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Abstract Let (2,2, u) be a finite measure space, 1 < p < 0o, X be a Banach space X and B: X XY — Z
be a bounded bilinear map. We say that an X-valued function f is p-integrable with respect to B whe-
never supj|, (=1 Jo IB(f (w), »)||Pdp < oco. We get an analogue to Holder’s inequality in this setting.
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1. Introduction

Throughout the paper 1 < p < oo, (2,3, u) will be a finite complete measure space, X,Y and Z will
stand for Banach spaces over K (R or C), and B : X x Y — Z will denote a bounded bilinear map.
We denote by LO(X), L  (X) and L (X*) the spaces of strongly, weakly measurable and weak™*-

weak weak*

measurable functions and write LP(X), L?  (X) and L? (X*) for the space of functions in L°(X),

weak weak*
LY . (X) and LY ., .(X*) such that || f|| € LP(n), (f,x*) € LP(n) for z* € X* and (&, f) € LP(u)
for z € X respectively. Finally we use the notation PP(X) for the space of Pettis p-integrable functions
PP(X)=LF (X)NLO(X).

In this paper we shall consider spaces of X-valued functions which are p-integrable with respect to a
bounded bilinear map B : X XY — Z, that is to say functions f satisfying the condition B(f,y) € LP(Z)
forally € Y.

Although theses classes have been around for a long time in particular cases such us

Bx=B: X xK— X, Bz, \) = Az, (1.1)
Dx =D: X x X" =K, D(z,z*) = (z,z*), (1.2)
Di,x =D1: X" x X =K, Di(z*,z) = (z,z"), (1.3)
or
Ty : X XY — XQY, Ty (z,y) =z vy, (1.4)
Oy : X x L(X,Y) =Y, Oy (x,T) = T(x), (1.5)
Ovz : LY, Z)xY — Z,  Oyz(T,y)=T(y) (1.6)

a systematic study for general bilinear maps has been iniciated in [6]. This approach has been used to
extend the results on boundedness from LP(Y) to LP(Z) of operator-valued kernels by M. Girardi and
L. Weiss [10] to the case where K : Q X Q' — X is measurable and the integral operators are defined by

T w) = [ B, f ) (w)

Also the reader is referred to [7] for the introduction of Fourier Analysis in the bilinear context. This
allows to extend the results in [2, 4, 5] regarding convolution by means of bilinear maps and Fourier
coefficients for functions in these wider classes.

Let us mention some notions that were relevant for developping the general theory (see [6]). Given
z € X and y € Y we shall be denoting by B, € L(Y,Z) and BY € L(X, Z) the corresponding linear
operators

B (y) = Bz, y) and BY(z) = B(z,y).
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The triple (Y, Z, B) is admissible for X if the map x — B, is injective from X — L(Y,Z) and X is
said to be (Y, Z, B)-normed (or normed by B) if there exists C' > 0 such that for all z € X
=]l < CllBe]|-

Given a bounded bilinear map B : X X Y — Z, we can define the "adjoint” B* : X x Z* — Y™ by
the formula

(y, B*(x,27)) = (B(z,y),2").
Note that ~
B* =D, (ry)" = Oy=x and (Oy,2)" (T, 2") = Oz y= (T, z%).
Let us start with the following definitions:

Definition 1.1. (see [6]) We say that f : 2 — X belongs to LY (X) if B(f,y) € L%(Z) forany y € Y.
We write LI, (X) for the space of functions f in LY (X) such that

IFllez (x) = supll B, 9)llLe(z) < lyll = 1} < oo

A function f € LI (X) is said to belong to Lf (X) if there exists a sequence of simple functions
(sn)n € S(X) such that
sn — fae  and Hsn—fH,:;%(X) — 0.

For f € L (X) we write ”f”L%(X) instead of Hf”L%(X)' Clearly one has that

1lzs, ) = Jim_llsnllzp, cx)-

n— oo

In particular

L(X) = LX), L% (X) = LY (X) and L, (X*) = L capen (X).

weak weaksx
LE(X) = LP(X), L (X) = L\ (X) and LB, (X*) = LP_ . (X").

L% (X) = LP(X) and L, (X) = PP(X)(see [11], page 54 for the case p = 1).
Observe that LP(X) C L% (X) for any B and, that in general, L}, (X) C L% (X) (see [8] page 53, for
the case B = D). It was shown in [6] that £ (X) C LY |, (X) if and only if X is B-normed.
Clearly f € L% (X) and g € LO(Y') implies that B(f,g) € L°(Z). Hence a natural question that arises
is the following: If ﬁ + % = %, does B(f,g) belong to LP3(Z) for any f € LE!(X) and g € LP2(Y)?
The answer is negative for any infinite dimensional Banach space X. Indeed, take p1 = p2 = 2
and p3 = 1, let X be an infinite dimensional Banach space, Y = X* and Z = K and B = D. Take

(zn) € €2, (X)\ £2(X). This allows to find (z},) € £2(X*) such that }_, |(zn,z};}| = co. Consider now

weak
Q = [0,1] with the Lebesgue measure, I, = (27%,27%%1] and define the functions f = Py 2% xply,
and g = > 72 2§x211k. It is clear that f € £2,(X) with ||fH2£2 x)= sup{32°% | [zn,z*)|? : ||z*]| = 1}
D

and g € L2(X*) with [lgl2, ) = S0, a7 2 but B(f,9) = S35, 2 (ax, )11, ¢ L1

One might think that the difficulty comes from allowing the functions to belong to E%l (X) instead of
LB (X). Let us then modify the question: Does B(f, g) belong to LP3(Z) for any f € LI (X) and g €
LP2(Y)?

The answer is again negative. If the result hold true we would have that there exists M > 0 such that
1B(s, )11 () < Ml 2 x)lll 2y for amy s € S(X) and £ € S(V).

Select X =Y =4y, Z =41 and B : l2 X 2 — {1 given by B((An)nen,; (Bn)nen) = AnBn)nen. Let
us now consider sy =ty = Zg:l 2%% 17, where ey is the canonical basis and Iy are chosen as above.
Hence B(sy,y) = Z;Jc\r:1 2§ﬂkek11k for y = (Bn)nen € f2. Therefore ||5NHL33(z2) < 1. On the other

hand |sy||L2(¢,) = VN. Finally observe that B(sy,sn) = SN, 2kep 1y, and IB(sn,sn)llpree,y = N-
This contradicts (1).

Modifying the previous argument with Z = K and B = D one can even show that there exist
f e LB (X) and g € LP2(Y) such that B(f,g) ¢ L2, (Z).

The objective of this paper is to present an analogue to Hoélder inequality in the setting of vector-
valued functions integrables with respect to bilinear maps. We shall then study the following general
problem:
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Problem: Let 1 < p1,p2,p3 < 0o and i + é = LS and let B: X XY — Z be a bounded bilinear
map. If By : X X X7 — Xg and Ba : Y X Y7 — Y2 are bounded bilinear maps, find B3 : Z X Z; — Za
such that for any f € E%ll (X)and g € 5%22 (Y') one has B(f,g) € £§333 (2).

2. A bilinear version of Holder’s Inequality.

It is well known and easy to see the following analogues of Holder’s inequality in the vector-valued
setting: Let 1 < p1,p2,p3 < oo and ﬁ + é =1L

P3
(1) If f e LP! | (X) and g € LP2 then fg € L3 | (X).

weak
(2) If f € PP1(X) and g € LP2? then fg € PP3(X).

(3) If f € LP1(X) and g € LP? then fg € LP3(X).

(4) If f € LP1(X) and g € LP2(X*) then (f, g) € LP3.

(5) If f € LP1(L(X,Y)) and g € LP2(X) then f(w)(g(w)) € LP3(Y).

Definition 2.1. We say that (B, Bi, B2) is a compatible triple if B: X XY — Z, By : X x X1 — X2
and By : Y x Y7 — Y5 are bounded l)ilinear maps and there exist a Banach space F' and two bounded
bilinear maps P: Xo X Yo — F and P: Z x (X1®Y1) — F such that

P(B(z,y), 21 @y1) = P(B1(w,21), Ba(y,11))
forallzx € X,y €Y, z; € X1 and y1 € Y7.

A general procedure of construction of such compatible triples of bilinear maps can be obtained as
follows:

Proposition 2.2. Let U be a Banach space, By : X X X1 — U and By : Y x Y7 — U* be bounded
bilinear maps . Define the bilinear map B(B1,B2) = B: X x Y — L(X1,Y7*) by the formula

(B(z,y)(z1),y1) = (B1(z, 1), B2(y, 1))

forre X,yeY,x1 € X1 andy; € Y7.

Proof. Using that £(X1,Y;") = (X1®Y1)* we also can write

(B(z,y),z1 ®y1) = (Bi(z,21), B2y, v1))-
_ This shows that (B(B1, Bz2), B1, Bz) is compatible by selecting ' = K, P =D : U x U* — K and
P=D; :ﬁ(Xl,Yl*)X(Xl(EA@Yl)—)K. O
Let us now give some more concrete examples of admissible triples:

Example 2.3. (B, Bx,By) is a compatible triple for any B: X XY — Z.
In particular, (Dx,Bx,Bx+) or (Ox,y,Bx,By) are compatible triples.

Indeed, if B: X XY — Z, By =Bx : X XK — X and By = By : Y X K — Y then select F' = Z,
P=B:X XY —Zand P=Bz:Z x K — Z. Observe that P(B(z,y), \3) = P(B(z,\),B(y,5)). O

Example 2.4. (B, B*, By) is a compatible triple.
Indeed, if B: X XY — Z, By =B*: X x Z* — Y™ given by
(y, Bi(z, 27)) = (B(z,y), 2")

anng:By:YXKHYthenwecanselectF:K,fP:(D1)y:Y*XY%K&nd@:DzzZXZ*H
K. O

Example 2.5. (7y,Bx,Ox+) is a compatible triple.



Hélder inequality for functions integrable with respect to bilinear maps 5

Indeed, if B=7y : X XY — X®Y, By = Bx : X x K — X and By = Ox» : Y x L(Y, X*) — X*
then we can take ' = K, P = Dx : X X X* - K and P = Dxgy : X®Y x L(Y,X*) — K. The
compatibility now follows from

P(B(x,y), AT) = (z @ y, AT) = (Az, Ty) = P(By(w, ), Ba(y, T)).
O
Example 2.6. Let B : L(X, Z)xL(Y, Z*) — L(Y, X*) be given by (T, S) — T*S. Then (B, Ox, z,Oy,z*)
is a compatible triple.
Indeed, if By = Ox 7z : L(X,Z) x X — Z and By = Oy, z+ : L(Y,Z*) x Y — Z* then we can take
F=K,P=Dyz:ZxZ* —Kand P = (D1)xgy : LY, X*)x X&Y — K given by P(T,2®y) = (z,Ty).
Observe that the compatibility follows from the formula
P(B(T, S),2 @ y) = (0,T*Sy) = (T, Sy) = P(B1(T,x), Ba(S, y))-
O
Theorem 2.7. (Holder’s inequality I) Let 1 < pq,p2,p3 < oo such that i + é = %. Assume
that (B, B1, B2) is a compatible triple for some F, P and P.
(1) If fe L%ll (X)and g € 5%22 (Y) then B(f,g) € E?(Z).
(2) If f € LB (X) and g € L (Y) then B(f,g) € LE(Z).
Moreover Hg(fvg)“ﬂgf(z) < H?””f”[;%ll (X)”gHL%QQ(Y)‘

Proof. (1) Let us first show that if f € L%1(X) and g € L%2(Y) then h = B(f, g) € L%(Z).

Indeed, if 1 € X1 and y1 € Y7 then ﬁ(h,ml QY1) :~CP(31 (f,z1), B2(g,y1)). Now since B1(f,z1) €
L%(X2), Ba(g,y1) € LO(Y2) and P is continuous then P(h,z1 @ y1) € LO(F). For general ¢ € X18Y7,
assume ¢ =y, ol @ y7 with >°_ ||zT |||y} ]| < co. Then, using the continuity of P and P, one has

N
P(h, @) = Jim > P(Bi(f,2}), Ba(g, b)) € LO(F).
k=1

Assume f € ﬁ%ll (X)and g € £7;322 (Y). Let us show that h € E%S (Z).
If z1 € X7 and y1 € Y7 then ’

( / P, 21 ® y0)|[PS da) 75 ( / 1P(By (f,1), Ba(g, y1))|[P*du) 5
Q Q

< IITH(/Q(IlBl(f,xl)Hlle(%yl))ll)p?’du)%

IN

||ﬂ>u</ﬂ ||Bl<f,x1>umdu>i</ﬂ B9, y1) P2 ds) 72

< 1Pz oo lgll gz vl

In general, for each ¢ = >, 27 ® y} € X1®Y1, one has ﬁ(h,zn =P ®y) = >, 5’(h, P ® yi).
Therefore

IN

( /Q 1P(h, S 27 @ y7 )P d) 7 > ( /Q 1P(B1(f, 27, Ba(g, y2)) 1o dys) 75

IN

II‘J’II(; =2 Iy DIz ) llgllzzz )

This gives HB(f:g)Hgg?’(z) < ”?””.f”g%ll (X)||g||£%22(y)~

(2) Assume that f and g are simple functions. If f = 3=, zx1p, € S(X) and g =3, yp1F, € S(Y)
then
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h=B(f,9) =Y Blar,yp)le,nr, € S(2).
k,p
Now, if we take f € L%ll (X) and g € L%ZZ (Y) then there exists (fn)n C S(X) and (gn)n C S(Y)
such that f, — f a.e., gn — g a.e., || fn — fHL%I (x) 0 and ||gn — 9||L%2 vy~ 0. Clearly B(fn,gn)
1 2
are simple functions and converge to B(f, g) a.e.
Due to the previous result

||‘B(fnagn)_'B(f»g)llggj}(z) < ||B(fn—f:9n)||£§3<z)+|U3(f:9n_g)H£g’33(z)
< WP = Fllegy ollonlleze vy
+

1P 22 (0l = ller2 (v

Taking limits the result is completed.

O

Let us point out a little improvement that can be achieved for the compatible triples in Proposition
2.2. Let us recall the following fact that will be used in the proof.

Lemma 2.8. Let X be a Banach space, 1 < p < oo and (z},)n C X*. Then

1 1
sup{( ZI IPYE e = 1} = sup{ (D [(w, x})[P)7 : ||| = 1}
n
Corollary 2.9. (Hélder’s 1nequality II) Let X,X1,Y,Y1 and U be a Banach spaces and 1 <
Pp1,Pp2,p3 < oo such that i + - = %. Let B1: X x X1 = U, Ba:Y xY) — U* be bounded bilinear

maps and let B(Bq,B2) = B: X xY — L(X1,Y]") be defined by the formula

(B(z,y)(z1),y1)) = (B1(z, 1), B2(y, y1))-

Iffe Lp1 (X)and g € Lpz2 (Y) then B(f g) € PP3(L(X1,Y]Y)).
Moreover ||B(f, )”LP?» L(X1,Y)) S ||fHLp1 (X)”g”LPZ ()

Proof. Assume first that f and g are simple functions. If f = >3, 2xlg, € S(X) and g =
> p¥plr, € S(Y) then h = B(f,9) = > 4 , B(xk, Yp)1E,nF, € S(L(X1,YT)). Note that £(X1,Yy") =
(X1 ®Y1)*. Hence from Lemma 2.8

IRlles | (xioviyey = SuP{Q_ (B, yp), ¥} p (By 1 Fp)) 7 el xy @y =1}
k,p
i 1
= sup{(Q_ [, B(ar, yp)) P2 (B N Fp)) s : [lollx, v, = 1}
k,p

= hligrs | ((xi0v1))

cak

‘We conclude, using Theorem 2.7, that
HhHLs’zak(g(Xl,yl ) = ||fHLP1 (X)HQHLW Y)"

Now, if we take f € L%ll (X)and g € L%QZ (Y) then there exists (fn)n C S(X) and (gn)n C S(Y) such

that f, — fa.e.,gn — ga.e, ||fn*f||L%1 (x) 0 and IIQn*glngz () 0. Clearly B(fn,gn) — B(f,9)
1 2
a.e. and therefore B(f, g) is strongly measurable and
KB(frn, gn), ¥)P* — (B(f, 9), ¥)|"* ae.

for all ¢ € (X1®Y1)**.

To see that B(f,g) € PP3(L(X1,Y")) it suffices to show that B(f,g) € LF?

weak

(L£(X1,Y7))-
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Then using Fatou’s Lemma and the inequality for simple functions we have that

IB(F, 9IS,

wea.

sup{ [ (B(7.0), )17 di 1], v oe = 1)

L(X1®Y1)*)

sup{ [ 1 1B ). )P0 [ x, v,y = 1)

< supflimint [ 1B, 00 0 i [V, v,y = 1)
i p3

< hmnmfH{B(f"’gn)”Liiak((X1®Y1)**)

< p3 p3

llmnll’lfan”L%ll(X)”gn“L%ZQ(Y)
— f p3 g p3 .
1905 o I91Ee (v,

Applying Theorem 2.7 to the examples given above one obtains the following applications.

Corollary 2.10. Let 1 < pi1,p2,p3 < oo such that % = p% p%.
Let B: X XY — Z be a bounded bilinear map.

(1) If f € LP1(X) and g € LP2(X™*) then (f,g) € LP3.

(2) If fe LP1(X) and g € L%Z* (Y) then B(f,g) € LY3 | (Z), where

(3)

4)
4

B.:Y x Z* — X* is given by (z, B.(y, 2%)) = (B(z,y), 2*).

If f € LR (X) and g € LP2(Z*) then B*(f,g) € L

weak*

(Y*), where
B*: X X Z* - Y* is given by (y, B*(z, z*)) = (B(z,y), z*).

Iff el (X)andgeLP2(Y) then f @g € LE
v

weak(X®Y)'
Iff e L%X,Z(L(X, Z)) and g € ngy,z* (L(Y,Z*)) and if we put f*(t) = f(t)* € L(Z*,X*) then

f*g € Lid o (LY, X)),

weak*
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