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Abstract

We find some conditions on a c0-semigroup on a Banach space and
its resolvent connected with the norm continuity of the semigroup. We
use them to get characterizations of norm continuous, eventually norm
continuous and eventually compact semigroups on Hilbert spaces in
terms of the growth of the resolvent of their generator.

1 Introduction.

Quite recently a characterization of norm continuous semigroups on Hilbert
spaces in terms of the convergence to zero of the resolvent on vertical lines
was achieved by Y. Puhong in [8]. Later O. ElMennaoui and K-J. Engel gave
a simpler approach to the same result in [1]. It is clear that from this one can
easily get also complete characterizations for compact semigroups (see [8])
and also for eventually norm continuous ones (see [1]) in a similar fashion.
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The problem of characterizing the norm continuity of exponentially stable
semigroups (T (t))t≥0 for t > 0 on arbitrary Banach spaces seems to be much
harder. A step to the solution of the problem was given in [2].

The aim of this paper is give some more information on the problem for
general Banach spaces by means of the condition of relative compactness of
the sets

{(T (·)x, φ) : ||x||B ≤ 1, ||φ||B∗ ≤ 1}
or,

{(R(i·, A)x, φ) : ||x||B ≤ 1, ||φ||B∗ ≤ 1}
regarded as subsets in Lp(R+) and Lp(R), for certain values of p, where
R(λ,A) stands for the resolvent of the semigroup. We apply such results to
find other characterizations of norm continuous, eventually norm continuous
and eventually compact semigroups on Hilbert spaces in terms of the growth
of the resolvent of their generator.

The paper is divided into three sections. In the first one we shall give the
connection of the norm continuity of the semigroup, the fact R(i·, A) ∈ C0(R)
and the notion of relative compactness in certain Lp spaces of sets as the ones
considered above. This relationship holds for general Banach spaces and gives
a chain of implications presented in Theorem 2 below. All of them turn out
to be equivalent for Hilbert spaces (which, in particular, allows us to get still
another proof of Puhong’s result).

The second and third section will be devoted to characterize eventually
norm continuous and eventually compact semigroups respectively. Our study
of eventual norm continuity is not based on the results of the previous section
and depends on the asymptotic behaviour of the powers of the resolvent.
Finally we characterize eventually compact semigroups by means of growth
estimates of the essential norm of powers of the resolvent together with the
eventual norm continuity of the semigroup.

Throughout the paper {T (t) : t ≥ 0} will stand for a strongly continuous
semigroup such that ||T (t)|| ≤ Me−t (there is no lost of generality for such
an assumption which will be more suitable for our formulations) and A will
denote its infinitesimal generator. We shall use the notation L2

B(R) for the
space of measurable functions with values in a Banach space (B, ||.||B) such

that ||f ||L2
B(R) = (

∫
R
||f(x)||2Bdx)

1
2 < ∞. As usual C will stand for a positive

constant which may vary from line to line.
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2 Norm continuous semigroups.

Since the notion of relative compactness in Lp(R) will be used in the sequel,
let us start by recalling the following result.

Theorem 1 ( (see [3], Theorem IV.8.20)) Let 1 ≤ p < ∞. A subset K
of Lp(R) is relatively compact if and only if K is bounded and

(2.1) lim
h→0

∫
R
|f(x) − f(x + h)|pdx = 0 uniformly for f ∈ K.

(2.2) lim
M→∞

∫
|x|≥M

|f(x)|pdx = 0 uniformly for f ∈ K.

Let us present first a chain of implications which hold in any Banach
space.

Theorem 2 Let {T (t) : t ≥ 0} be a strongly continuous semigroup on a
Banach space B with ||T (t)|| ≤ Me−t . Consider the following statements.

(i) {(R3(i·, A)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} is a relatively compact subset
of L1(R).

(ii) {T (t) : t ≥ 0} is norm continuous for t > 0.

(iii) {(T (·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} is a relatively compact subset of
L1(R+).

(iv) lim|r|→∞ ‖R(ir, A)‖ = 0.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof.- (i) ⇒ (ii). Let us denote T1(t) = t2T (t). It suffices to show that
T1 is a continuous map from (0,∞) to L(B), or, in other words the family

{(T1(·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1}

is equicontinuous. As
lim
t→∞

‖t2T (t)‖ = 0,

Arzela-Ascoli’s theorem asserts that it is enough to show that

{(T1(·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1}
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is relatively compact in C((0,∞)).
Given any x ∈ B, φ ∈ B∗ we have that (2R3(i·, A)x, φ) is the Fourier

transform of (T1(·)x, φ).
Now observe that

U = {(2R3(i·, A)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} ⊆ L1(R)

is mapped continuously by the Fourier antitransform F : L1(R) −→ C(R)
onto:

V = {(T1(·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} ⊆ C((0,∞)),

what gives the desired conclusion.
(ii) ⇒ (iii). Note that from the assumption ||T (t)|| ≤ Me−t we only

need to show (2.1) in Theorem 1. Given any m ∈ N we split the integral as
follows:∫ ∞

0
|(T (t)x, φ)− (T (t + h)x, φ)|pdt =

=
∫ 1

m

0
+

∫ m

1
m

+
∫ ∞

m
|(T (t)x, φ) − (T (t + h)x, φ)|pdt.

Therefore∫ ∞

0
|(T (t)x, φ)− (T (t + h)x, φ)|pdt ≤

≤ 2pMp

m
+

∫ m
1
m
‖T (t) − T (t + h)‖pdt + 2pMp

p
e−mp.

Now given ε > 0 we first take m > 1 such that max{2pMp

m
, 2pMp

p
e−mp} < ε

3

and then, using the uniform continuity on [ 1
m
,m] find δ > 0 such that if

0 < h < δ then

||T (t) − T (t + h)||p < ε

3(m− 1
m

)
t ∈ [

1

m
,m].

Hence for 0 < h < δ we get

∫ ∞

0
|(T (t)x, φ) − (T (t + h)x, φ)|pdt < ε uniformly in ||x||B ≤ 1, ||φ||B∗ ≤ 1.
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(iii) ⇒ (iv). Given x ∈ B, φ ∈ B∗ with ||x||B ≤ 1, ||φ||B∗ ≤ 1, we have
for s > 0 (and similarly for s < 0)

(R(is, A)x, φ) =
∫ ∞

0
e−ist(T (t)x, φ)dt.

We rewrite this as follows

(R(is, A)x, φ) = 1
2

∫ ∞

0
(e−ist − e−i(t−π

s
)s)(T (t)x, φ)dt

= −1
2

∫ π
s

0
e−is(t−π

s
)(T (t)x, φ)dt

+1
2

∫ ∞

0
e−ist(T (t) − T (t +

π

s
)x, φ)dt.

Hence

|(R(is, A)x, φ)| ≤ 1

2

∫ π
s

0
|(T (t)x, φ)|dt +

1

2

∫ ∞

0
|(T (t) − T (t +

π

s
)x, φ)|dt.

Now a simple application of Theorem 1 gives (iv).

Let us present some equivalent formulations of condition (iii) in Theorem
2.

Proposition 1 Let A be the generator of a strongly continuous semigroup on
a Banach space B with ||T (t)|| ≤ Me−t. Then the following are equivalent:

(iii a) {(T (·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} is a relatively compact subset
of Lp((0,∞)) for some 1 ≤ p < ∞.

(iii b) {(T (·)x, φ) : ‖x‖B ≤ 1, ‖φ‖B∗ ≤ 1} is a relatively compact subset
of Lp((0,∞)) for all 1 ≤ p < ∞.

(iii c) {(R(i·, A)x, φ) : ‖x‖B, ‖φ‖B∗ ≤ 1} is a relatively compact subset
of L2(R).

(iii d) lim
M→∞

∫ ∞

M
|(R(is, A)x, φ)|2ds = 0 uniformly in ‖x‖B ≤ 1, ‖φ‖B∗ ≤

1.
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Proof.- (iiia) ⇔ (iiib). Assume the condition on p0 and take any 1 ≤
p < ∞. Given a pair of sequences (xn, φn)n∈N ∈ B × B∗ we have to find a
subsequence nk such that

fk(t) = (T (t)xnk
, φnk

) converges in Lp((0,∞)).

From the assumption there exist a function f ∈ Lp0 and a subsequence nk

such that
gk(t) = (T (t)xnk

, φnk
) − f(t) → 0 a.e.

Using the fact |gk(t)|p ≤ 2pMpe−pt and the Lebesgue dominated convergence
theorem the desired result is achieved.

(iiib) ⇔ (iiic). It follows from the fact that the Fourier transform is an
isomorphism in L2(R).

(iiic) ⇔ (iiid). It follows from Theorem 1 since (2.1) is always true due
to the resolvent identity.

We shall now prove that all the conditions appearing in Theorem 2 are
equivalent in the case of Hilbert spaces.

Theorem 3 Let {T (t) : t ≥ 0} be a strongly continuous semigroup on a
Hilbert space E with ||T (t)|| ≤ Me−t such that lim|r|→∞ ‖R(ir, A)‖ = 0.

Then {(R3(i·, A)x, y) : ‖x‖E ≤ 1, ‖y‖E ≤ 1} is a relatively compact
subset of L1(R).

Proof.- It is well known that for Hilbert spaces E we still have that the
Fourier transform is an isomorphism from L2

E(R) onto L2
E(R). Therefore

given any x, y ∈ E we have that

(2.3) sup
||x||≤1,||y||≤1

{‖R(i·, A)x‖L2
E(R), ‖R(i·, A′)y‖L2

E(R)} < ∞

Note that
(R3(is, A)x, y) = (R2(is, A)x,R(is, A′)y).

Therefore

(2.4) |(R3(is, A)x, y)| ≤ ‖R(is, A)‖ ‖R(is, A)x‖E ‖R(is, A′)y‖E

Using (2.3) and (2.4) we have that

K = {(3R3(i·, A)x, y) : ‖x‖ ≤ 1, ‖y‖ ≤ 1}
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is a bounded subset of L1(R).
To show the relative compactness of K we shall use Theorem 1.
Observe that

(2R3(is, A)x, y)− (2R3(i(s+h), A)x, y) =
∫ ∞

0
(e−ist−e−i(s+h)t)t2(T (t)x, y)dt.

This implies

(2R3(is, A)x, y) − (2R3(i(s + h), A)x, y) = −i
∫ ∞

0
(
∫ s+h

s
e−iutdu)t3(T (t)x, y)dt

= −i
∫ s+h

s
(
∫ ∞

0
e−iutt3(T (t)x, y)dt)du

= −6i
∫ s+h

s
(R4(iu, A)x, y)du.

(Another way to see this is using that (3iR4(is, A)x, y) is the derivative of
(R3(is, A)x, y) and the Fundamental Theorem of Calculus.)

Now using Fubini theorem and Cauchy-Schwarz inequality we can write

∫
R
|(2R3(is, A)x, y) −(2R3(i(s + h), A)x, y)|ds ≤ 6

∫
R

∫ s+h

s
|(R4(iu, A)x, y)|duds

≤ 6h
∫

R
|(R4(iu, A)x, y)|du

≤ 6h sup
s∈R

||R(is, A)||2.

.(
∫

R
||R(is, A)x||2Eds)

1
2 (

∫
R
||R(is, A′)y||2Eds)

1
2

≤ Ch.

On the other hand, using (2.4), we have∫
|s|>M

|(2R3(is, A)x, y)|ds ≤ 2 sup
|s|>M

||(R(is, A)||
∫

R
||(R(is, A)x||E ||(R(is, A′)y||Eds

≤ C sup
|s|>M

||(R(is, A)||.
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Therefore the assumption gives (2.2) in Theorem 1 and the proof is fin-
ished.

3 Eventually norm continuous semigroups in

Hilbert spaces.

In this section we will be concerned with a characterization of eventually
norm continuous semigroups on Hilbert spaces in terms of the growth of the
resolvent of their generator.

Let us mention the particular case of nilpotent semigroups which are
characterized as follows.

Theorem 4 (see [6], Theorem 6.11) Let {T (t) : t ≥ 0} be strongly con-
tinuous semigroup on a Banach space B with ||T (t)|| ≤ Me−t. {T (t) : t ≥
0} is a nilpotent semigroup if and only if

(3.1) sup
n∈N

{(n!||Rn(0, A)||) 1
n} < ∞.

We shall prove that an asymptotic version of (3.1) characterizes the even-
tual norm continuity. Before seeing this, let us introduce some constants
associated to a semigroup which will be needed in the sequel.

Definition 1 Let A be the generator of a strongly continuous semigroup
{T (t) : t ≥ 0} on a Hilbert space E. Given n ∈ N we define

ρn = lim
k→∞

sup
||x||≤1,||y||≤1

∫
|s|>k

(n + 1)! |(Rn+2(is, A)x, y)|ds.

It is not hard to see that ρn ∈ R+.

Theorem 5 Let A be the generator of a strongly continuous semigroup
{T (t) : t ≥ 0} with ||T (t)|| ≤ Me−t on a Hilbert space E. Then the following
assertions are equivalent

(i) {T (t) : t ≥ 0} is eventually norm continuous, i.e., there exists t′ > 0
such that t −→ T (t) from (t′,∞) into L(E) is norm continuous.

(ii) There exists C > 0 such that
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lim sup
|s|→∞

‖n!Rn(is, A)‖ 1
n ≤ C ∀n ∈ N.

(iii) There exist t0 > 0 such that

lim
n→∞

ρn

tn0
= 0.

Proof.- (i) ⇒ (ii) is a refinement of the proof of Theorem 1.20. in [5].
Let now t′ be such that t −→ T (t) is norm continuous on [t′,∞). Since
Plancherel’s holds in the setting of Hilbert spaces, we have the following
identification

n!Rn+1(is, A)x =
∫ ∞

0
e−isttnT (t)xdt.

then we get

‖n!R(is, A)n+1‖ ≤
∫ t′

0
tnMe−tdt + ‖

∫ ∞

t′
e−isttnT (t)dt‖

≤ M (t′)n+1

n+1
+ ‖ ∫ ∞

t′ e−isttnT (t)dt‖.

It follows now from the Riemann-Lebesgue lemma:

lim sup
|s|→∞

‖n!Rn+1(is, A)‖ ≤ M
(t′)n+1

n + 1

which gives the desired estimate.
(ii) ⇒ (iii)

ρn = lim
k→∞

sup
||x||≤1,||y||≤1

∫
|s|>k

|((n + 1)!(Rn+2(is, A)x, y)|ds

≤ limk→∞ sup|s|>k{(n + 1)!||Rn(is, A)||}.

sup||x||≤1,||y||≤1

∫
R ||R(is, A)x||E ||R(is, A′)y||Eds

≤ M2

2
lim sup|s|→∞{(n + 1)!||Rn(is, A)||}.

Therefore ρn ≤ M2

2
(n+ 1)Cn. Hence it suffices to take t0 > C to get (iii).

9



(iii) ⇒ (i) Given any x ∈ E, the vector-valued function n!Rn+1(i·, A)x
is the Fourier transform of the function Tn(·)x where Tn(t)x = tnT (t)x. As
the Fourier transform is a isomorphism from L2

E(R) onto L2
E(R) it may be

concluded that for any x, y ∈ E

R(i·, A′)y, Rn(i·, A)x ∈ L2
E(R).

Given x, y ∈ E, observe that

|(Rn+1(is, A)x, y)| ≤ ‖Rn(is, A)x‖‖R(is, A′)y‖E

what shows that
|(Rn+1(i·, A)x, y)| ∈ L1(R)

what allows us to write

(3.2) tn+1(T (t)x, y) =
1

2π

∫
R
(n + 1)!eist(Rn+2(is, A)x, y)ds.

Let us first note that

lim
h→0

tn+1‖T (t) − T (t + h)‖ ≤ lim
h→0

‖tn+1T (t) − (t + h)n+1T (t + h)||.

Let us now fix k, n ∈ N and t, h > 0. Then from (3.2)

‖tn+1T (t) −(t + h)n+1T (t + h)|| ≤

≤ 1
2π

sup||x||≤1,||y||≤1

∫
R |(1 − eihs)| |(n + 1)!(Rn+2(is, A)x, y)|ds

≤ 1
2π

sup||x||≤1,||y||≤1

∫
|s|≤k |(1 − eihs)| |(n + 1)!(Rn+2(is, A)x, y)|ds

+ 1
π

sup||x||≤1,||y||≤1

∫
|s|>k |(n + 1)!(Rn+2(is, A)x, y)|ds.

Taking the limit as h → 0 we get

lim
h→0

tn+1‖T (t) − T (t + h)‖ ≤ 1

π
sup

||x||≤1,||y||≤1

∫
|s|>k

|(n + 1)!(Rn+2(is, A)x, y)|ds.

Taking now the limit as k → ∞ we get

lim
h→0

tn+1‖T (t) − T (t + h)‖ ≤ ρn

π
.

This clearly forces the semigroup to be norm continuous for t ≥ t0.

10



4 Eventually compact semigroups

Let us recall that compact semigroups, i.e., those that T (t) are compact
operators for t > 0 are known to be the norm continuous semigroups such
that R(λ,A) is compact for any λ ∈ ρ(A). (see [7] Theorem 3.3). The
aim of this section is to find the corresponding result for eventually compact
semigroups, i.e., where T (t) are compact operators for t > t0 for some value
t0 ≥ 0.

To find such a characterization we shall need the notion of essential norm.
Let us recall that given a Banach space B and an operator T ∈ L(B) we
denote by

||T ||ess = inf{||T −K|| : K ∈ K(B)}.
As usual K(B) stands for the space of compact operators on B.

Theorem 6 Let A be the generator of a strongly continuous semigroup
{T (t) : t ≥ 0} on a Banach space B with ||T (t)|| ≤ Me−t. Then the following
assertions are equivalent

(i) {T (t) : t ≥ 0} is eventually compact, i. e., there exists t0 > 0 such
that T (t0) is a compact operator.

(ii) {T (t) : t ≥ 0} is eventually norm continuous and

(4.1) sup
n∈N

{‖n!Rn(0, A)‖
1
n
ess} < ∞.

Proof.- (i) ⇒ (ii). It is well known that eventual compactness implies even-
tual norm continuity (see [7], Theorem 3.2 ). Let us now observe that

n!Rn+1(0, A)x =
∫ t0

0
tnT (t)xdt +

∫ ∞

t0
tnT (t)xdt.

Since K0 =
∫ ∞
t0

tnT (t)dt is a compact operator on L(B) then

||n!Rn+1(0, A) −K0|| ≤ M
t0

n+1

n + 1
.

This clearly implies (4.1).
(ii) ⇒ (i). Let us first define the spaces:

l∞(B) = {(yn) ⊂ B : {yn : n ∈ N} is bounded },
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l∞T (B) = {(yn) ⊂ l∞(B) : lim
t→0

‖T (t)yn − yn‖B = 0 uniformly for n ∈ N},

m(B) = {(xn) ∈ l∞(B) : {xn : n ∈ N} is relatively compact } ⊂ l∞T (B).

On the quotient space B̂ = l∞T (B)/m(B), we define:

T̂ (t)(yn + m(B)) := (T (t)yn) + m(B) ∀(yn) ∈ l∞T (B).

It is known that T̂ (t) is also a strongly continuous semigroup (see [5]). Let
us denote by Â its generator.

Moreover, since (Kyn) ∈ m(B) for any (yn) ∈ l∞(B) and any compact
operator K then it is easy to show

(4.2) ‖Rn(0, Â)‖ ≤ ‖Rn(0, A)‖ess.

Hence assumption (4.1) gives

(n!‖Rn(0, Â)‖) 1
n ≤ M ∀n ∈ N

Therefore, from Theorem 4, T̂ is a nilpotent semigroup.
Now, by the norm continuity of T (t) we have that there exists t′ > 0 such

that for t ≥ t′

(T (t)xn) ∈ l∞T (B) ∀(xn) ∈ l∞(E).

Since T̂ is nilpotent, for some t0 > 0,

(T (t0)xn) ∈ m(B) ∀(xn) ∈ l∞(B)

which shows that T (t0) is compact.

Corollary 1 Let A be the generator of a strongly continuous semigroup
{T (t) : t ≥ 0} on a Hilbert space E with ||T (t)|| ≤ Me−t. Then {T (t) : t ≥
0} is eventually compact if and only if

(4.3) sup
n∈N

lim sup
|s|→∞

{‖n!Rn(is, A)‖ 1
n} < ∞ and

(4.4) sup
n∈N

{‖n!Rn(0, A)‖
1
n
ess} < ∞.
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