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Abstract. Following the scalar-valued case considered by Djakow and Ra-
manujan in [20] we introduce, for each complex Banach space X and each

1 ≤ p <∞, the p-Bohr radius of X as the value

rp(X) = sup{r ≥ 0 :
∞∑

n=0

‖xn‖prnp ≤ sup
|z|<1

‖f(z)‖p}

where xn ∈ X for each n ∈ N ∪ {0} and f(z) =
∑∞

n=0 xnz
n ∈ H∞(D, X).

We show that for a complex (possibly infinite dimensional) Banach space X

the condition rp(X) > 0 for some p ≥ 2 and is equivalent to X being p-
uniformly C-convex. We analyze the p-Bohr radius in the cases X = Lq(µ) for

different values of p and q showing that for p < 2 and dim(Lq(µ)) ≥ 2 one has
rp(Lq(µ)) = 0 while for p ≥ 2 one has rp(Lq(µ)) = 1 whenever p′ ≤ q ≤ p.

We also provide some lower estimates for r2(Lq(µ)) for 1 ≤ q < 2.

1. Introduction and preliminaries

Let us start by recalling the remarkable discovery of H. Bohr of a universal
constant r1 = 1

3 (denoted the Bohr radius) satisfying

(1.1)

∞∑
n=0

|an|(
1

3
)n ≤ ‖f‖∞,

for any f(z) =
∑∞
n=0 anz

n ∈ H∞(D,C). The reader is referred to the paper by H.
Bohr [10] which includes Wiener’s proof showing that r1 = 1

3 is sharp. A bit later
some other proofs of such inequality were obtained (see [22, 26]).

Throughout the decades several variations of Bohr’s inequality (1.1) have ap-
peared. Djakov and Ramanujan in [20] (see also [4] for further considerations
replacing the H∞-norm by the Hp-norm) studied, for each 1 ≤ p < ∞, the best
constant rp such that

(1.2)
( ∞∑
n=0

|an|p(rp)np
)1/p

≤ ‖f‖H∞ ,

where f(z) =
∑∞
n=0 anz

n.
Notice that although Bohr’s result establishes that r1 = 1/3 and clearly rp = 1

for p ≥ 2 due to Haussdorf-Young’s inequality, however computing the precise value
of rp for 1 < p < 2 seems to be rather complicated. As far as we know the best
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known estimates were obtained in [20, Theorem 3] and are given by

(1.3)
(

1 + (
2

p
)

1
2−p

) p−2
p ≤ rp ≤ inf

0≤a<1

(1− ap)1/p

((1− a2)p + ap(1− ap))1/p
.

A bit later V. Paulsen, G. Popescu, D. Singh [22, Corollary 2.7] gave the following
modification of (1.1)

(1.4) |a0|2 +

∞∑
n=1

|an|(
1

2
)n ≤ 1

whenever f(z) =
∑∞
n=0 anz

n and ‖f‖H∞ ≤ 1. Also the value 1/2 is sharp.
More recently the author (see [6, Proposition 2.4]) extended such a result to

1 ≤ p ≤ 2 showing that if f(z) =
∑∞
n=0 anz

n and ‖f‖H∞ ≤ 1 one has

(1.5) |a0|p +

∞∑
n=1

|an|(
p

2 + p
)n ≤ 1.

Also the value p
2+p is sharp.

Several authors (see [4, 11, 12, 19, 20, 28]) have found some other extensions
of Bohr’s estimate in different directions. For instance, after the paper by Dineen
and Timoney [18] some multi-dimensional analogues of Bohr’s inequality where the
disc D is replaced by a domain Ω ⊂ Cm were considered in [9]. Since then several
applications and connections with local Banach space theory and other topics were
shown by different authors (see for instance [1, 2, 3, 14, 15, 16]).

In this paper we are interested in the vector-valued analogue of (1.2) and to show
its possible connection with Banach space theory. Let us fix our notation and give
some definitions first. Throughout this paper H∞(D, X) stands for the space of
bounded holomorphic functions from the unit disc D into a complex Banach space
X and we write ‖f‖H∞(D,X) = sup|z|<1 ‖f(z)‖. As usual for 1 ≤ p <∞, Hp(D, X)
stands for the space of holomorphic functions from D into X such that

‖f‖Hp(D,X) = sup
0<r<1

(

∫ 2π

0

‖f(reit)‖p dt
2π

)1/p <∞.

In [6] the author defined the Bohr’s radius of a Banach space X as the value

R(X) = sup{r ≥ 0 :

∞∑
n=0

‖xn‖rn ≤ ‖f‖H∞(D,X)}.

Embedding C into X we obtain the trivial upper bound R(X) ≤ 1
3 for any Banach

space X. However it was shown that R(X) = 0 for X = Cmp whenever m ≥ 2,
where Cmp , for 1 ≤ p ≤ ∞, stands for the space Cm endowed with the norm

‖w‖p = (
∑m
i=1 |wi|p)1/p for 1 ≤ p <∞ and ‖w‖∞ = supmi=1 |wi|.

This fact led the author to consider the vector-valued analogue of (1.4) and to
introduce for a given Banach space X and parameters 0 < p, q <∞, the quantities
(see [6, Definition 1.3])

(1.6) Rp,q(f,X) = sup{r ≥ 0 : ‖x0‖p + (

∞∑
n=1

‖xn‖rn)q ≤ 1}

where f(z) =
∑∞
n=0 xnz

n with ‖f‖H∞(D,X) ≤ 1, and

(1.7) Rp,q(X) = inf{Rp,q(f,X) : ‖f‖H∞(D,X) ≤ 1}.
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Several results concerning the values Rp,q(X) for X = C, X = Cmp and X = Lp

were analyzed.
Let us consider now the vector-valued analogue of the approach due to Djakov

and Ramanujan.

Definition 1.1. Let 1 ≤ p <∞ and let X be a complex Banach space. We write

(1.8) rp(f,X) = sup{r ≥ 0 :

∞∑
n=0

‖xn‖prnp ≤ 1}

where f(z) =
∑∞
n=0 xnz

n with ‖f‖H∞(D,X) ≤ 1 and define the p-Bohr radius of X

rp(X) = inf{rp(f,X) : ‖f‖H∞(D,X) ≤ 1}

= sup{r > 0 :
( ∞∑
n=0

‖xn‖prnp
)1/p

≤ ‖f‖H∞(D,X)}.

Of course the quantities rp(X) and Rp,q(X) are related. Actually for 1 ≤ p <∞
and 1/p+ 1/p′ = 1 we have that

(1.9) Rp,p(X) ≤ rp(X) ≤ 21/p′Rp,p(X)

Indeed, clearlyRp,p(X) ≤ rp(X) using the estimate
∑∞
n=1 ‖xn‖prnp ≤ (

∑∞
n=1 ‖xn‖rn)p.

On the other hand, if f ∈ H∞(D, X) and we denote rp(f,X) = r then for each
0 < s < 1 one has

‖x0‖p + (

∞∑
n=1

‖xn‖rnsn)p ≤ ‖x0‖p + (

∞∑
n=1

‖xn‖prnp)(
sp
′

1− sp′
)p−1

≤ ‖x0‖p + (1− ‖x0‖p)(
sp
′

1− sp′
)p−1.

Choosing s = 2−1/p′ one gets rp(X) ≤ 21/p′Rp,p(X).
In particular using (1.9) and (1.5) we obtain a lower estimate for rp, namely

(1.10) rp ≥ Rp,p ≥ Rp,1 =
p

2 + p
.

The reader should notice that (1.10) is sharp for p = 1 while for p = 2 one only
gets r2 ≥ 1

2 .

Remark 1.2. For any Banach space X the function p → rpp(X) is increasing, that
is

(1.11) rp1p1 (X) ≤ rp2p2 (X), p1 ≤ p2.

Indeed, first recall that ‖xn‖ ≤ ‖f‖H∞(D,X) for all n (this can be seen composing
with functionals x∗ ∈ X∗ and using the scalar-valued case). Hence if f(z) =∑∞
n=0 xnz

n ∈ H∞(D, X) has norm 1 and p1 ≤ p2 then

∞∑
n=0

‖xn‖p2(rp1(f,X)p1/p2)np2 ≤
∞∑
n=0

‖xn‖p1rp1(f,X)np1 ≤ 1.

This gives rp1p1 (f,X) ≤ rp2p2 (f,X) and we obtain (1.11).

The estimate (1.11) can be easily improved using interpolation as the following
lemma shows.
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Proposition 1.3. Let X be a complex Banach space, 1 ≤ p1 < p < p2 < ∞ and
1
p = 1−θ

p1
+ θ

p2
. Then

(1.12) rp(X) ≥ rp1(X)1−θrp2(X)θ.

Proof. Let us show that for each f ∈ H∞(D, X) with norm 1 we have that

rp(f,X) ≥ rp1(f,X)1−θrp2(f,X)θ.

Denote r1 = rp1(f,X) and r2 = rp1(f,X). Hence (
∑∞
n=0 ‖xn‖p1r

np1
1 )1/p1 ≤ 1

and (
∑∞
n=0 ‖xn‖p2r

np2
2 )1/p2 ≤ 1. Now setting p1

(1−θ)p = q1, p2θp = q2 and r = r
(1−θ)
1 rθ2

we can use Hölder’s inequality to obtain

(

∞∑
n=0

‖xn‖prnp)1/p = (

∞∑
n=0

‖xn‖p(1−θ)rn(1−θ)p
1 ‖xn‖pθrnpθ2 )1/p

≤ (

∞∑
n=0

‖xn‖p1rnp11 )(1−θ)/p1(

∞∑
n=0

‖xn‖p2rnp22 )θ/p2 ≤ 1.

This shows that rp(f,X) ≥ r(1−θ)
1 rθ2. �

As a consequence of (1.12) one gets the lower estimate

(1.13) rp ≥ (
1

3
)2/p−1, 1 < p < 2.

Note that since 3y ≤ 2 + y for 0 ≤ y ≤ 1, choosing y = 2/p− 1, we obtain p
2+p ≤

( 1
3 )2/p−1 and then (1.13) improves (1.10). One may wonder whether rp = ( 1

3 )2/p−1

for 1 < p < 2. However the already known lower estimate given in (1.3) is better
than the one obtained in (1.13). Indeed, the inequality 2x < x + 1 for 0 < x < 1

implies, choosing x = p− 1, that ( 2
p )

1
2−p < 2 and then

(1 + (
2

p
)

1
2−p )

p−2
p > (

1

3
)

2−p
p , 1 < p < 2.

Of course 0 ≤ rp(X) ≤ 1 for any Banach space (just take f(z) = xz with
‖x‖ = 1) and rp(X) ≤ rp for any complex Banach space X. Due to (1.9) and [6,
Theorem 2.2] one can not expect rp(X) > 0 for dim(X) ≥ 2. However it is not
difficult to find examples with rp(X) > 0 or even rp(X) = 1 for values p ≥ 2.

We would like to mention two well-known properties which appear naturally
when considering the p-Bohr radius and which allow us to see that if 1 < q < ∞
then rp(L

q(µ)) = 1 for certain values of p ≥ 2 and rp(L
∞(µ)) = 0 for any p ≥ 1.

We first recall the notion of Fourier type p first introduced by J. Peetre

Definition 1.4. (see [25]) Let 1 < p ≤ 2. A complex Banach space X is said to
have Fourier type p if there exists Fp(X) > 0 such that for any f ∈ Lp(T, X)

(

∞∑
n=−∞

‖f̂(n)‖p
′
)1/p′ ≤ Fp(X)‖f‖Lp(T,X)

where 1/p+ 1/p′ = 1.

Proposition 1.5. Let 1 < p ≤ 2 and 1/p+ 1/p′ = 1. If X has Fourier type p > 1
with Fp(X) = 1 then rp′(X) = 1.

In particular

(1.14) rp′(L
q(µ)) = 1, 1 < q <∞, p′ ≥ max{q, q′}.
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Proof. The inequality

(

∞∑
n=0

‖xn‖p
′
)1/p′ ≤ ‖f‖Hp(D,X) ≤ ‖f‖H∞(D,X)

for any f =
∑∞
n=0 xnz

n ∈ H∞(D, X), gives that rp′(f,X) ≥ 1.
(1.14) follows using that Lq(µ) has Fourier type p = min{q, q′} and Fp(L

q(µ)) =
1 (see [25]). �

Besides the notion of Fourier type bigger than one, there is another geometrical
property of the Banach space that plays some important role to have rp(X) > 0.

Definition 1.6. (see [27]) A complex Banach space X is said to satisfy the strong
maximum modulus theorem if ‖f(z)‖ has no maximum in D for any non-constant
bounded analytic function f : D→ X.

Proposition 1.7. If rp(X) > 0 for some 1 ≤ p <∞ then X does satisfy the strong
maximum modulus theorem.

In particular X = Cm∞ for m ≥ 2, X = c0 and X = C([0, 1]) satisfy that
rp(X) = 0 for any 1 ≤ p <∞.

Proof. Assume that there exists a non constant f ∈ H∞(D, X) of norm 1 and
z0 ∈ D such that ‖f(z0)‖ = 1. Using a Moebius transformation we may assume
that z0 = 0. Hence rp(f,X) = 0 and therefore rp(X) = 0 for any p ≥ 1.

To finish the proof it suffices to recall that Cm∞ for m ≥ 2, c0 and C([0, 1]) do
not satisfy the strong maximum modulus theorem (see [27]). �

The strong maximum modulus theorem is related with the strict c-convexity
(see [21, 27]). Let us mention certain notions on C-convexity that are particularly
interesting in our situation.

Definition 1.8. (see [21, 13]) Let 2 ≤ p <∞. A complex Banach space X is called
p-uniformly C-convex if there exists a constant λ > 0 such that

(1.15) (‖x‖p + λ‖y‖p)1/p ≤ max
θ
‖x+ eiθy‖

for all x, y ∈ X. Denote Ap(X) the supremum of the constants λ satisfying (1.15).

There are some equivalent formulations of such a concept. One is the so-called p-
uniformly PL-convexity (we refer to [17, 21, 23, 24] for information on that) where

the maxθ ‖x+ eiθy‖ is replaced by (
∫ 2π

0
‖x+ eiθy‖q dθ2π )1/q for some 1 ≤ q <∞ and

another one is given in terms of Littlewood-Paley inequalities (see [7]).
Our main theorem gives another interesting characterization of such a convexity

property.

Theorem 1.9. Let X be a complex Banach space and p ≥ 2. X is p-uniformly
C-convex if and only if the p-Bohr radius rp(X) > 0.

This result is closely related to another description of p-uniformly C-convexity
achieved in [7, Proposition 2.1] which states the existence of a constant λ > 0 such
that

(1.16) (‖f(0)‖p + λ‖f ′(0)‖p)1/p ≤ ‖f‖H∞(D,X)

for any f ∈ H∞(D, X).



6 O. BLASCO

The paper is divided into two sections. In the first one we prove Theorem 1.9
and in the second one we study rp(L

q(µ) for different values of 1 ≤ p, q < ∞.
From (1.14) we know that for 1 < q < 2 one has that rq′(L

q(µ)) = 1 and since
Lq(µ) is 2-uniformly C-convex (see [21, 13]) for 1 ≤ p ≤ 2 Theorem 1.9 gives that
actually r2(Lq(µ)) > 0. We shall get some lower estimates of rp(L

q(µ) whenever
1 ≤ q < p′ ≤ 2 ≤ p <∞.

2. Geometrical characterizations

Let is introduce the following variation of the p-Bohr radius motivated by (1.16).

Definition 2.1. Let X be a complex Banach space and 1 ≤ p <∞. We denote

(2.1) r̃p(X) = sup{r > 0 : ‖f(0)‖p + rp‖f ′(0)‖p ≤ ‖f‖pH∞(D,X)}

According to the result mentioned in the introduction p-uniformly C-convexity
means r̃p(X) > 0 for p ≥ 2. Since rp(X) ≤ r̃p(X) one has that spaces with
positive p-Bohr radius are always p-uniformly C-convex. However we shall present
an independent proof of Theorem 1.9 and get the characterization in (1.16) as a
consequence.

Let us first mention that contrary to the situation for rp(C) a precise value of
r̃p(C) can be computed for all values of p.

Proposition 2.2. Let 1 ≤ p <∞ and define

(2.2) γp = inf
0<a<1

(1− ap)1/p

1− a2
.

Then r̃p(C) = γp.

Proof. From Schwarz-Pick lemma we have that |f ′(0)| ≤ (1− |f(0)|2) for any f ∈
H∞(D) with norm 1. Hence for f(z) =

∑∞
n=0 anz

n and ‖f‖H∞ ≤ 1 we have

|a0|p + |a1|pγpp ≤ |a0|p + (1− |a0|2)pγpp ≤ 1.

Therefore we obtain r̃p(C) ≥ γp.
To see the other inequality consider φa(z) = z−a

1−az = −a+ 1−a2
a

∑∞
n=1 a

nzn which
belongs to the unit ball of H∞. Then

|a|p + r̃p(C)p(1− |a|2)p ≤ ‖φa‖pH∞ = 1, |a| < 1

This shows that

r̃p(C)p ≤ 1− ap

(1− a2)p
, 0 < a < 1.

Hence r̃p(C) ≤ γp. �

The value of γp is given in the following formula.

Proposition 2.3. Let p ≥ 1. Then r̃1(C) = 1
2 , r̃p(C) = 1 for p ≥ 2 and

r̃p(C) =
x
−1/p′

p + x
1/p
p

2
, 1 < p < 2

where (1− xp)2/p−1 = 1
1+xp

and 0 < xp < 1.
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Proof. The case p = 1 and p ≥ 2 are immediate from Proposition 2.2. Let us
consider 1 < p < 2 and denote

(2.3) hp(x) =
(1− (1− x)2/p)p

x
.

Clearly γ−pp = sup0<x<1 hp(x).

One observes that hp(1) = 1, limx→0+ hp(x) = 0, h′p(0
+) = limx→0

hp(x)
x =

( 2
p )p limx→0

xp

x2 =∞ and h′p(1
−) = −1. Since for 0 < x < 1 one has

h′p(x) =
1

x2
(1− (1− x)2/p)p−1

(
(1− x)2/p−1(1 + x)− 1

)
the function hp attains it maximum at 0 < xp < 1 such that h′p(xp) = 0 (that is to

say (1− xp)2/p−1 = 1
1+xp

). Moreover

(2.4) γ−pp = hp(xp) =
2pxp−1

p

(1 + xp)p

and the result is achieved. �

Theorem 2.4. Let p ≥ 1. Then

(2.5)
r̃p(X)

(r̃pp(X) + 1)1/p
≤ rp(X) ≤ r̃p(X).

(2.6)
Ap(X)1/p

2
≤ r̃p(X) ≤ Ap(X)1/p, p ≥ 2.

Proof. Let f ∈ H∞(D, X) with norm 1 and f(z) =
∑∞
n=0 xnz

n. Let n ∈ N and

consider ξ = e
2πi
n and define g(z) = 1

n

∑n
j=1 f(ξjz). Using that

∑n
j=1 ξ

j = 0 we
obtain

g(z) = x0 + xnz
n + x2nz

2n + · · · .
Since g ∈ H∞(D, X) with norm ‖g‖H∞(D,X) ≤ 1 we have that

‖g′(0)‖p ≤ r̃p(X)−p(1− ‖g(0)‖p).

This gives the estimate

‖xn‖p ≤ r̃p(X)−p(1− ‖x0‖p), n ≥ 1.

Therefore

‖x0‖p +

∞∑
n=1

‖xn‖prpn ≤ ‖x0‖p + r̃p(X)−p(1− ‖x0‖p)(
∞∑
n=1

rpn)

≤ ‖x0‖p + r̃p(X)−p(1− ‖x0‖p)
rp

1− rp

≤ max{1, r̃p(X)−p
rp

1− rp
}.

Now choosing r such that r̃p(X)p = rp

1−rp we obtain (2.5).

Let us now see (2.6). Let f ∈ H∞(D, X) with ‖f‖H∞(D,X) ≤ 1 and let ξ be
in the unit ball of X∗. Since 〈ξ, f〉 ∈ H∞(D,C) with ‖〈ξ, f〉‖H∞(D,C) ≤ 1 then
Schwarz-Pick lemma gives

|〈ξ, f ′(0)〉| ≤ 1− |〈ξ, f(0)〉|2 ≤ 2(1− |〈ξ, f(0)〉|).
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This shows that, for any ξ in the unit ball of X∗,

|〈ξ, f(0)〉|+ 1

2
|〈ξ, f ′(0)〉| ≤ 1.

Therefore, for any θ ∈ [0, 2π),

‖f(0) +
eiθ

2
f ′(0)‖ = sup

‖ξ‖=1

|〈ξ, f(0)〉+
eiθ

2
〈ξ, f ′(0)〉| ≤ 1.

Hence

‖f(0)‖p +
Ap(X)

2p
‖f ′(0)‖p ≤ 1.

This gives
Ap(X)1/p

2 ≤ r̃p(X). �

Proof of Theorem 1.9
Applying Theorem 2.4 one obtains

(2.7)
A

1/p
p (X)

(Ap(X) + 2p)1/p
≤ rp(X) ≤ A1/p

p (X).

Taking into account that p-uniformly C-convexity means Ap(X) > 0 the proof
is complete. �

Combining (2.5) in Theorem 2.4 and Proposition 2.2 one gets the following lower
estimate for rp.

Corollary 2.5. Let 1 < p < 2. Then

(2.8) rp ≥ (1 + γ−pp )−1/p.

Combining (2.6) and (2.5) we also obtain the following lower estimate.

Corollary 2.6. If X is 2-uniformly C-convex then r2(X) ≥
√

A2(X)
A2(X)+4 .

3. p-Bohr radius of Lq-spaces

In this section X = Lq(µ) where µ is a measure space and 1 ≤ q ≤ ∞. It was
shown (see [6]) that r1(Lq(mu)) = 0 for 1 ≤ q ≤ ∞ whenever dim(Lq(µ)) ≥ 2.

We shall see that rp(L
q(µ)) = 0 for 1 < p < 2 while rp(L

q(µ)) > 0 for p ≥ 2 and
1 ≤ q ≤ p.

Next result follows closely the ideas in [6] and it is included for sake of complete-
ness.

Theorem 3.1. Let (Ω,Σ, µ) a measure space such that there exists a couple of
disjoint measurable sets A,B ∈ Σ with 0 < µ(A), µ(B) <∞. Then

r̃p(L
q(µ)) = 0, 1 ≤ p < q <∞ or 1 ≤ q ≤ p < 2.

In particular, if 1 ≤ p < 2 then rp(Cmq ) = 0 for m ≥ 2 and rp(L
q(T)) = 0.

Proof. Assume first p < q. Since limy→∞ yp/q − (y − 1)p/q = 0, one has that for
each ε > 0 we can find 0 < γ < 1 such that

(γ−1)p/q − (γ−1 − 1)p/q < εp.

Equivalently

(3.1) (1− γ)p/q + εpγp/q > 1.
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Now define x0 = (1− γ)1/q χA
µ(A)1/q

and x1 = γ1/q χB
µ(B)1/q

and set

f(z) = x0 + x1z.

Clearly sup|z|<1 ‖f(z)‖Lq(µ) = 1 and

‖x0‖p + ‖x1‖pεp > 1.

Hence r̃p(f, L
q(µ)) ≤ ε and then r̃p(X) = 0.

Assume now p < 2 and q ≤ 2. We argue as above choosing now for each ε > 0 a
value 0 < γ < 1 satisfying

(3.2) (1− γ)p/2 + εpγp/2 > 1.

We now define

x0 = 2−1/q(1− γ)1/2
( χA
µ(A)1/q

+
χB

µ(B)1/q

)
,

x1 = 2−1/qγ1/2
( χA
µ(A)1/q

− χB
µ(B)1/q

)
and set

f(z) = x0 + x1z = 2−1/q(
√

1− γ +
√
γz)

χA
µ(A)1/q

+ 2−1/q(
√

1− γ −√γz) χB
µ(B)1/q

.

Observe that

‖f(z)‖ = 2−1/q
(
|
√

1− γ +
√
γz|q + |

√
1− γ −√γz|q

)1/q

≤ 2−1/2
(
|
√

1− γ +
√
γz|2 + |

√
1− γ −√γz|2

)1/2

≤ 1.

On the other hand, ‖x0‖ =
√

1− γ and ‖x1‖ =
√
γ. The proof is finished using(3.2)

and arguing as in the previous case. �

Let us now analyze the case p ≥ 2 and q ≤ p.

Theorem 3.2. Let 2 ≤ p <∞ and p′ ≤ q ≤ p. Then

(3.3) rp(L
q(µ)) = 1.

Proof. We first consider p = 2 (hence q = 2). We can use Plancherel’s theorem to
obtain

(3.4) (

∞∑
n=0

‖xn‖2L2(µ))
1/2 = ‖f‖H2(D,L2(µ))

and, then r2(L2(µ)) ≥ 1. The other inequality is always true.
Assume 2 < p < ∞ and p′ ≤ q ≤ p. Select 0 < θ < 1 such that 1

p = 1−θ
2 and

1 ≤ β ≤ ∞ so that 1
q = 1−θ

2 + θ
β . Observe first that

(3.5) max
n
‖xn‖Lβ(µ) ≤ ‖f‖H1(D,Lβ(µ)).

Now we can use complex interpolation, and apply the result (see [8])

[Hp1(D, Lα(µ)), Hp2(D, Lβ(µ))]θ = Hp3(D, Lγ(µ)),

for 1
p3

= 1−θ
p1

+ θ
p2

and 1
γ = 1−θ

α + θ
β . We then conclude, due to (3.4) and (3.5) by

considering p1 = 2, p2 = 1 and α = 2 (and hence p3 = 2
1+θ and γ = q)

(

∞∑
n=0

‖xn‖pLq(µ))
1/p ≤ ‖f‖Hp3 (D,Lq(µ)).
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This shows that for each f(z) =
∑∞
n=0 xnz

n belonging to the unit ball ofH∞(D, Lq(µ))

we have (
∑∞
n=0 ‖xn‖

p
Lq(µ))

1/p ≤ 1. Hence rp(L
q(µ)) ≥ 1. �

The only case that is left is 1 ≤ q < p′ ≤ 2 ≤ p. Using Corollary 2.6 and Remark

1.11 one gets that rp(L
q(µ)) ≥ r

2/q
2 (Lq(µ)) > 0. Let us see that in general also

rp(L
q(µ)) < 1.

Proposition 3.3. Let X = Lq(T) and 1 ≤ q < 2. Then 0 < r2(X) < 1.

Proof. As mentioned above the fact that r2(X) > 0 follows from Corollary 2.6.
We shall show that there exists f in the unit ball ofH∞(D, Lq(T)) with

∑∞
n=0 ‖xn‖2 =

∞. Therefore r2(X) < 1.
It suffices to select F ∈ Hq(T)\H2(T), say F (w) =

∑∞
n=0 anw

n, with ‖F‖Hq(T) =

1, that is sup0<r<1 ‖Fr‖Lq(T) ≤ 1 where Fr(e
it) = F (reit) and consider the Lq(T)-

valued function

f(z)(eit) = F (zeit) =

∞∑
n=0

ane
intzn.

Hence xn(eit) = ane
int and ‖f(z)‖Lq(T) = ‖F|z|‖Hq ≤ 1 for all 0 < |z| < 1 and

∞∑
n=0

‖xn‖2 =

∞∑
n=0

|an|2.

�

Our aim is now to find lower estimates for rp(L
q(µ) in the case 1 ≤ q < p′ ≤ 2 ≤

p. We shall need the following lemma.

Lemma 3.4. Let 1 ≤ q ≤ 2 and F ∈ Hq(D). Then

(3.6)
(
|F (0)|2 + (

1

2
)

2−q
q |F ′(0)|2

)1/2

≤ ‖F‖Hq(D)

Proof. Let us first show that(
|F (0)|2 +

1

2
|F ′(0)|2

)1/2

≤ ‖F‖H1(D).

Assume that ‖F‖H1(D) = 1. Now, using factorization to write F = gh with

g, h ∈ H2(D) and ‖h‖H2(D) = ‖g‖H2(D) = 1. Hence F (0) = g(0)h(0),

F ′(0) = h(0)g′(0) + h′(0)g(0)

and
|g(0)|2 + |g′(0)|2 ≤ 1, |h(0)|2 + |h′(0)|2 ≤ 1.

Using that 2xy ≤ x2 + y2 we have

|F (0)|2 +
1

2
|F ′(0)|2 ≤ |g(0)|2|h(0)|2 + |g(0)|2|h′(0)|2 + |g′(0)|2|h(0)|2

= |g(0)|2(|h(0)|2 + |h′(0)|2) + |g′(0)|2|h(0)|2

≤ (|g(0)|2 + |g′(0)|2)(|h(0)|2 + |h′(0)|2) ≤ 1.

Therefore (
|F (0)|2 +

1

2
|F ′(0)|2

)1/2

≤ ‖F‖H1(D)

which combined with (
|F (0)|2 + |F ′(0)|2

)1/2

≤ ‖F‖H2(D)
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gives also the case 1 < q < 2 in (3.6) by invoking interpolation (see [5, Theorem
5.6.2]). �

Theorem 3.5. Let (Ω,Σ, µ) a measure space and 1 ≤ q ≤ 2. Then r̃2(Lq(µ)) ≥
2

1
2−

1
q .

Proof. Let f : D→ Lq(µ) be a bounded holomorphic function, say f(z) =
∑∞
n=0 xnz

n.
We use Fubini’s theorem and Minkowski’s inequality, together with Lemma 3.4, to
get the following estimates

‖f‖qH∞(D,Lq(µ)) ≥ ‖f‖qHq(D,Lq(µ))

= sup
0<s<1

∫ 2π

0

‖f(seiθ)‖qLq(µ)

dθ

2π

= sup
0<s<1

∫
Ω

(∫ 2π

0

|f(seiθ)(w)|q dθ
2π

)
dµ(w)

≥ sup
0<s<1

∫
Ω

(
|x0(w)|2 + (

1

2
)

2−q
q |x1(w)|2s2

)q/2
dµ(w)

= sup
0<s<1

∫
Ω

‖
(
|x0(w)|q, (1

2
)

2−q
2 |x1(w)|qsq

)
‖C2

2/q
dµ(w)

≥ sup
0<s<1

∥∥∥(

∫
Ω

|x0(w)|qdµ(w), (
1

2
)

2−q
2

∫
Ω

|x1(w)|qsqdµ(w))
∥∥∥
C2

2/q

= sup
0<s<1

(‖x0‖2Lq(µ) + (
1

2
)

2−q
q ‖x1‖2Lq(µ)s

q)q/2

=
(
‖x0‖2Lq(µ) + (

1

2
)

2−q
q ‖x1‖2Lq(µ)

)q/2
.

Hence r̃2(Lq(µ)) ≥ ( 1
2 )

1
q−

1
2 . �

Corollary 3.6. Let (Ω,Σ, µ) a measure space and 1 ≤ q < p′ ≤ 2 ≤ p <∞. Then

rp(L
q(µ)) ≥ (1 + 2

2
q−1)−1/p.

In particular rp(L
1(µ)) ≥ (1/3)1/p.

Proof. Note that φp(t) = t
(tp+1)1/p

is increasing. Combining now Theorem 2.4 and

Theorem 3.5 one obtains

r2(Lq(µ)) ≥ φ2(r̃2(Lq(µ))) ≥ φ2(2
1
2−

1
q ) = (1 + 2

2
q−1)−1/2.

Finally use rp(X) ≥ r2(X)2/p to complete the result.
�
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