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Abstract. In this paper we provide two representation theorems for two rel-
evant classes of operators from any p-convex order continuous Banach lattice
with weak unit into a Banach space: the class of continuous operators and
the class of cone absolutely summing operators. We prove that they can be
characterized as spaces of vector measures with finite p-semivariation and p-
variation, respectively, with respect to a fixed vector measure. We give in this
way a technique for representing operators as integrals with respect to vector
measures.

1. Introduction

The theory of integration with respect to a vector measure has its roots in
the seminal paper by Bartle, Dunford and Schwartz (see [1]), who developed
a Lebesgue type definition for integration of scalar functions with respect to a
vector measure in order to extend the Riesz Representation Theorem for the dual
space C(K)∗. More precisely with this integration they represent as integrals
weakly compact operators from C(K) spaces into a Banach space X. After this
paper of the fifties, the interplay between vector measures and operators has been
the starting point of a lot of fruitful mathematical developments. Nowadays, a
deeper knowledge of the properties of integration of scalar functions with respect
to vector measures (see [11, 12, 14]) and the corresponding spaces of integrable
functions allows a better understanding of the relation between operators on
Banach function spaces and their integral representations.

In this paper we show that finite p-semivariation and finite p-variation of a
vector measure with respect to other vector measure characterize some strong
relations between the corresponding spaces of integrable functions and also some
properties of the integration maps defined between them. When these ideas
are written in terms of operators —that is for vector measures defined from
operators—, we find that the classes of continuous and cone absolutely summing
operators from an order continuous p-convex Banach lattice with a weak unit
can be represented as integrals of vector measures— as in the case of weakly
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compact operators on C(K) quoted above —having bounded p-semivariation or
p-variation, respectively.

The motivation of our analysis comes from the following well-known result
about operators on Lp-spaces and vector measures that can be already found
in the book by Dinculeanu (see [9]). For a finite measure µ, an operator T :
Lp
′
(µ)→ X is continuous if and only if the p-semivariation of the vector measure

m
T
, denoted by ‖m

T
‖p, and given by

‖m
T
‖p := sup

{(∑ |〈m
T
(Ai), x

′〉|p

µ(Ai)p−1

)1/p

: x′ ∈ BX∗ , {Ai} finite partition of Ω
}
,

is finite (see for instance [15, Theorem 8] and Example 2.5(1) below for an
equivalent formulation). In this paper we prove that this result for operators
on Lp-spaces is in fact a particular example of a general result that holds for
p-convex Banach lattices involving the p-semivariation and the p-variation of a
vector measure with respect to other vector measure. We provide in this way
two vector-measure-type integral representations for continuous and cone abso-
lutely summing operators (Corollary 2.8 and Corollary 3.7, respectively) whose
proofs are based on two theorems for vector measures (Theorem 2.6 and 3.5).
As the reader may expect, Pettis integrability is involved in the first result (Ex-
ample 2.5(2)), while Bochner integrability is the key property in the second one
(Example 3.4(3)).

Terminology and background. Throughout this paper X and Y denote (real)
Banach spaces. By BX we denote the closed unit ball of X. Let L(X, Y ) be
the Banach space of the linear and continuous maps T defined from X into Y
endowed with the usual uniform norm ‖T‖ = sup{‖Tx‖Y : x ∈ BX}. X∗ will be
the topological dual space, that is X∗ = L(X,R). When E is a Banach lattice
an operator T ∈ L(E, Y ) is called cone absolutely summing if there is a constant
k > 0 such that for each finite set of positive elements x1, ..., xn ∈ E,

n∑
i=1

‖Txi‖ ≤ k sup
x′∈BX∗

n∑
i=1

|〈xi, x′〉| = k
∥∥ n∑
i=1

xi
∥∥
X
.

The infimum of such constant is denoted by π+
1 (T ). We denote by (Λ+

1 (E, Y ), π+
1 )

to the complete space of all cone absolutely summing operators from E into Y .
Let 1 ≤ p < ∞. A Banach lattices E is said to be p-convex if there exists a

constant k ≥ 0 satisfying that for every finite collection x1, . . . , xn ∈ E,∥∥∥∥∥(
n∑
i=1

|xi|p
)1/p

∥∥∥∥∥ ≤ k

(
n∑
i=1

‖xi‖p
)1/p

.

When every monotone order bounded sequence in the Banach lattice E is con-
vergent (in the norm of E) then E is said to be order continuous. A weak unit
of E is an element 0 ≤ e ∈ E such that inf(x, e) = 0 implies x = 0. The reader is
referred to [8, 16] to the unexplained terminology and results regarding Banach
lattices and absolutely summing operators.
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Let (Ω,Σ) be a measurable space, that is Ω is a set and Σ is a σ-algebra. For
each A ∈ Σ we will denote by DA the set of all partitions, πA, of the set A into
a finite number of pairwise disjoint elements of Σ. The characteristic function of
the set A ∈ Σ is denoted by χA. We will also denote by SΣ(X) the set of the
simple functions, s =

∑n
i=1 xiχAi , where xi ∈ X for all 1 ≤ i ≤ n and {Ai}ni=1 are

pairwise disjoint elements of Σ.
If m : Σ→ X is a Banach space valued countably additive vector measure, we

can define for each functional x′ ∈ X∗ the scalar measure given by 〈m,x′〉(A) :=
〈m(A), x′〉, A ∈ Σ. We write |〈m,x′〉| for its variation. The symbol ‖m‖ denotes
the semivariation of m, that is given by ‖m‖(A) := supx′∈BX∗ |〈m,x

′〉|(A), A ∈ Σ.
Throughout the paper, m and ν are countably additive vector measures on the
same σ-algebra Σ. A set A ∈ Σ is said to be ‖m‖-null if ‖m‖(A) = 0. We
say that m is absolutely continuous with respect to ν, and write m � ν, if any
measurable set A with ‖ν‖(A) = 0 satisfies ‖m‖(A) = 0. The reader can find
more information on vector measures on our standard reference [7].

A real measurable function f : Ω→ R is integrable with respect to m if for each
x′ ∈ X∗, f ∈ L1(|〈m,x′〉|), and for each A ∈ Σ there is an element

∫
A
fdm ∈ X

such that 〈
∫
A
fdm, x′〉 =

∫
A
f d〈m,x′〉 for all x′ ∈ X∗. If only the first requirement

is satisfied, then we say that f is weakly integrable and the corresponding space
of such classes of functions (identifying functions that are ‖m‖-a.e. equal) will
by denoted by L1

w(m).
Given 1 ≤ p < ∞. The space Lp(m) of p-integrable function is composed by

the equivalence classes of ‖m‖-a.e. equal integrable functions, with the norm

‖f‖Lp(m) := sup
x′∈BX∗

(∫
Ω

|f |p d|〈m,x′〉|
)1/p

, f ∈ Lp(m).

For p = ∞ we have L∞(m) the ‖m‖-essentially bounded measurable functions
which it is equipped with the essential supremum norm ‖·‖L∞(m). Considering the
‖m‖-a.e. order they become Banach lattices, and Lp(m) defines, for 1 ≤ p <∞,
an order continuous p-convex Banach lattice with weak unit. The space Lpw(m)
of weakly integrable functions (with the same norm) is also a p-convex Banach
lattice, and Lp(m) ⊆ Lpw(m) isometrically. We write Im for the integration map
Im : L1(m) → X given by Im(f) :=

∫
Ω
f dm, f ∈ L1(m). It can be easily

seen that Lp(m) ⊆ Lq(m) whenever 1 ≤ q ≤ p < ∞. Sometimes we will write
[f ]m instead of f for an element of L1(m) in order to recall that f is in fact an
equivalence class of functions. The reader can find further information on these
spaces in [14, Ch.3].

We denote L0(m) the space of equivalence classes [f ]m of measurable functions.
Hence if we assume that m � ν then the map id : L0(ν) → L0(m) given by
id([f ]ν) = [f ]m is well-defined. For 1 ≤ q ≤ p ≤ ∞ we introduce the symbol
Lp(ν) b Lq(m) to mean that id : Lp(ν) → Lq(m) is well-defined. Notice that,
since this map is positive, it is always continuous (see [13, p.2]). Although this
relation is not strictly speaking an inclusion, we use the symbol “id” to denote it.
For the particular case that we deal with in the present paper —vector measures
defined by operators— the reader can find a complete explanation of this kind of
relation in [6, Section 3].
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Finally if 1 ≤ p ≤ ∞ as usual we write p′ ∈ [1,∞] the (extended) real number
given by 1/p+ 1/p′ = 1.

2. Measures of bounded p-semivariation.

Let us start by expressing the absolute continuity of m with respect to ν in
terms of inclusion between spaces.

Proposition 2.1. Let m : Σ → X and ν : Σ → Y be countable additive vector
measures. The following assertions are equivalent:

(1) m� ν.
(2) L∞(ν) b L∞(m).
(3) L∞(ν) b L1(m).
(4) The integration map I∞m : L∞(ν)→ X is continuous.

Proof. (1)⇒(2). Clearly for a fixed f ∈ L∞(ν) the measurable set

A = {w ∈ Ω : |f(w)| > ‖f‖L∞(ν)},
is ‖ν‖-null so by using (1) it is also ‖m‖-null and ‖f‖L∞(m) ≤ ‖f‖L∞(ν). This
gives (2). (2)⇒(3) follows from the continuous inclusion L∞(m) b L1(m). The
implication (3)⇒(4) is a direct consequence of the continuity of the integration
map I1

m : L1(m) → X. Finally let us see that (4)⇒(1). Take A ∈ Σ such that
‖ν‖(A) = 0. Then I∞m (χB) = m(B) = 0 for any B ∈ Σ and B ⊆ A. Therefore
‖m‖(A) = 0. �

It is easy to give examples of couples of measures (m, ν) such that m� ν. Let
us introduce some of them which will appear in the sequel.

Example 2.2. (1) If ν : Σ→ Y is a vector measure and h ∈ L1(ν) let us consider
the countable additive vector measure νh : Σ→ Y given by

νh(A) =

∫
A

hdν, A ∈ Σ.

It is clear that νh � ν.
(2) Consider now a vector measure ν : Σ → X and take T ∈ L(X, Y ). Then
for the new vector measure T ◦ ν : Σ → Y given by T ◦ ν(A) = T (ν(A)), for all
A ∈ Σ, it is clear that T ◦ ν � ν.
(3) Let (Ω,Σ, µ) be a finite measure space, 1 ≤ q < ∞ and denote by mq : Σ →
Lq(µ) the vector measure given by mq(A) = χA for all A ∈ Σ then mq � µ.
(4) Finally let ν : Σ → X be a vector measure and T ∈ L(L∞(ν), X). Denote
by m

T
: Σ → X the set function given by m

T
(A) = T (χA), for all A ∈ Σ. In

the case when m
T

is countable additive —for instance if T is order continuous—
therefore it is easy to see that m

T
� ν.

Definition 2.3. Let 1 < p ≤ ∞ and let m : Σ → X and ν : Σ → Y be
countable additive vector measures. We say that m has bounded p-semivariation
with respect to ν if

‖m‖p,ν = sup

{∥∥∥∥∥∑
A∈π

αAm(A)

∥∥∥∥∥
X

: π ∈ DΩ,
∑
A∈π

αAχA ∈ BLp′ (ν)

}
<∞.
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For the effective computation of ‖ · ‖p,ν , notice that for every π ∈ DΩ,∑
A∈π

αAχA ∈ BLp′ (ν) ⇐⇒
∑
A∈π

αAχA ∈ BLp′ (|〈ν,y′〉|), for all y′ ∈ BY ∗ .

Note also that finite p-semivariation with respect to ν of m implies in particular
absolute continuity of m with respect to ν, i.e. ‖ν‖(A) = 0 implies that ‖m‖(A) =
0 for each A ∈ Σ.

Of course in the case ν = µ where (Ω,Σ, µ) is a positive finite measure space
and 1 < p <∞ the classical notion of p-semivariation of a vector valued measure
m : Σ→ X, that is to say

‖m‖p = sup

{
(
∑
A∈π

|〈m(A), x′〉|p

µ(A)p−1
)1/p : x′ ∈ BX∗ , π ∈ DΩ

}
,

corresponds to ‖m‖p = ‖m‖p,µ. However we see in the next example that also
coincides with the q-variation with respect to different vector-valued measures.

Proposition 2.4. Let (Ω,Σ, µ) be a positive finite measure space, m : Σ→ X be
a vector valued measure and 1 < p ≤ r <∞. Then there exist a Banach space Y
and a vector valued measure ν : Σ→ Y such that ‖m‖p = ‖m‖r,ν .

Proof. Let Y = Lq(µ) for q = p′/r′ ≥ 1 and let ν be the measure

ν = mq : Σ→ Lq(µ), mq(A) = χA.

Using that Lq(µ) = L1(ν) one has that for every π ∈ DΩ∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
Lr′ (mq)

=

∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
Lp′ (µ)

.

Therefore

‖m‖r,ν = sup

{∥∥∥∥∥∑
A∈π

αAm(A)

∥∥∥∥∥
X

: π ∈ DΩ,
∑
A∈π

αAχA ∈ BLr′ (mq)

}
= ‖m‖p.

�

Example 2.5. (1) Let T : Lp
′
(µ)→ X be a bounded linear map and m

T
: Σ→

X the vector measure associated to T , given by m
T
(A) = T (χA). Then m

T
has

bounded p-semivariation with respect to µ and ‖m
T
‖p,µ = ‖T‖. Moreover, in

particular, ‖mq‖p = 1 for q ≤ p′.
Indeed, the first part is clear since

‖m
T
‖p,µ = sup

{∥∥∥∥∥∑
A∈π

αAmT
(A)

∥∥∥∥∥
X

: π ∈ DΩ,
∑
A∈π

αAχA ∈ BLp′ (µ)

}

= sup

{∥∥∥∥∥T(∑
A∈π

αAχA
)∥∥∥∥∥

X

: π ∈ DΩ,
∑
A∈π

αAχA ∈ BLp′ (µ)

}
= ‖T‖.
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In particular, for q ≤ p′, the inclusion map T = id : Lp
′
(µ)→ Lq(µ) defines the

vector measure mq = mid : Σ→ Lq(µ) given by mq(A) = χA which has bounded
p-semivariation with respect to µ and ‖mq‖p = ‖mq‖p,µ = ‖id‖Lp′ (µ)→Lq(µ) = 1.

(2) Let f : Ω → X be a Pettis p-integrable function and mf : Σ → X the vector
measure mf : Σ → X defined by mf (A) =

∫
A

fdµ, where the integral stands
for the Pettis integral of f . Then mf has bounded p-semivariation with respect
to µ and ‖mf‖p,µ = ‖f‖Pp(X) —where Pp(X) is the space consisting of Pettis
p-integrable functions—. Indeed, just consider the measure mf = mT f

where

Tf (φ) =

∫
Ω

φfdµ, φ ∈ Lp′(µ)

and recall that ‖Tf‖ = ‖f‖Pp(X).

In our first important result we characterize when a vector measure m : Σ→ X
has bounded p-semivariation with respect to other vector measure ν : Σ→ Y .

Theorem 2.6. Let 1 < p ≤ ∞ and let m : Σ → X and ν : Σ → Y be countable
additive vector measures. The following assertions are equivalent:

(1) ‖m‖p,ν <∞.
(2) There exists a bounded linear map Tm : Lp

′
(ν) → X such that Tm(χA) =

m(A), for all A ∈ Σ.
(3) Lp

′
(ν) b L1(m).

(4) The integration map Ip
′
m : Lp

′
(ν)→ X is continuous.

Moreover, ‖m‖p,ν = ‖Tm‖ = ‖id‖Lp′ (ν)→L1(m) = ‖Ip′m‖Lp′ (ν)→X .

Proof. For (1)⇒(2) let us consider a simple function s =
∑n

j=1 αjχAj and define

the bounded linear map Tm(s) =
∑n

j=1 αjm(Aj) ∈ X. Since∥∥Tm(s)
∥∥
X

=

∥∥∥∥∥
n∑
j=1

αjm(Aj)

∥∥∥∥∥
X

≤ ‖m‖p,ν‖s‖Lp′ (ν),

by the density of simple functions in Lp
′
(ν) we can extend Tm : Lp

′
(ν)→ X with

‖Tm‖ ≤ ‖m‖p,ν . (2.1)

In order to prove that (2)⇒(3) first observe that the vector measure associated
to Tm, m

Tm
, is exactly the measure m. This means that L1(m

Tm
) = L1(m). On

the other hand, Lp
′
(ν) is a Banach function space over a Rybakov measure for

ν as λ = |〈ν, y′0〉|, y′0 ∈ Y ∗. Hence by the Optimal Domain Theorem (see [14,
Theorem 4.14] and the more general factorization version given in Section 3 of [6])
there is an inclusion/quotient map from the space Lp

′
(ν) to L1(m

Tm
) = L1(m),

i.e Lp
′
(ν) b L1(m).

Let us show that (3)⇒(4). Take f ∈ Lp′(ν),∥∥Ip′m(f)
∥∥
X

=

∥∥∥∥∫
Ω

fdm

∥∥∥∥
X

≤ ‖f‖L1(m) ≤ ‖id‖Lp′ (ν)→L1(m)‖f‖Lp′ (ν).

Therefore Ip
′
m is continuous and

‖Ip′m‖Lp′ (ν)→X ≤ ‖id‖Lp′ (ν)→L1(m). (2.2)
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We prove now (4)⇒(1). Take π ∈ DΩ,∥∥∥∥∥∑
A∈π

αAm(A)

∥∥∥∥∥
X

=

∥∥∥∥∥
∫

Ω

(∑
A∈π

αAχA
)
dm

∥∥∥∥∥
X

=

∥∥∥∥∥Ip′m(∑
A∈π

αAχA
)∥∥∥∥∥

X

≤ ‖Ip′m‖Lp′ (ν)→X

∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
Lp′ (ν)

.

Therefore ‖m‖p,ν is finite and

‖m‖p,ν ≤ ‖Ip
′

m‖Lp′ (ν)→X . (2.3)

From the inequalities (2.1), (2.2) and (2.3) in order to finish the proof we have
to show that ‖id‖Lp′ (ν)→L1(m) ≤ ‖Tm‖. Take f ∈ Lp′(ν),

‖f‖L1(m) = sup

{∥∥∥∥∫
Ω

sfdm

∥∥∥∥
X

: s ∈ SΣ(R) ∩BL∞(ν)

}
= sup

{
‖Tm(sf)‖X : s ∈ SΣ(R) ∩BL∞(ν)

}
≤ sup

{
‖Tm‖ · ‖sf‖Lp′ (ν) : s ∈ SΣ(R) ∩BL∞(ν)

}
≤ ‖Tm‖ · ‖f‖Lp′ (ν).

Hence ‖id‖Lp′ (ν)→L1(m) ≤ ‖Tm‖. �

The vector space consisting of those measures m appearing in Theorem 2.6
is denoted by V

p
X(ν). The previous result allows us to establish an isometric

isomorphism between V
p
X(ν) and L(Lp

′
(ν), X). Therefore,

Corollary 2.7. Let 1 < p ≤ ∞, ν : Σ → Y a countable additive vector measure
and X a Banach space. Then V

p
X(ν) is a Banach space under the norm ‖ · ‖p,ν

that can be identified isometrically with L(Lp
′
(ν), X).

Theorem 2.6 is in fact an integral representation theorem for operators from
a p′-convex order continuous Banach lattice on a Banach space. This can be
proved by using some well-known results on representations of this class of Banach
lattices. Recall that other implicit fact that is assumed is that ν and m must be
defined on the same measure space (Ω,Σ).

Corollary 2.8. Let 1 < p ≤ ∞. Let E be an order continuous p′-convex Banach
lattice with a weak unit and X a Banach space. Then there is a measure space
(Ω,Σ) and a vector measure ν on it such that VpX(ν) = L(E,X) (isomorphically).
In particular, there is an order isomorphism I : E → Lp

′
(ν) satisfying that for

each T ∈ L(E,X) there is a vector measure m
T
� ν such that ‖m

T
‖p,ν <∞ and

T (·) =
∫
I(·) dm

T
.

Proof. This is a consequence of the representation theorem for Banach lattices
using vector measures: if E satisfies the requirements above, there is a vector
measure ν such that there is an order isomorphism between E and Lp

′
(ν) (see

[14, Prop.3.30] and the references therein). Therefore, each T ∈ L(E,X) defines
an operator S

T
: Lp

′
(ν) → X. For getting the integral formula, it is enough to

use Theorem 2.6 with the vector measure m
T

playing the role of m in (2). �
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Notice that the integral representation obtained above can be written for each
vector measure representing the Banach lattice E. For instance, Lebesgue mea-
sure µ on [0, 1] can be obviously used for representing the space Lp

′
[0, 1] as Lp

′
(µ).

This is Example 2.5(1). The other cases in it show more classical examples when
we deal with the p-semivariation of vector valued measures with respect to scalar
ones. Now we present a different example where both measures are vector valued.

Corollary 2.9. Let 1 < p ≤ ∞, ν : Σ → Y a countable additive vector measure
and h ∈ L1(ν). The following assertions are equivalent:

(1) ‖νh‖p,ν <∞.
(2) Lp

′
(ν) b L1(νh).

(3) h ∈ Lp(ν).

Moreover, ‖νh‖p,ν = ‖h‖Lp(ν) = ‖id‖Lp′ (ν)→L1(νh).

Proof. Theorem 2.6 gives that (1)⇒(2) and

‖νh‖p,ν = ‖id‖Lp′ (ν)→L1(νh). (2.4)

Let us proof (2)⇒(3). Recall that the space M(Lp
′
w (ν), L1(ν)) of multiplication

operators from Lp
′
w (ν) into L1(ν) endowed with the operator norm is isometrically

isomorphic to Lp(ν) with the norm ‖ · ‖Lp(ν) (cf. [14, Proposition 3.43]). Take

g ∈ Lp′w (ν) and use (2) to obtain

‖hg‖L1(ν) = ‖g‖L1(νh) ≤ ‖id‖Lp′ (ν)→L1(νh)‖g‖Lp′ (ν).

Hence h ∈M(Lp
′
w (ν), L1(ν)) = Lp(ν) and

‖h‖Lp(ν) ≤ ‖id‖Lp′ (ν)→L1(νh). (2.5)

We show now that (3)⇒(1). Take π ∈ DΩ,∥∥∥∥∥∑
A∈π

αAνh(A)

∥∥∥∥∥
Y

=

∥∥∥∥∥
∫

Ω

(∑
A∈π

αAχA
)
hdν

∥∥∥∥∥
Y

≤

∥∥∥∥∥(∑
A∈π

αAχA
)
h

∥∥∥∥∥
L1(ν)

≤

∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
Lp′ (ν)

‖h‖Lp(ν).

Therefore we obtain that
‖νh‖p,ν ≤ ‖h‖Lp(ν). (2.6)

Finally using (2.5), the last part of Theorem 2.6 and (2.6) we have

‖h‖Lp(ν) ≤ ‖id‖Lp′ (ν)→L1(νh) = ‖νh‖p,ν ≤ ‖h‖Lp(ν).

�

The last result of this section is other consequence of Theorem 2.6 and provides
a new characterization of the norm of the spaces Lp(ν) in our setting.

Corollary 2.10. Let 1 < p <∞, ν : Σ→ Y a countable additive vector measure
and h ∈ Lp(ν). Then

‖h‖Lp(ν) = sup
{
‖h‖L1(m) : m ∈ B

V
p′
Y (ν)

}
.
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Proof. For the first inequality observe that since h ∈ Lp(ν) then hp−1 ∈ Lp′(ν).
By using Corollary 2.9 with this function hp−1 and the space Lp

′
(ν) we have that

‖νhp−1‖p′,ν =
∥∥|h|p−1

∥∥
Lp
′ (ν)

= ‖h‖p−1
Lp(ν). (2.7)

Consider now the vector valued measure m = ‖h‖1−p
Lp(ν)νhp−1 = ν‖h‖1−p

Lp(ν)
hp−1 that

satisfies ‖m‖p′,ν = 1 and

‖h‖L1(m) =
∥∥∥|h| · ‖h‖1−p

Lp(ν)|h|
p−1
∥∥∥
L1(ν)

= ‖h‖1−p
Lp(ν)

∥∥|h|p∥∥
L1(ν)

= ‖h‖Lp(ν).

This gives

‖h‖Lp(ν) ≤ sup
{
‖h‖L1(m) : m ∈ B

V
p′
Y (ν)

}
.

For the other inequality take m ∈ B
V
p′
Y (ν)

. Using Theorem 2.6 we have that

Lp(ν) b L1(m). Since moreover ‖id‖Lp(ν)→L1(m) = ‖m‖p′,ν ≤ 1 we obtain

‖h‖L1(m) ≤ ‖id‖Lp(ν)→L1(m)‖h‖Lp(ν) ≤ ‖h‖Lp(ν).

Since m ∈ B
V
p′
Y (ν)

is arbitrary we have the other inequality and hence the equality.

�

3. Measures of bounded p-variation.

In this section we develop the counterpart of the results of the previous one for
the case of finite p-variation instead of finite p-semivariation. As we will show,
this leads us to represent the class of cone absolutely summming operators.

Definition 3.1. Let 1 < p ≤ ∞ and let m : Σ→ X and ν : Σ→ Y be countable
additive vector measures. We say that m has bounded p-variation with respect
to ν if

|m|p,ν = sup

{∑
A∈π

|αA|
∥∥m(A)

∥∥
X

: π ∈ DΩ,
∑
A∈π

αAχA ∈ BLp′ (ν)

}
<∞.

Remark 3.2. If m has bounded p-variation with respect to ν then given A ∈ Σ,
π ∈ DA, ∑

B∈π

‖m(B)‖X ≤ |m|p,ν

∥∥∥∥∥∑
B∈π

χB

∥∥∥∥∥
Lp′ (ν)

≤ |m|p,ν
∥∥ν∥∥(A)1/p′ .

In particular, m has bounded variation |m| and |m| � ν.

As in the previous section we present now some easy examples. Of course in
the case ν = µ where (Ω,Σ, µ) is a positive finite measure space and 1 < p <∞
the classical notion of p-variation of a vector valued measure m : Σ→ X, that is
to say

|m|p = sup

{
(
∑
A∈π

‖m(A)‖p

µ(A)p−1
)1/p : π ∈ DΩ

}
,

corresponds to |m|p = |m|p,µ. Similarly as in Proposition 2.4 we have the analogue
result.
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Proposition 3.3. Let (Ω,Σ, µ) be a positive finite measure space, m : Σ→ X be
a vector valued measure and 1 < p ≤ r <∞. Then there exist a Banach space Y
and a vector valued measure ν : Σ→ Y such that |m|p = |m|r,ν .

Example 3.4. Let (Ω,Σ, µ) be a positive finite measure space and 1 < p <∞.
(1) If T : Lp

′
(µ) → X is a cone absolutely summing operator then m

T
has

bounded p-variation with respect to µ and |m
T
|p,µ = π+

1 (T ).
(2) Let f : Ω → X be a Bochner p-integrable function and consider mf : Σ →
X defined by mf (A) =

∫
A

fdµ, where now the integral stands for the Bochner
integral of f . Then mf has bounded p-variation with respect to µ and

|mf |p,µ = |mf |p =

(∫
Ω

‖f‖pdµ
) 1

p

.

We prove now the main result of this section (similar results can also be found
in [2], [3], [4], [5] and [10]).

Theorem 3.5. Let 1 < p ≤ ∞ and let m : Σ → X and ν : Σ → Y be countable
additive vector measures. The following assertions are equivalent:

(1) |m|p,ν <∞.
(2) Lp

′
(ν) b L1(|m|).

(3) The integration map Ip
′
m : Lp

′
(ν)→ X is cone absolutely summing.

(4) There exists a cone absolutely summing operator Tm : Lp
′
(ν)→ X such that

Tm(χA) = m(A), for all A ∈ Σ.

Moreover, |m|p,ν = ‖id‖Lp′ (ν)→L1(|m|) = π+
1 (Ip

′
m|Lp′ (ν)) = ‖Tm‖.

Proof. Let us start by proving (1)⇒(2). Take π = {Ai}ni=1 ∈ DΩ and we will
show that if s =

∑n
i=1 αAiχAi is a simple function then

‖s‖L1(|m|) ≤ |m|p,ν‖s‖Lp′ (ν). (3.1)

Let ε > 0. For each 1 ≤ i ≤ n take a partition πi = {Bi
j}
k(i)
j=1 of Ai ∈ π such that∑

Bij∈πi

‖m(Bi
j)‖ > |m|(Ai)−

ε

2i|αAi|
.

Hence, by using (1)

n∑
i=1

|αAi | · |m|(Ai) ≤
n∑
i=1

∑
Bij∈πi

|αAi |
∥∥m(Bi

j)
∥∥
X

+ ε

≤ |m|p,ν

∥∥∥∥∥∥
n∑
i=1

∑
Bij∈πi

αAiχBij

∥∥∥∥∥∥
Lp′ (ν)

+ ε

≤ |m|p,ν

∥∥∥∥∥
n∑
i=1

αAiχAi

∥∥∥∥∥
Lp
′
(ν)

+ ε.
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Taking the limit as ε goes to zero one gets (3.1). The density of the simple
functions both in L1(|m|) and Lp

′
(ν) gives

‖id‖Lp′ (ν)→L1(|m|) ≤ |m|p,ν . (3.2)

Let us continue with the proof of (2)⇒(3). Recall that for a non-negative finite
measure any bounded operator T : L1(µ)→ X is cone absolutely summing with
π+

1 (T ) = ‖T‖ (cf. [2]). Now using that the composition of a positive operator
and a cone absolutely summing operator is cone absolutely summing (3) follows
from (2) because Ip

′
m is obviously bounded from L1(|m|) to X. Moreover

π+
1 (Ip

′

m|Lp′ (ν)) ≤ ‖id‖Lp′ (ν)→L1(|m|). (3.3)

Obviously (3)⇒(4) and π+
1 (Ip

′
m|Lp′ (ν)) = ‖Tm‖ just taking Tm = Ip

′
m. Therefore it

remains the proof of (4)⇒(1). First note that since

Tm(χA) = m(A) =

∫
A

dm = Ip
′

m(χA),

for all A ∈ Σ, then Tm(s) = Ip
′
m(s) for all s ∈ SΣ(R) and, by the density of the

simple functions in Lp
′
(ν), one gets Tm = Ip

′
m. Take π ∈ DΩ and

∑
A∈π αAχA ∈

Lp
′
(ν). Then∑

A∈π

|αA|
∥∥m(A)

∥∥
X

=
∑
A∈π

∥∥Tm(|αA|χA)
∥∥
X
≤ π+

1 (Tm)

∥∥∥∥∥∑
A∈π

αAχA

∥∥∥∥∥
Lp′ (ν)

.

This shows that
|m|p,ν ≤ π+

1 (Tm) = π+
1 (Ip

′

m|Lp′ (ν)). (3.4)

�

Similarly to the previous section the vector space consisting of those measures
m appearing in Theorem 3.5 is denoted by Vp

X(ν) and we have,

Corollary 3.6. Let 1 < p ≤ ∞, ν : Σ → Y a countable additive vector measure
and X a Banach space. Then Vp

X(ν) is a Banach space under the norm | · |p,ν
that can be identified isometrically with Λ+

1 (Lp
′
(ν), X).

Using the results on representation of p-convex Banach lattices that we have
used in Section 2, we get the integral representation for cone absolutely summing
operators.

Corollary 3.7. Let 1 < p ≤ ∞. Let E be an order continuous p′-convex Banach
lattice with a weak unit and X a Banach space. Then there is a measure space
(Ω,Σ) and a vector measure ν on it such that Vp

X(ν) = Λ+
1 (E,X) (isomorphi-

cally). In particular, there is an order isomorphism I : E → Lp
′
(ν) such that for

each T ∈ Λ+
1 (E,X) there is a vector measure m

T
� ν satisfying that |m

T
|p,ν <∞

and T (·) =
∫
I(·) dm

T
.

The proof is similar to the one given for Corollary 2.8.
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