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Abstract. The Bloch space has been studied on the open unit disk of C and some ho-
mogeneous domains of Cn. We define Bloch functions on the open unit ball of a Hilbert
space E and prove that the corresponding space B(BE) is invariant under composition with
the automorphisms of the ball, leading to a norm that- modulo the constant functions -
is automorphism invariant as well. All bounded analytic functions on BE are also Bloch
functions.

Introduction

The classical Bloch space B of analytic functions on the open unit disk D of C plays an
important role in geometric function theory and it has been studied by many authors.

R. M. Timoney ([6] and [7]) extended the notion of Bloch function by considering bounded
homogeneous domains in Cn, such as the unit ball Bn and the polydisk Dn.

In this article, Bloch functions on the unit ball BE of an infinite-dimensional Hilbert space
E are introduced. We prove that a number results about Bloch functions on D and Bn can
be extended to this infinite dimensional setting. Among them, several characterizations of
Bloch functions on BE known to hold in the finite dimensional case.

First, we will recall some background about the classical Bloch space and the space of
Bloch functions on Bn. In Section 2, we will introduce the definition of B(BE), the space of
Bloch functions defined on BE . A function f : BE → C is said to be a Bloch function if

sup
x∈BE

(1− ‖x‖2)‖∇f(x)‖ <∞.

Section 2 is devoted to the connection between functions in B(BE) and their restrictions to
one-dimensional subspaces seen as functions defined on D or either to their restrictions to
finite-dimensional ones, resulting the fact that if for a given n, the restrictions of the function
to the n-dimensional subspaces have their Bloch norms uniformly bounded, then the function
is a Bloch one and conversely. We also introduce an equivalent norm for B(BE) obtained by
replacing the gradient by the radial derivative. We exhibit in Section 3 another equivalent
norm for B(BE) which is invariant- modulo the constant functions - under the action of the
automorphisms of the ball. This is achieved without appealing to the invariant Laplacian
and relying only on properties of automorphisms of BE . Further, we are able to show that
the space H∞(BE) of bounded analytic functions is contractively embedded in B(BE), as
it occurs in the finite dimensional case. Examples of unbounded Bloch functions are also
shown.
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1. Background

1.1. The classical Bloch space B. The classical Bloch space B (see [4]) is the space of
analytic functions f : D −→ C satisfying

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| <∞

endowed with the norm

‖f‖Bloch = |f(0)|+ ‖f‖B <∞

so that (B, ‖ · ‖Bloch) becomes a Banach space.

It is well-known that the seminorm ‖·‖B is invariant by automorphisms, that is, ‖f ◦ϕ‖B =
‖f‖B for any f ∈ B and ϕ ∈ Aut(D). The following basic result can be proved applying
Schwarz’s lemma (see for instance [9]).

Proposition 1.1. H∞ is properly contained in B and ‖f‖B ≤ ‖f‖∞ for any f ∈ H∞.

For further information and references about the Bloch space B, the reader is referred to
[1, 9].

1.2. The Bloch space on the unit ball of Cn. R. M. Timoney extended Bloch functions
to bounded homogeneous domains D of Cn (see [6] and [7]). K. Zhu studied further these
functions on the unit ball Bn of Cn and many of his results are compiled in [8]. The Bloch
space of functions on Bn can be defined in several ways. It is natural to consider the space
B(Bn) of analytic functions f : Bn −→ C satisfying

sup
z∈Bn

(1− ‖z‖2)‖∇f(z)‖ <∞,

where ∇f(z) := ( ∂f∂z1 (z), · · · , ∂f∂zn (z)) and whose norm is the Euclidean one or to consider
analytic functions satisfying

sup
z∈Bn

(1− ‖z‖2)|Rf(z)| <∞,

where Rf(z) := 〈∇f(z), z̄〉 is the so-called radial derivative of f in z, here z̄ = (z̄1, . . . , z̄n) or
even to define the space reducing to functions defined on D by the condition

sup{‖fx‖B : x ∈ Cn , ‖x‖ = 1} <∞,

where fx(z) = f(zx), z ∈ D.
Adding up |f(0)| to each of the quantities above to avoid constant functions to have norm

0 we get Banach spaces. It was shown by Timoney that they are equivalent norms in the
space B(Bn).

However, these definitions using the gradient or the radial derivative, do not allow us to
define a semi-norm invariant by automorphisms. It seems that this is why Timoney used the
Bergman metric on Bn to define the norm Qf (z) of df as a cotangent vector, so f is said to
belong to the Bloch functions space on Bn, B(Bn), if ‖f‖B(Bn) := supz∈Bn Qf (z) <∞. This
expression satisfies ‖f ◦ϕ‖B(Bn) = ‖f‖B(Bn) for any ϕ ∈ Aut(Bn) since the Bergman metric is
also invariant by automorphisms. Timoney also proved that this is equivalent to the previous
formulations and got the bonus of the invariance under automorphisms.

Recall that the invariant gradient of a holomorphic function f : Bn → C at z ∈ Bn is

∇̃f(z) := ∇(f ◦ϕz)(0). Zhu proved that a holomorphic function f : Bn −→ C belongs to the

Bloch space B(Bn) if and only if supz∈Bn ‖∇̃f(z)‖ <∞ (see [8]).
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2. The space of Bloch functions on the unit ball of a Hilbert space E

2.1. Holomorphic functions on E. A function f : BE → C is said to be holomorphic if
it is Fréchet differentiable at every x ∈ BE or, equivalently, if f(x) =

∑∞
n=1 Pn(x) for all

x ∈ BE , where Pn is an n−homogeneous polynomial, that is, the restriction to the diagonal
of a continuous n−linear form on the n-fold space E × · · · × E. The space H∞(BE) is given
by {f : BE → C : f is holomorphic and bounded } and it becomes a uniform Banach algebra
when endowed with the sup-norm ‖f‖∞ = sup{|f(x)| : x ∈ BE}. It is, obviously, the
analogue of the space H∞ for E.

Let (ek)k∈Γ be an orthonormal basis of E that we fix at once. Then every z ∈ E can be
written as z =

∑
k∈Γ zkek and we write z =

∑
k∈Γ zkek.

Given a holomorphic function f : BE → C and x ∈ BE , we will denote, as usual,
by ∇f(x) the gradient of f at x, that is, the unique element in E representing the linear

operator f ′(x) ∈ E∗. It may be written ∇f(x) =
(
∂f
∂xk

(x)
)
k∈Γ

, and so

f ′(x)(z) =
∑
k∈Γ

∂f

∂xk
(x)zk = 〈z,∇f(x)〉.

Bearing in mind the classical Bloch spaces defined on the unit ball of C and Cn, and their
possible definitions, we set the following possible norms on the space for the unit ball of E.

Definition 2.1. We define B(BE) as the space of holomorphic functions f : BE → C such
that

‖f‖B(BE) := sup
x∈BE

(1− ‖x‖2)‖∇f(x)‖ <∞.

As usual ‖f‖Bloch(BE) := |f(0)|+ ‖f‖B(BE) is a complete norm on B(BE).

We first observe that the study of Bloch functions defined on the unit ball of E can be
reduced to studying functions defined on finite dimensional subspaces. For each z ∈ E and
each finite subset ν of Γ write zν =

∑
k∈ν zkek.

Let us use the following notations: Let n ∈ N, write zn = (z1, · · · , zn) ∈ Bn and denote

SOn = {y = (y1, · · · , yn) : yk ∈ E, 〈yk, yj〉 = δk,j},
that is to say the family of orthonormal systems of order n for n ≥ 2 and SO1 the unit sphere
of E. Now for each y ∈ SOn and f : BE → C holomorphic we define

(2.1) fy(zn) = f
( n∑
k=1

zkyk
)
.

We have for each 1 ≤ k ≤ n
∂fy
∂zk

(zn) =
〈
yk,∇f

( n∑
j=1

zjyj
)〉
.

This gives

(2.2)
∥∥∇fy(zn)

∥∥ =
∥∥∇f( n∑

j=1

zjyj
)∥∥.

For each finite subset ν of Γ we denote fν = fy for y = {ek : k ∈ ν}.

Proposition 2.2. Let f : BE → C be holomorphic. Then the following statements are
equivalent:

(i) f ∈ B(BE),
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(ii) sup{‖fν‖B(B|ν|) : ν ⊂ Γ finite } <∞,
(iii) sup

y∈SOm
‖fy‖B(Bm) <∞ for all m ≥ 2,

(iv) There exists m ≥ 2 such that sup
y∈SOm

‖fy‖B(Bm) <∞.

Moreover, for each m ≥ 2,

‖f‖B(BE) = sup
n∈N
‖fn‖B(Bn) = sup

y∈SOm
‖fy‖B(Bm).

Proof. (i) =⇒ (ii) Let ν ⊂ Γ finite, n = |ν| and zn ∈ Bn. According to (2.2),

(2.3)
∥∥∇fν(zn)

∥∥ =
∥∥∇f(∑

j∈ν
zjej

)∥∥.
Since ‖

∑
j∈ν zjyj‖ = ‖zn‖ we obtain ‖fν‖B(Bn) ≤ ‖f‖B(BE). In particular

sup{‖fν‖B(B|ν|) : ν ⊂ Γ finite } ≤ ‖f‖B(BE).

(ii) =⇒ (i) Let x =
∑

k∈Γ zkek ∈ BE , actually a series whose partial sums we denote sn.
Since f is holomorphic one has that

‖∇f(x)‖ = lim
n
‖∇f(sn)‖ ≤ sup{‖∇fν(z|ν|)‖ : ν ⊂ Γ finite}.

Hence, since ‖sn‖ = ‖z|ν|‖ ≤ ‖x‖ with n = |ν|, we obtain

(1− ‖x‖2)‖∇f(x)‖ ≤ sup
{

(1− ‖z|ν|‖2)‖∇fn(z|ν|)‖ : ν ⊂ Γ finite
}
.

(i) =⇒ (iii) follows analogously to (i) =⇒ (ii).

(iii) =⇒ (iv) is obvious.

(iv) =⇒ (i) Assume now that sup
y∈SOm

‖fy‖B(Bm) < ∞ for some m ≥ 2. Fix x ∈ BE \ {0}

and choose y ∈ E a unit vector such that ‖∇f(x)‖ = |〈y,∇f(x)〉|. Now write y =
∑m

j=1 αjyj
for some (α1, · · · , αm) ∈ Cm where y ∈ SOm such that y1 = x

‖x‖ . Using now (2.2) for

zm = (‖x‖, 0, · · · , 0) we obtain ‖zm‖ = ‖x‖ and ‖∇fy(zm)‖ = ‖∇f(x)‖. This gives

‖f‖B(BE) ≤ sup
y∈SOm

‖fy‖B(Bm).

�

We now show that descriptions in terms of the radial derivative and the one dimensional
case can be obtained as well.

Definition 2.3. For a holomorphic function f : BE → C we set

‖f‖R := sup
x∈BE

(1− ‖x‖2)|Rf(x)|,

where R(f)(x) = 〈∇f(x), x̄〉, x ∈ BE and

‖f‖weak := sup
‖y‖=1

‖fy‖B,

where fy(z) = f(zy), |z| < 1, for each y ∈ E with ‖y‖ = 1. Notice that zf ′y(z) = Rf(zy).

We denote BR(BE) and Bweak(BE) the space of holomorphic functions on BE for which
‖f‖R <∞ and ‖f‖weak <∞ respectively. As usual, |f(0)|+ ‖f‖R and |f(0)|+ ‖f‖weak are
complete norms in these spaces.

Our aim is to show that the three spaces, B(BE), BR(BE) and Bweak(BE) coincide and that
their norms are equivalent actually. Comparing BR(BE) and Bweak(BE) is rather elementary.
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Proposition 2.4. The spaces BR(BE) and Bweak(BE) coincide. Moreover there exists C > 0
such that for every f in the spaces

‖f‖R ≤ ‖f‖weak ≤ C‖f‖R.

Proof. Let f ∈ Bweak(BE). Since

Rf(x) = ‖x‖f ′ x
‖x‖
‖x‖, x ∈ BE \ {0}

we have that ‖f‖R ≤ ‖f‖weak for any holomorphic f defined on BE , so f ∈ BR(BE).

Assume now that f ∈ BR(BE). We check that f ∈ Bweak(BE). Let y ∈ E with ‖y‖ = 1.
Since f is holomorphic at 0, its derivative f ′ : BE → E∗ is also holomorphic and thus,

bounded on some ball B̄(0, r), 0 < r < 1, hence there is M > 0 such that |f ′(x)| ≤ M for
any x ∈ B̄(0, r). Thus

sup
|z|≤r

(1− |z|2)|f ′y(z)| ≤M.

While for |z| > r and taking into account that zf ′y(z) = Rf(zy) and that the function 1−t
t

is decreasing, we have

(1− |z|2)|f ′y(z)| = (1− |z|2)(1− |z|)|f ′y(z)|+ (1− |z|2)|z||f ′y(z)|

≤ (1− |z|2)|z|1− r
r
|f ′y(z)|+ (1− ‖zy‖2)|Rf(zy)|

≤
(

(1− ‖zy‖2)
1− r
r

+ (1− ‖zy‖2)
)
Rf(zy)|

Hence

sup
|z|>r

(1− |z|2)|f ′y(z)| ≤
1

r
sup
‖x‖<1

(1− ‖x‖2)|Rf(x)|.

Therefore f ∈ Bweak(BE) as wanted, and so the spaces coincide. Now the open mapping
theorem yields the equivalence of both complete norms. �

To compare B(BE) and Bweak(BE) we follow the arguments used by Timoney (see Theorem
4.10 in [6]) applying the following lemma for functions in two variables.

Lemma 2.5 (Lemma 4.11 in [6]). Let F : B2 → C be an analytic function. If there exists
M ≥ 0 such that for any (z1, z2) ∈ B2, the function F(z1,z2)(z) := F (zz1, zz2), |z| < 1,
satisfies ‖F(z1,z2)‖B ≤M, then

‖∇F (z1, 0)‖(1− |z1|2) ≤ 3M log 2 for all z1 ∈ C , |z1| < 1.

Although the coming proof follows the same pattern as Theorem 4.10 in [6], we include it
for the sake of completeness.

Theorem 2.6. The spaces B(BE), BR(BE) and Bweak(BE) coincide. Moreover

‖f‖R ≤ ‖f‖B(BE) ≤ (3 log 2)‖f‖weak.

Proof. Of course |Rf(x)| ≤ ‖∇f(x)‖ and therefore ‖f‖R ≤ ‖f‖B(BE). Let us show that
‖f‖B(BE) ≤ (3 log 2)‖f‖weak. The result follows using Proposition 2.4.

Let f ∈ Bweak(BE) with sup‖y‖=1 ‖fy‖B = 1. Fix x ∈ BE . Choose y ∈ E a unit vector

such that ‖∇f(x)‖ = |〈y,∇f(x)〉|. Now consider two orthogonal unit vectors x1, x2 ∈ BE
such that x = αx1 and y = α1x1 + α2x2 for some α, α1, α2 ∈ C. Define F : B2 → C by
F (z1, z2) = f(z1x1 + z2x2). If L : C2 → E is the linear mapping L(z1, z2) := z1x1 + z2x2,
F = f◦L, and the chain rule yields∇F (z1, z2) =

(
〈∇f(z1x1+z2x2), x1〉, 〈∇f(z1x1+z2x2, x2〉

)
.

Then F satisfies the assumptions of Lemma 2.5, so |〈(α1, α2),∇F (α, 0)〉| (1 − |α|2) ≤ 3 log 2
and we have the aimed inequality

‖∇f(x)‖(1− ‖x‖2) = |〈y,∇f(x)〉|(1− ‖x‖2) ≤ 3 log 2.
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�

Using Theorem 2.6 and classical results on Bloch functions on the unit disk, one can obtain
the following result.

Proposition 2.7. There exists C > 0 such that for the Taylor series f(x) =
∑∞

n=0 Pn(x) of
any f ∈ B(BE) one has

(2.4) ‖Pn‖∞ ≤ C‖f‖B(BE) for every n = 1, 2, . . .

Proof. It suffices to notice that for any z ∈ D,

fy(z) =
∞∑
n=0

Pn(zy) =
∞∑
n=0

Pn(y)zn

and to use that for any ϕ ∈ B one has (see [1, Lemma 2.1])

|an| ≤
√
e‖ϕ‖B, n ≥ 1.

The result follows now considering an = Pn(y) and applying Theorem 2.6. �

Proposition 2.8. Let (Pk) be a sequence of 2k−homogeneous polynomials on E with

M = sup
k∈N,y∈BE

|Pk(y)| <∞.

Then f(x) =
∑∞

k=0 Pk(x) ∈ B(BE).

Proof. To see that f is holomorphic in the unit ball, simply observe that if ‖x‖ < 1, then∑
k

|Pk(x)| ≤M
∑
k

‖x‖2k ≤ C

1− ‖x‖
.

From that we get the uniform convergence on compact sets and therefore f is holomorphic.
To finish the proof use again that

fy(z) =
∞∑
n=0

Pk(y)z2k

and now the fact (see [1, Lemma 2.1])

‖ϕ‖B ≤ C sup
k
|ak|

whenever ϕ(z) =
∑

k akz
2k together with Theorem 2.6. �

Notice that f ∈ H∞(BE) is equivalent to sup‖y‖=1 ‖fy‖∞ = ‖f‖∞. The use of Proposition

1.1 and the fact that B(BE) = Bweak(BE) imply

H∞(BE) ⊆ B(BE).

Let us finish this section with a basic example of an unbounded Bloch function on B`2 .

Example 2.9. Let

f(z) =
∞∑
n=0

1

n+ 1
(
n∑
k=1

z2
k)n, z =

∞∑
k=1

zkek ∈ B`2 .

Then f ∈ B(B`2) \H∞(B`2).
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Proof. Let 0 < r < 1 and ‖z‖ ≤ r. The series
∑∞

n=0
1

n+1(
∑n

k=1 z
2
k)n converges uniformly in

‖z‖ ≤ r because

∞∑
n=0

1

n+ 1
sup
‖z‖≤r

∣∣( n∑
k=1

z2
k)n
∣∣ ≤ ∞∑

n=0

1

n+ 1
r2n ≤ log(

1

1− r2
).

Hence f is holomorphic on the unit ball.
On the other hand, for j ∈ N,

∂f

∂zj
(z) =

∞∑
n=j

2n

n+ 1
(
n∑
k=1

z2
k)n−1zj .

Hence

| ∂f
∂zj

(z)| ≤
∞∑
n=1

2n

n+ 1
(

n∑
k=1

|zk|2)n−1|zj | ≤
∞∑
n=1

2n

n+ 1
‖z‖2n−2|zj |

and

‖∇f(z)‖ ≤ 2

1− ‖z‖2
.

Finally we observe that selecting x = (z, 0, · · · , ) we have f(x) = log( 1
1−z2 ) and therefore

f /∈ H∞(B`2). �

3. A Möbius invariant norm for the Bloch space on the unit ball BE

Now our aim is to prove that the Bloch space B(BE) is invariant under the action of the
automorphisms of the ball. We begin by collecting the necessary information about such
automorphisms.

3.1. Automorphisms and the pseudohyperbolic distance on BE. The analogues of
Möbius transformations on E are the mappings ϕa : BE −→ BE , a ∈ BE , defined according
to

ϕa(x) = (saQa + Pa)(ma(x))(3.1)

where sa =
√

1− ‖a‖2, ma : BE −→ BE is the analytic map

ma(x) =
a− x

1− 〈x, a〉
,(3.2)

Pa : E −→ E is the orthogonal projection along the one-dimensional subspace spanned by a,
that is,

Pa(x) =
〈x, a〉
〈a, a〉

a

and Qa : E −→ E, is the orthogonal complement, Qa = Id− Pa. Recall that Pa and Qa are
self-adjoint operators since they are projections, so 〈Pa(x), y〉 = 〈x, Pa(y)〉 and 〈Qa(x), y〉 =
〈x,Qa(y)〉 for any x, y ∈ E.

The automorphisms of the unit ball BE turn to be compositions of such analogous Möbius
transformations with unitary transformations U of E, that is, self-maps of E satisfying
〈U(x), U(y)〉 = 〈x, y〉 for all x, y ∈ E.

We will also need the following facts about the pseudohyperbolic distance in BE . It is given
by

ρE(x, y) = ‖ϕ−y(x)‖ for any x, y ∈ BE(3.3)

and it satisfies that

ρ(f(x), f(y)) ≤ ρE(x, y) for f ∈ H∞(BE) with ‖f‖∞ ≤ 1,(3.4)
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where ρ(z, w) =
∣∣∣ z−w1−z̄w

∣∣∣ for any z, w ∈ D is the pseudohyperbolic distance in D. Actually,

ρE(x, y)2 = 1− (1− ‖x‖2)(1− ‖y‖2)

|1− 〈x, y〉|2
(3.5)

For all these facts and further information on the automorphisms of BE and the pseudohy-
perbolic distance, see [3].

3.2. The invariance under automorphisms. As it happens in the finite dimensional case
n ≥ 2, it is not true that ‖f ◦ϕ‖B = ‖f‖B for all f ∈ B(BE). This is also false for the norms
‖ · ‖R and ‖ · ‖weak. Thus, in Timoney’ spirit, we are led to find a semi-norm on B(BE) that
is invariant under the automorphisms of the ball. Our goal is to give a direct proof using
only properties of automorphisms of BE and not the invariant Laplacian.

Definition 3.1. Let f : BE −→ C be a holomorphic function. The invariant gradient ∇̃f is

defined by ∇̃f(x) = ∇(f ◦ ϕx)(0) for any x ∈ BE .

Let us first relate the invariant gradient with the standard one and the radial derivative.
We need first following easy fact.

Lemma 3.2. Let x ∈ BE. Then, ϕ′x(0) = −s2
xPx − sxQx.

Proof. Recall that ϕx(y) = (Px + sxQx)(mx(y)), where mx(y) = x−y
1−〈x,y〉 .

The derivative of mx is given by

m′x(y)(t) =
−(1− 〈x, y〉)t+ 〈t, x〉x− 〈t, x〉y

(1− 〈x, y〉)2
,

so m′x(0) = −Id+ ‖x‖2Px and, by the chain rule,

ϕ′x(0) = (Px + sxQx)′(mx(0)) ◦m′x(0) = (Px + sxQx) ◦ (−Id+ ‖x‖2Px)

= −Px − sxQx + ‖x‖2Px = −s2
xPx − sxQx.

�

Lemma 3.3 is a generalization of Lemma 2.13 in [8] for the infinite dimensional case.

Lemma 3.3. Let f : BE → C be a holomorphic function. Then,

‖∇̃f(x)‖2 + (1− ‖x‖2)|Rf(x)|2 = (1− ‖x‖2)‖∇f(x)‖2.
Proof. By Lemma 3.2, ϕ′x(0) = −s2

xPx− sxQx, so by the chain rule and bearing in mind that
Px, Qx are self-adjoint, we get

‖∇̃f(x)‖2 =

(
sup
y∈BE

|(∇f(x) ◦ ϕ′x(0))(y)|

)2

=

(
sup
y∈BE

|〈ϕ′x(0)(y),∇f(x)〉|

)2

= ‖ϕ′x(0)(∇f(x))‖2

= s4
x‖Px(∇f(x))‖2 + s2

x‖Qx(∇f(x))‖2

= s4
x‖Px(∇f(x))‖2 + s2

x‖∇f(x)‖2 − s2
x‖Px(∇f(x))‖2

= s2
x(s2

x − 1)‖Px(∇f(x))‖2 + s2
x‖∇f(x)‖2

= s2
x‖∇f(x)‖2 − s2

x‖x‖2
|〈∇f(x), x〉|2

‖x‖2

= s2
x(‖∇f(x)‖2 − |Rf(x)|2)
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�

Definition 3.4. Denote Binv(BE) the set of holomorphic functions f : BE → C such that

‖f‖inv := sup
x∈BE

‖∇̃f(x)‖ <∞.

It is clear that ‖f ◦ ϕ‖inv = ‖f‖inv for any f ∈ B(BE) and any automorphism ϕ of BE .

Note that |Rf(x)| ≤ ‖∇f(x)‖‖x‖ and then

‖∇f(x)‖2 − |Rf(x)|2 ≥ (1− ‖x‖2)‖∇f(x)‖2.
Hence, using Lemma 3.3, we have

(3.6) (1− ‖x‖2)‖∇f(x)‖ ≤ ‖∇̃f(x)‖ ≤
√

1− ‖x‖2‖∇f(x)‖.
In particular, Binv(BE) ⊆ B(BE) and ‖f‖B(BE) ≤ ‖f‖inv.
We shall show that B(BE) = Binv(BE). We will neither use the facts related to the

Bergman metric or Qf (z) of the finite dimensional case used by Timoney nor the properties
of the invariant gradient and its connection to the invariant Laplacian used by Zhu.

We shall use the following lemma, which generalizes Theorem 3.1 in [8] for the infinite

dimensional case. It gives a different explicit formula for ‖∇̃f(x)‖ which is closely related
to the expression of Qf (z) for the finite dimensional case. This calculation will help us in
proving Theorem 3.8.

Lemma 3.5. Let f : BE → C be a holomorphic function. Then,

‖∇̃f(x)‖ = sup
w 6=0

|〈∇f(x), w〉|(1− ‖x‖2)√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

.

Proof. Notice that

‖∇̃f(x)‖2 = ‖ϕ′x(0)(∇f(x))‖2 = sup
w 6=0

〈ϕ′x(0)(∇f(x)), w〉
‖w‖

and bearing in mind that ϕ′x(0) is a linear invertible and self-adjoint operator, we have that

‖∇̃f(x)‖2 = sup
w 6=0

|〈ϕ′x(0)(∇f(x)), ϕ′x(0)−1(w)〉|
‖ϕ′x(0)−1(w)‖

= sup
w 6=0

|〈∇f(x), w〉|
‖ϕ′x(0)−1(w)‖

.

Since ϕ′x(0)−1 = − 1
s2x
Px − 1

sx
Qx, we have that

‖ϕ′x(0)−1(w)‖2 =
1

s4
x

‖Px(w)‖2 +
1

s2
x

‖Qx(w)‖2

=
1

s4
x

‖Px(w)‖2 +
1

s2
x

(‖w‖2 − ‖Px(w)‖2)

=
1− s2

x

s4
x

|〈w, x〉|2

‖x‖2
+
s2
x

s4
x

‖w‖2

=
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

(1− ‖x‖2)2
,

so we conclude that

‖∇̃f(x)‖ = sup
w 6=0

|〈∇f(x), w〉|(1− ‖x‖2)√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

.

�

We shall use a result about holomorphic functions in two complex variables due to Timoney.
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Lemma 3.6. (see Lemma 4.8 in [6]) Let F : B2 → C be a holomorphic function satisfying

‖F‖B(B2) := sup
(z1,z2)∈B2

(1− |z1|2 − |z2|2)
∥∥∇F (z1, z2)

∥∥.
Then for each z ∈ D, ∣∣∣∣∂F∂w (z, 0)

∣∣∣∣ (1− |z|2)1/2 ≤
√

31

2
‖F‖B(B2).

The previous lemma was also generalized in [6] to the unit ball of Cn. We give the proof
for BE for the sake of completeness.

Lemma 3.7. Let f : BE → C be a holomorphic function satisfying ‖f‖B(BE) < ∞. Let
x0 ∈ BE and y ∈ E, ‖y‖ = 1, such that 〈x0, y〉 = 0. Then

|〈∇f(x0), y〉|(1− ‖x0‖2)1/2 ≤
√

31

2
‖f‖B(BE).

Proof. Set x′0 = x0/‖x0‖. We consider the linear mapping L : C2 → E given by L(z1, z2) =
x′0z1 + yz2 and define the holomorphic function F : B2 → C by F (z1, z2) = (f ◦ L)(z1, z2).
Applying the Chain Rule, we have

∇F (z1, z2) =
(
〈∇f(z1x

′
0 + z2y), x′0〉, 〈∇f(z1x

′
0 + z2y), y〉

)
.

Using that x′0 and y are orthonormal vectors in E we conclude that ‖F‖B(B2) ≤ ‖f‖B(BE).
Therefore, we can apply Lemma 3.6 to obtain∣∣∣∣ ∂F∂z2

(‖x0‖, 0)

∣∣∣∣ (1− ‖x0‖2)1/2 ≤
√

31

2
‖f‖B(BE).

Since
∂F

∂z2
(‖x0‖, 0) = 〈∇f(x0), y〉

we finish the proof. �

Theorem 3.8. Let f : BE → C be a holomorphic function. Then f ∈ B(BE) if and only if
f ∈ Binv(BE). The underlying semi-norms satisfy

‖f‖B(BE) ≤ ‖f‖inv ≤ C‖f‖B(BE)

for some constant C ≤ (1 +
√

31
2 ).

Proof. We already mentioned that ‖f‖B(BE) ≤ ‖f‖inv.
Let us show that ‖f‖inv ≤ C‖f‖B(BE). By Lemma 3.5, we have that

‖∇̃f(x)‖ = sup
w 6=0

|〈∇f(x), w〉|(1− ‖x‖2)√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

.

Fix x ∈ BE . Every v ∈ E can be decomposed as v = λx + y, where y is orthogonal to x.
Then,

|〈∇f(x), v〉|(1− ‖x‖2)√
(1− ‖x‖2)‖v‖2 + |〈v, x〉|2

=
|〈∇f(x), v〉|(1− ‖x‖2)√
|λ|2‖x‖2 + (1− ‖x‖2)‖y‖2

=
|〈∇f(x), λx〉|(1− ‖x‖2)√
|λ|2‖x‖2 + (1− ‖x‖2)‖y‖2

+
|〈∇f(x), y〉|(1− ‖x‖2)√
|λ|2‖x‖2 + (1− ‖x‖2)‖y‖2

≤ |〈∇f(x), λx〉|(1− ‖x‖2)√
|λ|2‖x‖2

+
|〈∇f(x), y〉|(1− ‖x‖2)√
|(1− ‖x‖2)‖y‖2

= |〈∇f(x),
x

‖x‖
〉|(1− ‖x‖2) + |〈∇f(x),

y

‖y‖
〉|
√

1− ‖x‖2.
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Hence, applying Lemma 3.7,

‖f‖inv = sup
x∈BE

(
sup
v 6=0

|〈∇f(x), v〉|(1− ‖x‖2)√
(1− ‖x‖2)‖v‖2 + |〈v, x〉|2

)
≤ (1 +

√
31

2
)‖f‖B(BE).

�

4. The embeddeding of H∞(BE) into B(BE)

As we remarked before, H∞(BE) ⊂ B(BE). However, the use of the equivalence of the
norms ‖f‖B(BE) and ‖f‖R does not give the best constant for the embedding. To improve
the result we give firstly an elementary lemma.

Lemma 4.1. Let x, y ∈ BE. Then,

ρE(x, y) ≤ ‖x− y‖
|1− 〈x, y〉|

.

Proof. We have

ρE(x, y)2 = 1− (1− ‖x‖2)(1− ‖y‖2)

|1− 〈x, y〉|2
=
−2<〈x, y〉+ |〈x, y〉|2 + ‖x‖2 + ‖y‖2 − ‖x‖2‖y‖2

|1− 〈x, y〉|2
.

Using now |〈x, y〉|2 − ‖x‖2‖y‖2 ≤ 0 we have

ρE(x, y)2 ≤ −2<〈x, y〉+ ‖x‖2 + ‖y‖2

|1− 〈x, y〉|2
=
‖x− y‖2

|1− 〈x, y〉|2
.

�

Theorem 4.2. Let f ∈ H∞(BE) such that ‖f‖∞ ≤ 1. For any x ∈ BE, we have that

(1− ‖x‖2)‖∇f(x)‖ ≤ 1− |f(x)|2.

Proof. Notice that f ′(x) is the functional on E given by

f ′(x)(y) = lim
t→0

f(x+ ty)− f(x)

t
for any y ∈ E.

There is y ∈ E, ‖y‖ = 1 such that ‖f ′(x)‖ = |f ′(x)(y)|. Put δ := 1−‖x‖ and consider only t
such that |t| < δ. For those t, ‖x+ ty‖ ≤ ‖x‖+ δ < 1, so x+ ty ∈ BE and we have, applying
Lemma 4.1, that

ρE(x+ ty, x) ≤ |t|
|1− 〈x, x+ ty〉|

if |t| < δ.

On the other hand∣∣∣∣f(x+ ty)− f(x)

t

∣∣∣∣ =

∣∣∣∣∣ f(x+ ty)− f(x)

1− f(x)f(x+ ty)

∣∣∣∣∣
∣∣∣∣∣1− f(x)f(x+ ty)

t

∣∣∣∣∣
= ρ

(
f(x+ ty), f(x)

) ∣∣∣∣∣1− f(x)f(x+ ty)

t

∣∣∣∣∣
≤ ρE(x+ ty, x)

∣∣∣∣∣1− f(x)f(x+ ty)

|t|

∣∣∣∣∣
≤ |1− f(x)f(x+ ty)|

|1− 〈x, x+ ty〉|
,

where we have used that the pseudohyperbolic distance is contractive for f.
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Hence ∣∣f ′(x)(y)
∣∣ ≤ lim sup

t→0

|1− f(x)f(x+ ty)|
|1− 〈x, x+ ty〉|

=
1− |f(x)|2

1− ‖x‖2
.

Therefore,
(1− ‖x‖2)‖f ′(x)‖ ≤ 1− |f(x)|2.

�

So we get the following extension of Proposition 1.1.

Corollary 4.3. The inclusion i : H∞(BE) −→ B(BE) is a linear operator satisfying

‖f‖B(BE) ≤ ‖f‖∞.

Corollary 4.4. Let f ∈ H∞(BE) with ‖f‖∞ = 1 and ϕ ∈ B. Then g = ϕ ◦ f ∈ B(BE) and
‖g‖B(BE) ≤ ‖ϕ‖B.

In particular, f(x) = log(1− 〈x, e1〉) ∈ B(BE) \H∞(BE).

Proof. Using the chain rule for g(x) = ϕ(f(x)) we have ∇g(x) = ϕ′(f(x))∇f(x). Therefore,
using Theorem 4.2 we conclude

‖∇g(x)‖ = |ϕ′(f(x))|‖∇f(x)‖ ≤ ‖ϕ‖B‖∇f(x)‖
1− |f(x)|2

≤ ‖ϕ‖B.

�
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