P ∗α and Bα as special cases.
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Definition 5. Let εi > −1 for i = 1, 2. We shall define

b(ε1,ε2)(φ)(z) = (1− |z|2)ε1
∫
D

(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
φ(w)dA(w)

for φ ∈ L∞(dA).

Remark 6. Let 1 ≤ p <∞ and δ ∈ R. Then b(ε1,ε2) is bounded on Lp(dAδ)
iff −pε1 < δ + 1 < p(ε2 + 1) (see [8, Thm 1.9]).

Lemma 7. For each R > 0 there exist CR > 0, such that for every φ ≥ 0
measurable,

(11) Ar(φ) ≤ CR
r2
b(ε1,ε2)(φ), 0 < r ≤ R.

Proof. Denote s = tanh r. Clearly we have

(12) (1− |z|2)2s2 ≤ |D(z, r)| ≤ (1− |z|2)2s2

(1− (tanhR)2)2
, 0 < r ≤ R.

and also, using the well-known formulas for w = ϕz(u)

(13) |1− zw̄| = 1− |z|2

|1− zū|
and

(14) (1− |w|2) =
(1− |u|2)(1− |z|2)

|1− zū|2
.

one concludes that for w ∈ D(z, r) one gets

1− |z|2 ≤ |1− w̄z| ≤ (1− |z|2)

1− s
,

and one gets

(1− s2)(1− |z|2) ≤ (1− |w|2) ≤ 2(1− |z|2)

1− s
.

Hence, since r ≤ e2r−1
2 ≤ s ≤ e2r − 1 and 0 < s < tanhR we obtain

Ar(φ)(z) ≤ 1

r2(1− |z|2)2

∫
D(z,r)

φ(w)dA(w)

≤ CR
(1− |z|2)ε1

r2

∫
D(z,r)

(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
φ(w)dA(w)

≤ CR
r2
b(ε1,ε2)(φ)(z).

�

Theorem 8. Let W be a weight satisfying the M-doubling condition. If
min{ε2, 2 + ε1} > M/2 then for each r > 0 there exists Kr > 0 such that

b(ε1,ε2)(W ) ≤ KrAr(W ).
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Proof. Using (13) and (14) one easily concludes that for w ∈ D(z, r), u =
ϕz(w) and r > 0

(15)
(1− |z|2)ε1(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
=
|1− zū|ε1−ε2+2(1− |u|2)ε2

(1− |z|2)2
.

In particular for ε1 − ε2 + 2 ≥ 0 one has

(16)
(1− |z|2)ε1(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
≤ C (1− |u|)ε2

(1− |z|2)2

and for ε1 − ε2 + 2 < 0

(17)
(1− |z|2)ε1(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
≤ C (1− |u|)2+ε1

(1− |z|2)2
,

where we have used the estimate |1−zū| ≥ 1−|u|. Take δ = min{ε2, 2+ε1} >
0 and decompose

D = D(z, r) ∪ (∪∞k=1D(z, (k + 1)r) \D(z, kr)) .

Note that for w /∈ D(z, kr) one has that |u| > tanh(kr) and therefore
1− |u| < 2

e2kr−1
≤ 2e−2kr. Hence from (16) and (17)

(1− |z|2)ε1(1− |w|2)ε2

|1− zw̄|ε1+ε2+2
≤ Ce−2krδ

(1− |z|2)2
, w ∈ D(z, (k + 1)r) \D(z, kr).

This shows, using Remark 3, that

(1− |z|2)2b(ε1,ε2)(W )(z) ≤ CW (D(z, r)) + C
∞∑
k=1

e−2krδW (D(z, (k + 1)r))

≤ C
( ∞∑
k=0

er(M−2δ)kkβ
)
W (D(z, r)).

Denoting Br =
∑∞

k=0 e
r(M−2δ)kkβ, one gets that Br <∞ since 2δ > M and

for a constant Cr that b(ε1,ε2)(W ) ≤ CrBrAr(W ). �

Now we study the weights for which b(ε1,ε2) is bounded on Lp(W ) for
1 ≤ p <∞.

Proposition 9. Let ε1 + ε2 > −1, 1 < p <∞ and W be a weight such that
W−1/(p−1) is also locally integrable. The following statements are equivalent.

i) b(ε1,ε2) extends to a bounded operator on Lp(W ).

ii) b(ε2,ε1) extends to a bounded operator on Lp
′
(W−1/(p−1)).

iii) P ∗ε1+ε2 extends to a bounded operator on Lp(Wε1p).

iv) P ∗ε1+ε2 extends to a bounded operator on Lp
′
((W−1/(p−1))ε1p′).

Moreover the norms coincide.

Proof. The equivalence (i) ⇐⇒ (ii) follows from the fact that b(ε1,ε2) is the

transpose of b(ε2,ε1) with respect to the duality of Lp(W ) and Lp
′
(W−1/(p−1))

given by
∫
D fḡdA.
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The equivalence (iii) and (iv) is the symmetry of Bekolle’s condition (2).
Finally for (iii) ⇐⇒ (i) use that b(0,ε) = P ∗ε , and

b(ε1,ε2)(φ) = (1− |z|2)δb(ε1−δ,ε2+δ)((1− |w|2)−δφ).

for δ ∈ R. Hence b(ε1,ε2) is bounded on Lp(W ) if and only if b(ε1−δ/p,ε2+δ/p)

is bounded on Lp(Wδ).
�

Corollary 10. Let α > −1 and 1 < p <∞. Then P ∗α is bounded on Lp(Wα)
if and only if b(α/p,α/p′) is bounded on Lp(W ).

Proposition 11. Let W be a locally integrable weight. Then b(ε1,ε2) extends

to a bounded operator on L1(W ) if and only if b(ε2,ε1)(W ) ≤ CW a.e.

In particular for α > −1 , P ∗α is bounded on L1(W ) if and only if P ∗α(W ) ≤
CW a.e.

Proof. For each non negative f ∈ L1(D) one has W−1f ∈ L1(W ). Therefore

(18)

∫
D
fW−1b(ε2,ε1)(W )dA(w) =

∫
D
b(ε1,ε2)(fW

−1)WdA.

giving directly the continuity of b(ε1,ε2) if b(ε2,ε1)(W ) ≤ CW a.e. Conversely

if b(ε1,ε2) is continuous then using that the dual of L1(D) is L∞(D) we con-
clude by (18) that b(ε2,ε1)(W ) ≤ CW a.e. �

3. Averaging operators

To study the Ar it will be convenient to introduce the following related
averaging operator.

Definition 12. Let 0 < W (z) < ∞ be locally integrable and 0 < r < ∞.
We define

AWr (φ)(z) =
1

W (D(z, r))

∫
D(z,r)

φ(w)W (w)dA(w).

Proposition 13. For each 0 < W (z) <∞ locally integrable and 0 < r <∞
the operator AWr is bounded on Lp(W ) for 1 < p ≤ ∞ and of weak type
(1,1) on L1(W ).

Proof. Since ‖AWr (f)‖∞ ≤ ‖f‖∞ then using interpolation we shall simply
see that AWr is weak type (1,1). Let Ω = {z : AWr (φ)(z) > λ}.

Consider an r/2-lattice Dr/2 = {zn}. For each z ∈ Ω there exists n = n(z)
such that z ∈ Dn ⊂ D(zn, r/2). Hence

W (Dn(z)) ≤ W (D(zn, r/2)) ≤W (D(z, r))

≤ 1

λ

∫
D(z,r)

φ(w)W (w)dW

≤ C

λ

∫
D(zn,3r/2)

φ(w)W (w)dW.
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Hence writing Ω = ∪n(Ω ∩Dn) we have

W (Ω) ≤ C

λ

∑
n∈N

∫
D(zn,3r/2)

φ(w)W (w)dW

≤ C ′

λ

∫
D
φ(w)W (w)dW

where we use that there is a finite number of overlappings of D(zn, 3r/2) in
the last estimate. �

Proposition 14. Let 0 < r < ∞ and W ∈ Dr. Then the operator AWr is
bounded on L1(W ).

Proof. Assume that W ∈ Dr. Since D(w, r) ⊂ D(z, 2r) for any w ∈ D(z, r)

C−1 ≤ W (D(w, r))

W (D(z, r))
≤ C,w ∈ D(z, r).

This allows to write∫
D
AWr (φ)(z)W (z)dA(z) =

∫
D

∫
D

χD(z,r)(w)

W (D(z, r))
φ(w)W (w)W (z)dA(w)dA(z)

≤ C

∫
D

(∫
D(w,r)

W (z)

W (D(w, r))
dA(z)

)
φ(w)W (w)dA(w)

≤ C

∫
D
φ(w)W (w)dA(w).

�

Let us now consider the Muckenhuupt Ap condition restricted to hyper-
bolic disks with fixed radius r.

Definition 15. Let 0 < r <∞ and 1 ≤ p <∞. We say that a weight is a
brp weight, for short W ∈ brp, if

‖W‖brp = sup
z∈D

(
Ar(W )(z)

)1/p(
Ar
(
W−1/(p−1)

)
(z)
)1/p′

<∞, for 1 < p <∞,

and

‖W‖br1 = sup
z∈D
Ar(W )(z) sup

ξ∈D(z,r)
W−1(ξ) <∞.

Proposition 16. Let 1 ≤ p <∞ and 0 < r <∞. If W ∈ brp then W ∈ Dr/2.

Proof. Let p > 1 and W ∈ brp . We shall show that ArW (z) ≤ CrAr/2W (z).
Since

|D(z, r)| ≤ (W (D(z, r))1/p

(∫
D(z,r)

W−1/(p−1)dA

)1/p′

, r > 0, z ∈ D.
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the brp condition implies

Ar(W )(z) ≤ C|D(z, r)|p−1

(∫
D(z,r)

W−1/(p−1)dA

)1−p

≤ C|D(z, r/2)|p−1

(∫
D(z,r/2)

W−1/(p−1)dA

)1−p

≤ CrAr/2(W )(z).

In the case p = 1 we have Ar(W )(z) ≤ W (ξ) for all ξ ∈ D(z, r). Then the
result follows integrating both sides of this inequality on D(z, r/2). �

Lemma 17. Let 0 < r <∞, 1 < p <∞ and W a locally integrable weight.
Then W ∈ brp if and only if there exists a constant C > 0 such that

Ar(φ)(z) ≤ C(AWr (φp)(z))1/p

for any measurable φ ≥ 0.

Proof. First assume W ∈ brp. Hence for φ ≥ 0 we have the following estimate

Ar(φ)(z) ≤ C

|D(z, r)|

(∫
D(z,r)

φpWdA

)1/p(∫
D(z,r)

W−p
′/pdA

)1/p′

≤ C(
1

W (D(z, r))

∫
D(z,r)

φpWdA)1/p.

Hence

(19) Ar(φ)(z) ≤ C(AWr (φp)(z))1/p.

Assume now that Ar(φ) ≤ C(AWr (φp))1/p. Selecting φ = W
− 1
p−1 we have

φpW = φ and therefore for any disc D(z, r),

Ar(φ)(z) =
1

|D(z, r)|

∫
D(z,r)

W−1/(p−1)dA

and

(AWr (φp)(z))1/p = (
1

W (D(z, r))

∫
D(z,r)

W−1/(p−1)dA)1/p.

This gives W ∈ brp.
�

Theorem 18. Let 0 < r < ∞, 1 < p < ∞ and W a locally integrable
weight. The following are equivalent

i) W ∈ brp.
ii) W ∈ Dr/2, W−p

′/p ∈ Dr/2 and the averaging operator Ar is of weak-
type (p, p) on Lp(W ).
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Proof. (i) =⇒ (ii) Taking into account that W ∈ brp is equivalent to W−p
′/p ∈

brp′ , Proposition 16 gives W ∈ Dr/2 and W−p
′/p ∈ Dr/2.

Therefore, using Lemma 17 and Proposition 13, we have Ar is weak-type
(p, p) on Lp(W ).

(ii) =⇒ (i) Consider φ(w) = W−1/p(w)g(w)χD(z,r/2)(w) for some g ∈
Lp(D(z, r/2)) non negative and with norm 1. Hence for ξ ∈ D(z, r/2) one
has that D(z, r/2) ⊂ D(ξ, r) ⊂ D(z, 3r/2) and therefore

Ar(φ)(ξ) =
1

|D(ξ, r)|

∫
D(ξ,r)∩D(z,r/2)

gW−1/pdA

≥ C

|D(z, r/2)|

∫
D(z,r/2)

gW−1/pdA.

Therefore

W (D(z, r/2)) ≤W

(
{ξ : Ar(φ)(ξ) >

C

|D(z, r/2)|

∫
D(z,r/2)

gW−1/pdA}

)
.

Hence(
1

|D(z, r/2)|

∫
D(z,r/2)

gW−1/pdA

)
(W (D(z, r/2))1/p ≤ ‖Ar‖Lp→Lpweak .

and taking the supremum over functions g in the unit ball of Lp(D(z, r/2))
one gets

1

|D(z, r/2)|
(

∫
D(z,r/2)

W−p
′/pdA)1/p′(W (D(z, r/2))1/p ≤ ‖Ar‖Lp→Lpweak

and, taking into account that W ∈ Dr/2 and W−p
′/p ∈ Dr/2 we obtain that

W ∈ brp. �

Corollary 19. Let 1 ≤ p < ∞, r > 0 and W a weight. Consider the
following statements:

i) W ∈ brp.
ii) Ar/2 is bounded on Lp(W ).

iii) Ar/2 is of weak-type (p, p) on Lp(W ).

iv) W ∈ br/4p .

Then (i)=⇒(ii)=⇒(iii)=⇒(iv).

Proof. (i) =⇒ (ii) Assume that W ∈ brp for some r > 0 then in particular

W ∈ br/2p and W ∈ Dr/2 by Proposition 16. From Lemma 17 one obtains

Ar/2(ϕ)(z) ≤ C(AWr/2(ϕp)(z))1/p

(the case p = 1 is similar and left to the reader). Hence Ar/2 is bounded on
Lp(W ) using Proposition 14.

(ii) =⇒ (iii) is obvious.
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(iii) =⇒ (iv) It is shown in the proof of Theorem 18 that if Ar/2 is of weak-

type (p, p) on Lp(W ) then W ∈ br/4p (same argument works for p = 1). �

Same arguments show the following situation for weights W ∈ ∩r>0Dr.

Corollary 20. Let 0 < r <∞, 1 ≤ p <∞ and W ∈ ∩s>0Ds. The following
are equivalent

i) W ∈ brp.
ii) Ar is bounded on Lp(W ).

iii) Ar is of weak-type (p, p) on Lp(W ).

As an application of the continuity of Ar we prove that for W ∈ brp, the

well known inequality ‖(1−|z|2)f ′‖Lp ≤ C‖f‖Ap has an extension in Ap(W ).

Proposition 21. Let 1 ≤ p <∞ and W ∈ ∪r>0b
r
p. Then there exist r0 > 0

and C > 0 such that

‖(1− |z|2)f ′‖Lp(W ) ≤
C

s3
‖f‖Ap(W ), f ∈ Ap(W ), 0 < s ≤ tanh(r0).

Proof. Using Corollary 19 there exists r0 such that Ar0 is bounded on
Lp(W ). For each 0 < ρ < 1,

ρf ′(0) = 2

∫ 2π

0
f(ρeit)e−it

dt

π

and integrating over (0, s) with respect to ρdρ we have

s3f ′(0) = 6

∫
|w|≤r

f(w)
w̄

|w|
dA(w).

We shall show the pointwise estimate

(20) (1− |z|2)|f ′(z)| ≤ C

s3
Ar0(|f |)(z), 0 < s ≤ tanh(r0).

For 0 < s ≤ tanh(r0), applying (20) to f ◦ ϕz and using (12) we obtain

(1− |z|2)|f ′(z)| ≤ 6

s3

∫
D(z,r)

|f(u)|(1− |z|
2)2

|1− zū|4
dA(u)

≤ 96

s3(1− |z|2)2

∫
D(z,r)

|f(u)|dA(u)

≤ 96s2
0

s3(1− s2
0)2

1

|D(z, r0)|

∫
D(z,r)

|f(u)|dA(u)

≤ C

s3
Ar0(|f |)(z).

We conclude the proof using that Ar0 is bounded on Lp(W ). �

Definition 22. We write W for the set of weights W such that there exist
r0 > 0 and C > 0 such that

W (D(z, r0))

|D(z, r0)|
≤ CW (z), z ∈ D.
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Remark 23. For every r > 0, br1 ⊆ W, since

W (D(z, r))

|D(z, r)|
≤ C inf

ξ∈D(z,r)
W (ξ), z ∈ D,

for every W ∈ br1.

Remark 24. For weights W ∈ ∩r>0Dr, it follows from (7) that W ∈ W if
and only if for any r > 0 there exists Cr > 0 so that

Ar(W )(z) ∼ W (D(z, r))

(1− |z|2)2
≤ CrW (z), z ∈ D.

We end this section by showing that for M -doubling weights the mem-
bership of W to br1 is also related to the continuity of b(ε1,ε2) to L1(W ).

Proposition 25. Let W be an M-doubling weight for some M ≥ 0. The
following are equivalent.

i) W ∈ W.
ii) W ∈ br1 for some r > 0.

iii) W ∈ br1 for all r > 0.

Proof. Of course (iii) =⇒ (ii) =⇒ (i).
We only need to show that (i) =⇒ (iii). Let W ∈ W. Since every M -

doubling weight belongs to ∩r>0Dr we have by Remark 23 for any r > 0
that Ar(W ) ≤ CW . Using Theorem 8 if we select (ε1, ε2) such that ε2 >
M/2, ε1 + 2 > M/2 one has b(ε1,ε2)(W ) ∼ Ar(W ) ≤ CW . Hence from

Proposition 11, b(ε2,ε1) is continuous in L1(W ), which using (11) gives that

Ar is bounded on L1(W ) for any r > 0 and therefore by Corollary 19,

W ∈ br/21 for any r > 0. �

Proposition 26. Let W be an M-doubling weight for some M ≥ 0. The
following are equivalent.

i) W ∈ W.
ii) b(ε2,ε1) is continuous in L1(W ) for all (ε1, ε2) such that ε2 > M/2, ε1+

2 > M/2.
iii) There exists (ε1, ε2) such that b(ε1,ε2)(W ) ≤ CW.

Proof. (i) ⇒ (ii) is part of the proof of (i) ⇒ (iii) in Proposition 25.
(ii) ⇒ (iii) ⇒ (i) are obvious.

�

Corollary 27. Let M < 4, M/2 < δ < 2 + α −M/2, 1 ≤ p < ∞ and
let W ∈ W be M-doubling such that W ∈ L1(dA). Then P ∗α is bounded on
L1(Wδ). If W is radial, then P ∗α is bounded on Lp(Wδ), for 1 ≤ p <∞.

Proof. We notice that

‖P ∗α(φ)‖L1(Wδ) = ‖b(δ,α−δ)((1− |w|2)δφ)‖L1(WdA).
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Since by Proposition 26 we have that b(δ,α−δ) is bounded on L1(W ), the
result follows for p = 1. The extension to p > 1 for radial weights follows
from Bekolle’s condition (see [2, Remark 2.2]). �

4. Weighted Bergman-Herz spaces

Let us now study some properties of the weighted Bergman-Herz spaces.

Definition 28. Let W be a weight in D and 1 ≤ p, q ≤ ∞. We define
Kpq(W ) as the space consisting of all complex measurable functions on D
such that

‖f‖Kpq(W ) =

( ∞∑
n=1

‖f‖qLp(An,W )

)1/q

<∞,

where for n ≥ 1, An = {z ∈ D, rn−1 ≤ |z| < rn}, and rn = 1 − 2−n. We
write Apq(W ) = Kpq(W ) ∩ hol(D).

We have that Kpp(W ) = Lp(W ) and App(W ) = Ap(W ).

Remark 29. Note that f ∈ Kpq(W ) if and only if W 1/pf ∈ Kpq(dA). Hence,
using

< f, g >=

∫
D
f(z)g(z)dA(z) =

∫
D
f(z)W (z)1/pg(z)W (z)−1/pdA(z)

we have the duality (Kpq(W ))∗ = Kp
′

q′ (W
−1/(p−1)) for 1 ≤ p, q <∞.

Definition 30. We denote `WDr(p, q), the Kellog space adapted to the set Dr
consisting of all sequences (an)n≥0 for which

‖(an)‖`WDr (p,q) =
( ∞∑
n=1

(
∑

{k∈N:zk∈An}

W (D(zk, r))|ak|p)q/p
)1/q

<∞.

Lemma 31. Let R > 0. There exists M > 0 such that for all 0 < r ≤ R

D(z, r) ⊂ ∪|k−n(z)|≤MAk

where z ∈ An(z).

Proof. Using (14) there exist 0 < C1 < 1 and C2 > 1 such that

C1(1− |z|2) ≤ 1− |w|2 ≤ C2(1− |z|2),

w ∈ D(z, r), 0 < r ≤ R. If z ∈ An then

C12−n ≤ 1− |w| ≤ 4C22−n, w ∈ D(z, r), 0 < r ≤ R.

We then have for some k1, k2 ∈ Z, that 2−n−k1 ≤ 1 − |w| ≤ 2−n+k2 for any
w ∈ D(z, r), 0 < r ≤ R and z ∈ An. This gives the result. �
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Lemma 32. Let R > 0. Then there exists C > 0 such that

‖h‖Kpq(W ) ≤ C
( ∞∑
n=0

(
∑
zk∈An

∫
Dk

|h(z)|pW (z)dA(z))q/p
)1/q

,

for any h measurable function and 0 < r ≤ R.

Proof. Due to Lemma 31 one has for each n ∈ N,

An = ∪|n−l|≤M ∪zk∈Al (Dk ∩An).

Hence

‖h‖qKpq(W )
=

∞∑
n=0

(∫
An

|h(z)|pW (z)dA(z)

)q/p

≤
∞∑
n=0

 ∑
|n−l|≤M

∑
zk∈Al

∫
Dk

|h(z)|pW (z)dA(z)

q/p

≤ C
∞∑
n=0

∑
|n−l|≤M

 ∑
zk∈Al

∫
Dk

|h(z)|pW (z)dA(z)

q/p

≤ C(2M + 1)

∞∑
l=0

 ∑
zk∈Al

∫
Dk

|h(z)|pW (z)dA(z)

q/p

.

�

For an r-lattice Dr = (zk)k we consider the sampling operator defined in
Apq(W )

Tr(f) = (f(zk))k

and the operator

Rr(f) =

∞∑
k=1

f(zk)χDk ,

where {Dk} are the regions associated to the r-lattice Dr = (zk)k.

Lemma 33. Let 1 ≤ p, q < ∞. If W ∈ br0p for some r0 > 0 then Tr is

bounded from Apq(W ) into `WDr(p, q) for 0 < r ≤ r0.
Moreover, there exist C > 0 such that for 0 < r ≤ r0

‖
(
f(zk)

)
k
‖`WDr (p,q) ≤ C‖W‖brp ‖f‖Apq(W ) .

Proof. First notice that since |D(z, r0)|/|D(z, r)| ≤ C(r, r0), then W ∈ br0p
implies that W ∈ brp for every r ≤ r0.

There exists C1 > 0 (see [8, p.69]) such that for any holomorphic function
on D we have

|f(zk)| ≤
C1

|D(zk, r)|

∫
D(zk,r)

|f(w)| dA(w) ≤
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C1

|D(zk, r)|

(∫
D(zk,r)

|f |pWdA

)1/p(∫
D(zk,r)

W−1/(p−1)dA

)1/p′

.

Hence

W (D(zk, r)) |f(zk)|p ≤ Cp1‖W‖
p
brp

∫
D(zk,r)

|f(w)|pW (w)dA(w).

Hence for r ≤ r0, since ∪zk∈AnD(zk, r) ⊂ ∪|l−n|≤MAl by Lemma 31 we
obtain  ∑

zk∈An

W (D(zk, r)) |f(zk)|p
1/p

≤ C1‖W‖brp

(∫
∪zk∈AnD(zk, r)

|f(w)|pW (w)dA(w)

)1/p

≤ C1‖W‖brpN
1/p

 ∑
|l−n|≤M

(∫
Al

|f(w)|pW (w)dA(w)

)1/p


Now the lemma follows by Minkowski’s inequality. �

Lemma 34. Let 1 < p < ∞, 1 ≤ q < ∞ and W ∈ br0p for some r0 > 0.

Then Rr is bounded from Apq(W ) into Kpq(W ) and there exists C > 0 such
that for 0 < r < r0/2, and s = tanh r,

‖(Id−Rr)(f)‖Kpq(W ) ≤ Cs‖f‖Apq(W ).

Proof. A combination of Lemmas 32 and 33 show that Rr is bounded from
Apq(W ) into Kpq(W ).

As in the proof of [12, Lemma 4.4.3], there exists a constant C1 > 0 such
that for z ∈ D(zk, r) and 0 < r < r0/2

|f(z)− f(zk)| ≤
C1s(1− |zk|2)

(1− tanh r0/2)2
sup{|f ′(w)| : w ∈ D(zk, r0/2)},

for every f ∈ hol(D).
Hence, using that (1−|zk|2) ∼ (1−|w|2) for w ∈ D(zk, r) and 0 < r < r0/2

together with (20)

|f(z)− f(zk)| ≤ Cs sup{Ar0/2(|f |)(w) : w ∈ D(zk, r0/2)}

≤ Cs
1

|D(zk, r0)|

∫
D(zk,r0)

|f(u)|dA(u)

≤ Cs

|D(zk, r0)|

(∫
D(zk,r0)

|f |pWdA

)1/p(∫
D(zk,r0)

W
−1
p−1dA

)1/p′

.

This gives

(21)

∫
Dk

|f(z)− f(zk)|pW (z)dA(z) ≤ Cpsp‖W‖p
b
r0
p

∫
D(zk,r0)

|f |pWdA.
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Therefore∑
zk∈An

∫
Dk

|f(·)− f(zk)|pWdA ≤ C1s
p‖W‖p

b
r0
p
N

∫
∪zk∈AnD(zk,r0)

|f |pWdA.

Hence we have ∑
zk∈An

∫
Dk

|f(·)− f(zk)|pWdA

1/p

≤ C2s‖W‖br0p

 ∑
|l−n|≤M

∫
Al

|f |pWdA

1/p

.

Thus, using Minkowski’s inequality, ∞∑
n=0

 ∑
zk∈An

∫
Dk

|f(z)− f(zk)|pW (z)dA(z)

q/p


1/q

≤ Cs ‖f‖Apq(W ) .

Finally applying Lemma 32 to h = (Id−Rr)(f) we obtain

‖(Id−Rr)(f)‖Kpq(W ) ≤

 ∞∑
n=0

 ∑
zk∈An

∫
Dk

|f(z)− f(zk)|pW (z)dA(z)

q/p


1/q

≤ Cs ‖f‖Apq(W ) .

�

5. Atomic decomposition for Apq(W )

Definition 35. Let 0 < r <∞. We define

Srf(z) =
∞∑
k=1

|Dk| f(zk)K(zk, z).

where K(w, z) = 1
(1−w̄z)2 denotes the Bergman kernel and D = ∪kDk where

Dk are corresponding disjoint sets associated to the r-lattice Dr = {zk}.

Lemma 36. Let 1 < p < ∞, 1 ≤ q < ∞. If P ∗ is bounded in Kqp(W ) then
Sr is bounded on Apq(W ).

Proof. First notice that P ∗ is bounded in Kq
p(W ) implies that W ∈ ∩r>0b

r
p.

Indeed, from Lemma 31 we conclude that for each ψ ∈ Kpq supported in
D(z, r),

‖W−1/pψ‖Kpq(W ) ∼ ‖ψχD(z,r)‖Lp .

On the other hand, if w ∈ D(z, r),

P ∗(W−1/pψχD(z,r))(w) ≥ C(1− |z|2)−2

(∫
D(z,r)

W−1/pψ

)
χD(z,r)(w).
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Therefore we have

‖ψχD(z,r)‖Lp ≥ C‖P ∗(W−1/pψχD(z,r))χD(z,r)‖Lp(W )

≥ C(1− |z|2)−2

(∫
D(z,r)

W−1/pψ

)
W 1/p(D(z, r)).

Which by duality gives

(

∫
D(z,r)

W−p
′/p)1/p′W 1/p(D(z, r)) ≤ Cr|D(z, r)|,

proving that W ∈ brp. Now since P ∗ is also bounded on Kp
′

q′ (W
−1/(p−1)), we

have that the Bergman projection

P (f)(z) =

∫
D
K(w, z)f(w)dA(w)

is bounded from Kp
′

q′ ((W
−1/(p−1)) into Ap

′

q′((W
−1/(p−1)). Let f ∈ Apq(W ) and

h ∈ Kp
′

q′ (W
−1/p−1) and denote g = P (h).

First write

〈Sr(f)), h〉 =

∞∑
k=1

f(zk)|Dk|〈K(zk, .), h〉 =

∞∑
k=1

f(zk)|Dk|g(zk).

Since both W ∈ brp and W−1/(p−1) ∈ brp′ , we can use Lemma 33 twice to
obtain the following estimates

| 〈Sr(f), h〉 | ≤ C
∞∑
k=1

|f(zk)|
(∫

D(zk,r)
dA(w)

)
|g(zk)|

≤ C
∞∑
n=1

∑
zk∈An

|f(zk)|
(∫

D(zk,r)
W−1/(p−1)dA

)1/p′

W (D(zk, r))
1/p|g(zk)|

≤ C

 ∞∑
n=1

( ∑
zk∈An

(

∫
D(zk,r)

W−1/(p−1)dA) |g(zk)|p
′
)q′/p′1/p′

‖(f(zn))‖`WDr (p,q)

≤ C‖W−1/(p−1)‖br
p′
‖g‖

Ap
′
q′ (W

−1/(p−1))
‖(f(zn))‖`WDr (p,q)

≤ C‖W‖brp‖W
−1/(p−1)‖br

p′
‖h‖Kp′

q′ (W
−1/(p−1))

‖f‖Apq(W )

≤ C‖W‖brp‖W
−1/(p−1)‖br

p′
‖h‖Kp′

q′ (W
−1/(p−1))

‖f‖Apq(W ) .

�

Lemma 37. Let p > 1, 1 ≤ q <∞ and W a weight such that P ∗ is bounded
on Kpq(W ) . If r > 0 is small enough, then Sr is invertible in Apq(W ).
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Proof. It suffices to prove that I−Sr is a contraction for 0 < r small enough.
The assumption gives that the Bergman projection is bounded on Kpq(W ).

Hence we have (Apq(W ))∗ = Ap
′

q′(W
−1/(p−1)), W ∈ brp and W−1/(p−1) ∈ brp′ .

Let f ∈ Apq(W ) and g ∈ Ap
′

q′(W
−1/(p−1)). We can write

〈(I − Sr)f, g〉 =

∫
D
f(z)g(z)dA(z)−

∞∑
k=1

∫
D

|Dk| f(zk)

(1− zkz)2
g(z)dA(z)

=
∞∑
k=1

∫
Dk

(
f(z)g(z)− f(zk)g(zk)

)
dA(z)

=
∞∑
k=1

∫
Dk

f(z)
(
g(z)− g(zk)

)
dA(z)

+
∞∑
k=1

∫
Dk

(f(z)− f(zk)) g(zk)dA(z)

=

∫
D
f(z)(g −Rrg)(z)dA(z) +

∫
D

(f −Rr)(z)Rrg(z)dA(z).

Then the proof follows from Lemma 34.
�

Next, the main theorem of this section.

Theorem 38. Let 1 < p, q < ∞ and let W be such that P ∗ is bounded on
Kpq(W ). Let Dr = {zn} for r > 0 small enough so that Sr is invertible on
Apq(W ).

(i) If (an) ∈ `WDr(p, q) then

f(z) =
∑
n

an|Dn|
(1− znz)2 ∈ A

p
q(W )

and ‖f‖Apq(W ) ≤ C ‖(an)‖`WDr (p,q) .

(ii) If f ∈ Apq(W ), there exists a sequence (an) ∈ `WDr(p, q) such that

f(z) =
∑
n

an|Dn|
(1− znz)2

and ‖(an)‖`WDr (p,q) ≤ C ‖f‖Apq(W ) .

Proof. (i) It follows using duality and Lemma 33.
(ii) Given f ∈ Apq(W ), take g = S−1

r f ∈ Apq(W ). Define an = g(zn). Then

f(z) = Sr(g)(z) =
∑

n
an|Dn|

(1−znz)2
. The estimate follows using the boundedness

of Sr. �

Let us finish by showing some sufficient conditions to get that P ∗ is con-
tinuous on Kpq(W ).
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Lemma 39. Let 1 ≤ p < ∞ and W a locally integrable weight. If S is a
linear operator bounded in Lp(W±ε) for some ε > 0 then S is also bounded
on Kpq(W ) for 1 ≤ q <∞.

Proof. Since∫
D

(1− |z|2)±ε |Sf(z)|pW (z)dA(z) ≤ C
∫
D

(1− |z|2)±ε |f(z)|pW (z)dA(z),

it follows that if supp f ⊂ An,∫
Am

|Sf(z)|pW (z)dA(z) ≤ C2±ε(m−n)

∫
D
|f(z)|pW (z)dA(z).

Splitting f =
∑
fn, with fn = fχAn we have

‖Sf‖Lp(Am,W ) ≤ C
∑
n

2±ε(m−n)/p ‖f‖Lp(An,W )

≤ CX ∗ Y (m),

where X = (xn) and Y = (yn) with xn = 2−ε|n|/p and

yn =


‖f‖Lp(An,W ) , n ≥ 0,

0, n < 0.

The lemma follows from Young’s inequality. �

A nice consequence of this is that weighted Bergman-Herz spaces can
be defined using the derivative for weights where the averaging operator is
bounded.

Theorem 40. Let 1 ≤ p, q <∞ and W a weight.
If W ∈ brp for some r > 0 then

‖(1− |z|2)f ′‖Kpq(W ) ≤ Cr‖f‖Apq(W ), f ∈ Apq(W ).

Proof. Note that W±ε ∈ brp for any ε > 0. Hence the result follows from
Proposition 21 and Lemma 39. �

Remark 41. We mention examples of weights for which the operator P ∗ is
bounded in Herz spaces and the atomic decomposition of Theorem 38 holds.
(see [2] for (a) and (b)).

a) P ∗ is bounded on Kpq(dAδ) for −1 < δ < p− 1 <∞.
b) Let W be a radial weight, 1 < p < ∞ and 1 ≤ q < ∞. If for some

γ > 1, ∫ 1

0

W (r)γ

1− rt
rdr ≤ CW (t)γ ,

then P ∗ is continuous on Kpq(W ).
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c) Let M < 4, M/2 < δ < 2 + α −M/2, 1 ≤ p < ∞ and let W ∈
W be M-doubling such that W ∈ L1(dA). Then P ∗ is continuous
on K1

q(WdAδ) for any q > 1. And if W is also radial then P ∗

is continuous on Kpq(WdAδ) for any 1 < p, q < ∞. In fact, for
such δ we let ε such that M/2 < δ ± ε < 2 + α −M/2. Then by
Corollary 27, P ∗ is continuous on L1(Wδ±ε) and on Lp(Wδ±ε) for
radial weights. Then the claimed continuity of P ∗ in Herz spaces
follows from Lemma 39.

The authors wish to thank the referees for their many valuable suggestions
to improve this manuscript.
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[9] Jevtić, M.: Bounded projections and duality in mixed-norm spaces of analytic func-
tions, Complex Variables Theory Appl. 8 (1987), no. 3-4, 293–301.

[10] Luecking, D.: Representation and duality in weighted spaces of analytic functions,
Indiana Univ. Math. J. 34 (1985), 313–336.
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