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1. Introduction

Throughout the paper 1 ≤ p < ∞, (Ω,Σ, µ) will be a finite complete measure space, X,Y and Z will

stand for Banach spaces over K (R or C), and B : X × Y → Z will denote a bounded bilinear map.

We denote by L0(X), L0
weak(X) and L0

weak∗ (X∗) the spaces of strongly, weakly measurable and weak∗-
measurable functions and write Lp(X), Lp

weak(X) and Lp
weak∗ (X∗) for the space of functions in L0(X),

L0
weak(X) and L0

weak∗ (X∗) such that ‖f‖ ∈ Lp(µ), 〈f, x∗〉 ∈ Lp(µ) for x∗ ∈ X∗ and 〈x, f〉 ∈ Lp(µ)

for x ∈ X respectively. Finally we use the notation P p(X) for the space of Pettis p-integrable functions

P p(X) = Lp
weak(X) ∩ L0(X).

In this paper we shall consider spaces of X-valued functions which are p-integrable with respect to a

bounded bilinear map B : X×Y → Z, that is to say functions f satisfying the condition B(f, y) ∈ Lp(Z)

for all y ∈ Y .

Although theses classes have been around for a long time in particular cases such us

BX = B : X × K → X, B(x, λ) = λx, (1.1)

DX = D : X ×X∗ → K, D(x, x∗) = 〈x, x∗〉, (1.2)

D1,X = D1 : X∗ ×X → K, D1(x∗, x) = 〈x, x∗〉, (1.3)

or

πY : X × Y → X⊗̂Y, πY (x, y) = x⊗ y, (1.4)

ÕY : X × L(X,Y ) → Y, ÕY (x, T ) = T (x), (1.5)

OY,Z : L(Y, Z)× Y → Z, OY,Z(T, y) = T (y) (1.6)

a systematic study for general bilinear maps has been iniciated in [6]. This approach has been used to

extend the results on boundedness from Lp(Y ) to Lp(Z) of operator-valued kernels by M. Girardi and

L. Weiss [10] to the case where K : Ω×Ω′ → X is measurable and the integral operators are defined by

TK(f)(w) =

Z
Ω′

B(K(w,w′), f(w′))dµ′(w′).

Also the reader is referred to [7] for the introduction of Fourier Analysis in the bilinear context. This

allows to extend the results in [2, 4, 5] regarding convolution by means of bilinear maps and Fourier

coefficients for functions in these wider classes.

Let us mention some notions that were relevant for developping the general theory (see [6]). Given

x ∈ X and y ∈ Y we shall be denoting by Bx ∈ L(Y, Z) and By ∈ L(X,Z) the corresponding linear

operators

Bx(y) = B(x, y) and By(x) = B(x, y).
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The triple (Y, Z,B) is admissible for X if the map x → Bx is injective from X → L(Y, Z) and X is

said to be (Y, Z,B)-normed (or normed by B) if there exists C > 0 such that for all x ∈ X

‖x‖ ≤ C‖Bx‖.

Given a bounded bilinear map B : X × Y → Z, we can define the ”adjoint” B∗ : X × Z∗ → Y ∗ by

the formula

〈y,B∗(x, z∗)〉 = 〈B(x, y), z∗〉.
Note that

B∗ = D, (πY )∗ = eOY ∗ and (OY,Z)∗(T, z∗) = OZ∗,Y ∗ (T ∗, z∗).

Let us start with the following definitions:

Definition 1.1. (see [6]) We say that f : Ω → X belongs to L0
B(X) if B(f, y) ∈ L0(Z) for any y ∈ Y .

We write Lp
B(X) for the space of functions f in L0

B(X) such that

‖f‖L
p
B

(X) = sup{‖B(f, y)‖Lp(Z) : ‖y‖ = 1} <∞.

A function f ∈ Lp
B(X) is said to belong to Lp

B(X) if there exists a sequence of simple functions

(sn)n ∈ S(X) such that

sn → f a.e. and ‖sn − f‖L
p
B

(X) → 0.

For f ∈ Lp
B(X) we write ‖f‖L

p
B

(X) instead of ‖f‖L
p
B

(X). Clearly one has that

‖f‖L
p
B

(X) = lim
n→∞

‖sn‖L
p
B

(X).

In particular

L0
B(X) = L0(X), L0

D(X) = L0
weak(X) and L0

D1
(X∗) = L0

weak∗(X).

Lp
B(X) = Lp(X),Lp

D(X) = Lp
weak(X) and Lp

D1
(X∗) = Lp

weak∗(X
∗).

Lp
B(X) = Lp(X) and Lp

D(X) = P p(X)(see [11], page 54 for the case p = 1).

Observe that Lp(X) ⊆ Lp
B(X) for any B and, that in general, Lp

B(X) ( Lp
B(X) (see [8] page 53, for

the case B = D). It was shown in [6] that Lp
B(X) ⊂ Lp

weak(X) if and only if X is B-normed.

Clearly f ∈ L0
B(X) and g ∈ L0(Y ) implies that B(f, g) ∈ L0(Z). Hence a natural question that arises

is the following: If 1
p1

+ 1
p2

= 1
p3

, does B(f, g) belong to Lp3 (Z) for any f ∈ Lp1
B (X) and g ∈ Lp2 (Y )?

The answer is negative for any infinite dimensional Banach space X. Indeed, take p1 = p2 = 2

and p3 = 1, let X be an infinite dimensional Banach space, Y = X∗ and Z = K and B = D. Take

(xn) ∈ `2weak(X) \ `2(X). This allows to find (x∗n) ∈ `2(X∗) such that
P

n |〈xn, x∗n〉| = ∞. Consider now

Ω = [0, 1] with the Lebesgue measure, Ik = (2−k, 2−k+1] and define the functions f =
P∞

k=1 2
k
2 xk1Ik

and g =
P∞

k=1 2
k
2 x∗k1Ik

. It is clear that f ∈ L2
D(X) with ‖f‖2L2

D(X)
= sup{

P∞
n=1 |〈xn, x∗〉|2 : ‖x∗‖ = 1}

and g ∈ L2(X∗) with ‖g‖2
L2(X∗)

=
P∞

n=1 ‖x∗n‖2 but B(f, g) =
P∞

k=1 2k〈xk, x
∗
k〉1Ik

/∈ L1.

One might think that the difficulty comes from allowing the functions to belong to Lp1
B (X) instead of

Lp1
B (X). Let us then modify the question: Does B(f, g) belong to Lp3 (Z) for any f ∈ Lp1

B (X) and g ∈
Lp2 (Y )?

The answer is again negative. If the result hold true we would have that there exists M > 0 such that

‖B(s, t)‖L1(Z) ≤M‖s‖L2
B

(X)‖t‖L2(Y ) for any s ∈ S(X) and t ∈ S(Y ).

Select X = Y = `2, Z = `1 and B : `2 × `2 → `1 given by B((λn)n∈N, , (βn)n∈N) = (λnβn)n∈N. Let

us now consider sN = tN =
PN

k=1 2
k
2 ek1Ik

where ek is the canonical basis and Ik are chosen as above.

Hence B(sN , y) =
PN

k=1 2
k
2 βkek1Ik

for y = (βn)n∈N ∈ `2. Therefore ‖sN‖L2
B

(`2) ≤ 1. On the other

hand ‖sN‖L2(`2) =
√
N . Finally observe that B(sN , sN ) =

PN
k=1 2kek1Ik

and ‖B(sN , sN )‖L1(`1) = N .

This contradicts (1).

Modifying the previous argument with Z = K and B = D one can even show that there exist

f ∈ Lp1
B (X) and g ∈ Lp2 (Y ) such that B(f, g) /∈ Lp3

weak(Z).

The objective of this paper is to present an analogue to Hölder inequality in the setting of vector-

valued functions integrables with respect to bilinear maps. We shall then study the following general

problem:
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Problem: Let 1 ≤ p1, p2, p3 ≤ ∞ and 1
p1

+ 1
p2

= 1
p3

and let B : X × Y → Z be a bounded bilinear

map. If B1 : X ×X1 → X2 and B2 : Y × Y1 → Y2 are bounded bilinear maps, find B3 : Z × Z1 → Z2

such that for any f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) one has B(f, g) ∈ Lp3
B3

(Z).

2. A bilinear version of Hölder’s Inequality.

It is well known and easy to see the following analogues of Hölder’s inequality in the vector-valued

setting: Let 1 ≤ p1, p2, p3 ≤ ∞ and 1
p1

+ 1
p2

= 1
p3

.

(1) If f ∈ Lp1
weak(X) and g ∈ Lp2 then fg ∈ Lp3

weak(X).

(2) If f ∈ P p1 (X) and g ∈ Lp2 then fg ∈ P p3 (X).

(3) If f ∈ Lp1 (X) and g ∈ Lp2 then fg ∈ Lp3 (X).

(4) If f ∈ Lp1 (X) and g ∈ Lp2 (X∗) then 〈f, g〉 ∈ Lp3 .

(5) If f ∈ Lp1 (L(X,Y )) and g ∈ Lp2 (X) then f(w)(g(w)) ∈ Lp3 (Y ).

Definition 2.1. We say that (B,B1,B2) is a compatible triple if B : X×Y → Z, B1 : X×X1 → X2

and B2 : Y × Y1 → Y2 are bounded bilinear maps and there exist a Banach space F and two bounded

bilinear maps P : X2 × Y2 → F and eP : Z × (X1⊗̂Y1) → F such that

eP(B(x, y), x1 ⊗ y1) = P(B1(x, x1),B2(y, y1))

for all x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1.

A general procedure of construction of such compatible triples of bilinear maps can be obtained as

follows:

Proposition 2.2. Let U be a Banach space, B1 : X ×X1 → U and B2 : Y × Y1 → U∗ be bounded

bilinear maps . Define the bilinear map B(B1,B2) = B : X × Y → L(X1, Y ∗1 ) by the formula

〈B(x, y)(x1), y1〉 = 〈B1(x, x1),B2(y, y1)〉

for x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1.

Proof. Using that L(X1, Y ∗1 ) = (X1⊗̂Y1)∗ we also can write

〈B(x, y), x1 ⊗ y1〉 = 〈B1(x, x1),B2(y, y1)〉.

This shows that (B(B1,B2),B1,B2) is compatible by selecting F = K, P = D : U × U∗ → K andeP = D1 : L(X1, Y ∗1 )× (X1⊗̂Y1) → K. �

Let us now give some more concrete examples of admissible triples:

Example 2.3. (B,BX ,BY ) is a compatible triple for any B : X × Y → Z.

In particular, (DX ,BX ,BX∗ ) or (OX,Y ,BX ,BY ) are compatible triples.

Indeed, if B : X × Y → Z, B1 = BX : X × K → X and B2 = BY : Y × K → Y then select F = Z,

P = B : X × Y → Z and eP = BZ : Z × K → Z. Observe that eP(B(x, y), λβ) = P(B(x, λ),B(y, β)). �

Example 2.4. (B,B∗,BY ) is a compatible triple.

Indeed, if B : X × Y → Z, B1 = B∗ : X × Z∗ → Y ∗ given by

〈y,B1(x, z∗)〉 = 〈B(x, y), z∗〉

and B2 = BY : Y ×K → Y then we can select F = K, P = (D1)Y : Y ∗×Y → K and eP = DZ : Z×Z∗ →
K. �

Example 2.5. (πY ,BX ,OX∗ ) is a compatible triple.
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Indeed, if B = πY : X × Y → X⊗̂Y , B1 = BX : X × K → X and B2 = eOX∗ : Y × L(Y,X∗) → X∗

then we can take F = K, P = DX : X × X∗ → K and eP = DX⊗̂Y : X⊗̂Y × L(Y,X∗) → K. The

compatibility now follows from

eP(B(x, y), λT ) = 〈x⊗ y, λT 〉 = 〈λx, Ty〉 = P(B1(x, λ),B2(y, T )〉.

�

Example 2.6. Let B : L(X,Z)×L(Y, Z∗) → L(Y,X∗) be given by (T, S) → T ∗S. Then (B,OX,Z ,OY,Z∗ )

is a compatible triple.

Indeed, if B1 = OX,Z : L(X,Z) ×X → Z and B2 = OY,Z∗ : L(Y, Z∗) × Y → Z∗ then we can take

F = K, P = DZ : Z×Z∗ → K and eP = (D1)X⊗̂Y : L(Y,X∗)×X⊗̂Y → K given by eP(T, x⊗y) = 〈x, Ty〉.
Observe that the compatibility follows from the formula

eP(B(T, S), x⊗ y) = 〈x, T ∗Sy〉 = 〈Tx, Sy〉 = P(B1(T, x),B2(S, y)).

�

Theorem 2.7. (Hölder’s inequality I) Let 1 ≤ p1, p2, p3 < ∞ such that 1
p1

+ 1
p2

= 1
p3

. Assume

that (B,B1,B2) is a compatible triple for some F , P and eP.

(1) If f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) then B(f, g) ∈ Lp3
eP

(Z).

(2) If f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) then B(f, g) ∈ Lp3
eP

(Z).

Moreover ‖B(f, g)‖Lp3
eP

(Z) ≤ ‖P‖‖f‖Lp1
B1

(X)‖g‖Lp2
B2

(Y ).

Proof. (1) Let us first show that if f ∈ L0
B1

(X) and g ∈ L0
B2

(Y ) then h = B(f, g) ∈ L0
eP
(Z).

Indeed, if x1 ∈ X1 and y1 ∈ Y1 then eP(h, x1 ⊗ y1) = P(B1(f, x1),B2(g, y1)). Now since B1(f, x1) ∈
L0(X2), B2(g, y1) ∈ L0(Y2) and P is continuous then eP(h, x1 ⊗ y1) ∈ L0(F ). For general ϕ ∈ X1⊗̂Y1,

assume ϕ =
P

n x
n
1 ⊗ yn

1 with
P

n ‖xn
1 ‖‖yn

1 ‖ <∞. Then, using the continuity of P and eP, one has

eP(h, ϕ) = lim
N→∞

NX
k=1

eP(B1(f, xk
1),B2(g, yk

1 )) ∈ L0(F ).

Assume f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ). Let us show that h ∈ Lp3
eP

(Z).

If x1 ∈ X1 and y1 ∈ Y1 then

(

Z
Ω
‖eP(h, x1 ⊗ y1)‖p3dµ)

1
p3 = (

Z
Ω
‖P(B1(f, x1),B2(g, y1))‖p3dµ)

1
p3

≤ ‖P‖(
Z
Ω

(‖B1(f, x1)‖‖B2(g, y1))‖)p3dµ)
1

p3

≤ ‖P‖(
Z
Ω
‖B1(f, x1)‖p1dµ)

1
p1 (

Z
Ω
‖B2(g, y1)‖p2dµ)

1
p2

≤ ‖P‖‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y )‖x1‖‖y1‖.

In general, for each ϕ =
P

n x
n
1 ⊗ yn

1 ∈ X1⊗̂Y1, one has eP(h,
P

n x
n
1 ⊗ yn

1 ) =
P

n
eP(h, xn

1 ⊗ yn
1 ).

Therefore

(

Z
Ω
‖eP(h,

X
n

xn
1 ⊗ yn

1 )‖p3dµ)
1

p3 ≤
X
n

(

Z
Ω
‖P(B1(f, xn

1 ),B2(g, yn
1 ))‖p3dµ)

1
p3

≤ ‖P‖(
X
n

‖xn
1 ‖‖yn

1 ‖)‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y )

This gives ‖B(f, g)‖Lp3
eP

(Z) ≤ ‖P‖‖f‖Lp1
B1

(X)‖g‖Lp2
B2

(Y ).

(2) Assume that f and g are simple functions. If f =
P

k xk1Ek
∈ S(X) and g =

P
p yp1Fp ∈ S(Y )

then
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h = B(f, g) =
X
k,p

B(xk, yp)1Ek∩Fp ∈ S(Z).

Now, if we take f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) then there exists (fn)n ⊆ S(X) and (gn)n ⊆ S(Y )

such that fn → f a.e., gn → g a.e., ‖fn − f‖L
p1
B1

(X) → 0 and ‖gn − g‖L
p2
B2

(Y ) → 0. Clearly B(fn, gn)

are simple functions and converge to B(f, g) a.e.

Due to the previous result

‖B(fn, gn)−B(f, g)‖Lp3
eP

(Z) ≤ ‖B(fn − f, gn)‖Lp3
eP

(Z) + ‖B(f, gn − g)‖Lp3
eP

(Z)

≤ ‖P‖‖fn − f‖Lp1
B1

(X)‖gn‖Lp2
B2

(Y )

+ ‖P‖‖f‖Lp1
B1

(X)‖gn − g‖Lp2
B2

(Y )

Taking limits the result is completed.

�

Let us point out a little improvement that can be achieved for the compatible triples in Proposition

2.2. Let us recall the following fact that will be used in the proof.

Lemma 2.8. Let X be a Banach space, 1 ≤ p <∞ and (x∗n)n ⊆ X∗. Then

sup{(
X
n

|〈x∗n, x∗∗〉|p)
1
p : ‖x∗∗‖ = 1} = sup{(

X
n

|〈x, x∗n〉|p)
1
p : ‖x‖ = 1}

Corollary 2.9. (Hölder’s inequality II) Let X,X1, Y, Y1 and U be a Banach spaces and 1 ≤
p1, p2, p3 <∞ such that 1

p1
+ 1

p2
= 1

p3
. Let B1 : X ×X1 → U , B2 : Y × Y1 → U∗ be bounded bilinear

maps and let B(B1,B2) = B : X × Y → L(X1, Y ∗1 ) be defined by the formula

〈B(x, y)(x1), y1)〉 = 〈B1(x, x1),B2(y, y1)〉.

If f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) then B(f, g) ∈ P p3 (L(X1, Y ∗1 )).

Moreover ‖B(f, g)‖L
p3
weak(L(X1,Y ∗

1 )) ≤ ‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y ).

Proof. Assume first that f and g are simple functions. If f =
P

k xk1Ek
∈ S(X) and g =P

p yp1Fp ∈ S(Y ) then h = B(f, g) =
P

k,p B(xk, yp)1Ek∩Fp ∈ S(L(X1, Y ∗1 )). Note that L(X1, Y ∗1 ) =

(X1⊗̂Y1)∗. Hence from Lemma 2.8

‖h‖L
p3
weak((X1⊗̂Y1)∗) = sup{(

X
k,p

|〈B(xk, yp), ψ〉|p3µ(Ek ∩ Fp))
1

p3 : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

= sup{(
X
k,p

|〈ϕ,B(xk, yp)〉|p3µ(Ek ∩ Fp))
1

p3 : ‖ϕ‖X1⊗̂Y1
= 1}

= ‖h‖L
p3
weak∗((X1⊗̂Y1)∗).

We conclude, using Theorem 2.7, that

‖h‖L
p3
weak(L(X1,Y ∗

1 )) ≤ ‖f‖L
p1
B1

(X)‖g‖L
p2
B2

(Y ).

Now, if we take f ∈ Lp1
B1

(X) and g ∈ Lp2
B2

(Y ) then there exists (fn)n ⊆ S(X) and (gn)n ⊆ S(Y ) such

that fn → f a.e., gn → g a.e., ‖fn−f‖L
p1
B1

(X) → 0 and ‖gn−g‖L
p2
B2

(Y ) → 0. Clearly B(fn, gn) → B(f, g)

a.e. and therefore B(f, g) is strongly measurable and

|〈B(fn, gn), ψ〉|p3 → |〈B(f, g), ψ〉|p3 a.e.

for all ψ ∈ (X1⊗̂Y1)∗∗.
To see that B(f, g) ∈ P p3 (L(X1, Y ∗1 )) it suffices to show that B(f, g) ∈ Lp3

weak(L(X1, Y ∗1 )).
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Then using Fatou’s Lemma and the inequality for simple functions we have that

‖B(f, g)‖p3
L

p3
weak((X1⊗̂Y1)∗)

= sup{
Z
Ω
|〈B(f, g), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

= sup{
Z
Ω

lim
n
|〈B(fn, gn), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

≤ sup{lim inf
n

Z
Ω
|〈B(fn, gn), ψ〉|p3dµ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1}

≤ lim inf
n

‖B(fn, gn)‖p3
L

p3
weak((X1⊗̂Y1)∗∗)

≤ lim inf
n

‖fn‖p3
L

p1
B1

(X)
‖gn‖p3

L
p2
B2

(Y )

= ‖f‖p3
L

p1
B1

(X)
‖g‖p3

L
p2
B2

(Y )
.

�

Applying Theorem 2.7 to the examples given above one obtains the following applications.

Corollary 2.10. Let 1 ≤ p1, p2, p3 <∞ such that 1
p3

= 1
p1

+ 1
p2

.

Let B : X × Y → Z be a bounded bilinear map.

(1) If f ∈ Lp1 (X) and g ∈ Lp2 (X∗) then 〈f, g〉 ∈ Lp3 .

(2) If f ∈ Lp1 (X) and g ∈ Lp2
eB∗

(Y ) then B(f, g) ∈ Lp3
weak(Z), where

eB∗ : Y × Z∗ → X∗ is given by 〈x, eB∗(y, z∗)〉 = 〈B(x, y), z∗〉.

(3) If f ∈ Lp1
B (X) and g ∈ Lp2 (Z∗) then B∗(f, g) ∈ Lp3

weak∗ (Y ∗), where

B∗ : X × Z∗ → Y ∗ is given by 〈y,B∗(x, z∗)〉 = 〈B(x, y), z∗〉.

(4) If f ∈ Lp1
eOY ∗

(X) and g ∈ Lp2 (Y ) then f ⊗ g ∈ Lp3
weak(X⊗̂Y ).

(5) If f ∈ Lp1
OX,Z

(L(X,Z)) and g ∈ Lp2
OY,Z∗

(L(Y, Z∗)) and if we put f∗(t) = f(t)∗ ∈ L(Z∗, X∗) then

f∗g ∈ Lp3
weak∗ (L(Y,X∗)).
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