¢-CONCAVITY AND RELATED PROPERTIES ON
SYMMETRIC SEQUENCE SPACES.

OSCAR BLASCO AND TERESA SIGNES

ABSTRACT. We introduce a new property between the g-concavity
and the lower g-estimate of a Banach lattice and we get a general
method to construct maximal symmetric sequence spaces that sat-
isfies this new property but fails to be g-concave. In particular
this gives examples of spaces with the Orlicz property but without
cotype 2.

1. INTRODUCTION.

The reader is referred to [LT2] for the following notions from the
theory of Banach lattices.

Let 1 < ¢ < co. A Banach lattice X is said to be ¢g-concave if there
exists a constant C' > 0 such that

O llallm)s < CIQ_ lael)e |
k=1 k=1

for every choice of elements x1, zo, ..., z, in X.
A Banach lattice X is said to satisfy a lower g-estimate if there exists
a constant C' > 0 such that

D Nzl s < O Y
k=1 k=1

for every choice of elements x1, zo, ..., z,, in X.

Obviously the g-concavity implies the lower g-estimate. The converse
is false. For example, the Lorentz spaces L,, with 1 < p < ¢ satisfies
a lower g-estimate (see [Cre] Prop. 3.2) but is not g-concave (see [Cre]
Prop. 3.1). The first example of a Banach lattice satisfying a lower g-
estimate, ¢ > 2, but not being g-concave is due to G. Pisier (see [LT2],
examples 1.£.19 and 1.£.20). The reader is referred to [CT] and [KMP]
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for more information on the case p < 1 or more general Lorentz spaces
respectively.

Two related concepts from the theory of general Banach spaces are
the following:

A Banach space X is said to have cotype ¢ if there exists a constant
C > 0 such that

n 1 n
ekt <€ [ 13- anolar
k=1 0 k=1

for every choice of elements 1, xs, ..., x, in X, where 7, stand for the
Rademacher functions.

X is said to have the ¢-Orlicz property if id : X — X is (q,1)-
summing, that is, there exists a constant C' > 0 such that

O llall)e < € sup |37 evanl
k=1 w=tl 40
for every choice of elements x1, zs, ..., z,, in X.

Let us recall that Kintchine’s inequalities (see [DJT] 1.16) tell us that
only trivial spaces have cotype ¢ < 2 and that, using an extension of the
Dvoretzky-Rogers Theorem (see [DJT], Thm. 10.5), we get that only
finite dimensional Banach spaces have ¢-Orlicz property for 1 < ¢ < 2.

Let us mention the relationship between all these notions.

On the one hand, taking into account that

n n
sup || Y anrn(t)ll = sup || enall;
Ek::tl kil

telo1] =

one actually has that cotype ¢ implies the ¢-Orlicz property and that
the ¢-Orlicz property implies a lower g-estimate.
On the other hand Banach lattices X which are g-concave for some

1 < ¢ < oo satisfy the so-called Maurey-Kintchine inequalities (see
[DJT], Thm. 16.11)

n 1 n

1
1O )2l %/ 1) wire(t) | dt.
k=1 0 k=1

Using this, one can easily sees that a Banach lattice X is 2-concave
if and only if it has cotype 2. Hence we have the following chain of
implications

2-concavity < cotype 2 = 2-Orlicz property = lower 2-estimate.

The converses of the two last implications are false. In the setting of
Banach lattices M. Talagrand (see [T2]) constructed an example with
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the 2-Orlicz property but without cotype 2. Actually this author (see
[T3]) was even able to construct a symmetric sequence space with the
2-Orlicz property which is not 2-concave. The reader is referred to [BS]
for some modifications of [T3].

It is rather interesting to mention that in the setting of rearrange-
ment invariant (r.i.) spaces defined over [0, 1] (see [LT1] for definitions)
the notions of cotype 2 and the 2-Orlicz properties coincide. This result
is due to E. M. Semenov and A. M. Shteinberg (see [SS]|). They actually
showed that the Lorentz space Ly ;([0,1]) satisfies a lower 2-estimate
but fails to have the 2-Orlicz property.

The situation for 2 < ¢ < oo is a bit different. B. Maurey (see [M]
or [DJT], Cor. 16.7) showed that if a Banach lattice has the ¢-Orlicz
property then it also has cotype ¢. Actually he proved (see [M] or
[DJT], Cor. 16.15) that X satisfies a lower g-estimate if and only if X
has cotype ¢q. Some years later M. Talagrand (see [T2]) showed that
the equivalence between ¢-Orlicz property and cotype ¢ for 2 < ¢ < oo
holds true for any Banach space.

Therefore for Banach lattices and 2 < ¢ < co we have that

g-concavity = cotype q < ¢-Orlicz property < lower g-estimate

The aim of this paper is to introduce, in the setting of symmetric
sequence spaces, a property between the g-concavity and the lower ¢-
estimate, which will allow us to analyze all the cases 1 < ¢ < 0o in a
unified way. We shall get a general method, introduced by Talagrand
in [T3], to construct maximal symmetric sequence spaces which are not
g-concave, but still have this new property. The definition is as follows.

Definition 1.1. Let 1 < g < oo and let X, X; be two Banach lattices
such that X C X; (with continuous inclusion). X is said to be q-

concave with respect to X (1) if there exists a constant C' > 0 such
that

n n n
1 1
(D llzallf) s < Cmax{] Y Jaalll 1 lzal) e[}
k=1 k=1 k=1

for every choice of elements xq, xs,...,x, in X.

Obviously if X is g-concave then X is g-concave with respect to
X (1Y) for any X; such that X C X; and if there exists X; such that X
is g-concave with respect to X (/') then X satisfies a lower g-estimate.

Let us recall that a maximal symmetric sequence space (X, ||.||) (see
[J] [LT2]) is a Banach space of sequences such that

(a) I' € X C 1™ and 2] < [zl < [y,
(b) |z| < lyl, y € X = 2 € X,and ||z| < [[y],
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(c)ye X,0 €ll(N) = z.0 € X, and ||z.0| = ||z,

() [J2]l = supen [|Pa(@)[| where By(x) = 32k wxer if @ = ().

Using that || >} [zk][lec = sup || Z €1k |00, ONE has that a max-
k= k=1

imal symmetric sequence space X is g-concave with respect to £>(I1)
if and only if there exists a constant C' > 0 such that

1
Z!Iwkll )7 < Cmax{ sup, HZekkaoo,H Z\xkl")qH}
k=1

for every ch01ce of elements x1, s, ...,x, in X. In particular, for 2 <
q < oo the g-concavity with respect to ¢*°(I') implies the ¢-Orlicz
property.

We shall consider the following method of constructing maximal sym-
metric sequence spaces generated by a family of sequences.

Let F be a family of non-negative sequences in the unit ball of [*
with the following properties:

() If feFand0<g< fthen g e F.

(i) If f € F and o € TII(N) then f -0 € F.

(iii) There exists f € F such that max f@) =
We call it a generating family.

Let h be a non-negative, non-increasing sequence in ¢o(N), h(1) =1
and denote by H = {h.c,0 € II(N)}. For each m € N we write
Mo ={0< <D 27" ajuhja: Y oy <1,V1>0, hy € H}.
>0 j<m! j<m!

Given an increasing sequence (my) C N, my = 1, we define

F=Fh(mp)={f:0<f<Y Bk D B <1,
r=0 r=0

1fillo <277, fr € Hin, }-

Let H be a non-decreasing sequence of positive real numbers and let
us denote by (g the space of sequences (z(n)) such that

Z |z(n)| < H(card(A))
neA
for all finite sets A C N.
Starting with a fixed sequence h and a fixed sequence (my) we shall
produce a way to find families F C ¢y where H(n) =Y ,_, h(k).
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Lemma 1.2. Let h, H and (mg) be as above. Then F = F(h, (my)) is
a generating family and F C lg.

Proof. The properties (i), (ii) and (iii) in the definition are immediate.
To see that F C /g it suffices to see that H C ¢z and this follows from

card(A)
> h(k) < > h(i) = H(card(A)).
keA i=1

OJ

Lemma 1.3. Let m,n € N and f € H,,. Then there exists a set
B C N with card (B) = n and || fxpe||so < 22

n

Proof. Take i, such that f(iy) = maz;enf(i) (this exists since f
co(N)) and, inductively, choose iy, so that f(ir) = maxen fiy,.. ip_13 J(0)-
Let B = {i1,... ,i,}. Now it is clear that if i ¢ B then f(i) < f(i),
k=1,...,n. Hence

nsup f(i) <Y f(i) < H(n).

i¢B ieB
O

Given 1 < ¢ < oo let X, = X,(F) be the space of sequences such
that

1
l2llx, = sup(le], fo) < o0
feF

where (z, f) means ), () f(i).
It is easy to see that X, is a maximal symmetric sequence space.
Our main theorem can be now stated as follows

Theorem 1.4. Given 1 < q¢ < oo. There exists a generating family
Fy such that X (F,) is q-concave with respect to (=(I) but is not g-
concave.

As a corollary we have that X, (F,), for 2 < ¢ < oo, are examples
of spaces of cotype ¢ which are not g-concave, X5(F,) satisfies the 2-
Orlicz property but is not of cotype 2, and X,(F,), for 1 < ¢ < 2,
satisfies a lower g-estimate but fails to be g-concave.

2. CONSTRUCTION OF SPACES WHICH ARE NOT Q-CONCAVE
With the notation in the above section, we can find the following

conditions to get maximal symetric sequence spaces X (F) which are
not g-concave.
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Theorem 2.1. Let h € ¢(N), h > 0 non-increasing, h(1) = 1 and
such that there exists a convexr subsequence (ny) C N, i.e. 2n, <
Ngy1 + Ng—1, ng = 0, for which

sup H(m) =00
k kH(nk—nk 1) ’
Let 1 < ¢ < o0, (mg) €N, mg =1 and F = F(h,(mg)). Then
X, = X (F) is not a q-concave space.

Proof. Let us fix 7 € N and (z(k)) = (h%(k))kgm. Taking N = n, —
n,_1 we consider o € II(N) given by

O'(nk> =ng_1+1, keN
olp)=p+1 otherwise.

Let us define x; = x.07, j = 1,2... , N and denote Dy, = (nj_y,ny] NN,
k e N.
A simple computation shows that

STy (([ﬁwkﬂ +1) Y 41) o

k=1 iEDk
< 2iNi ( ' )
- Zl card (Dy.) ZD (1)) XDy

Hence

T

N
197 < ONs h(i))s
(;%H < ca?“d Z )7 XDy,

k= 1€Dy

To show that X,(F(h, (my))) is not g-concave it is enough to see that
b (25 asll)

N 1
T Q5= )l

Since h € Fthen we have

Q|

il = llzll = (|, ) = H(n)

forall y =1,2,... N.

On the other hand, if y = Z;Zl(m > ien, (i) xb,
any f € F, we have

Q=

then, for
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L T ng)—H(ng_1)\ * i,z
., £7) = Yo (M) S, f Y
(Hélder) < S (H(nk)—H(nk_1)>

(Lemma 1.2) < 537, (H(nk) - H(nk_1)> g (H(m - nk_1)>q

(Holder) < (H(ny —n,0)) " (H(ng)o.77

Hence
(Zj;l H%’Hq)f N |z N 1 H(n.) _
NN, Jagloya ) — Clvll ™ C(EM)) (H(n, —ne))d 77

This finishes the proof. O

3. CONSTRUCTION OF SPACES WHICH ARE ¢-CONCAVE
WITH RESPECT TO (>°(I').

Theorem 3.1. Let 1 < g < o0, (mg) such that my, >k, mg =1 and
—~, =
Z kem/ | < oo.
s=1

where k, = min{i : Hf) <277} p>0.

If F = F(h,my) then X, = X, (F) is q-concave with respect to
2 (11).

Proof. Let us take N elements (z3)4_; such that

N N
. 1
sup > ()] < 11D lae|?)7]| < 1.
eN k=1
First choose fr € F, k=1,2,..., N such that

4 7
lwwll < 5 (el fi)-
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Let us write fk = ZTZO 6k,rfk,r where Z’/‘ZO Bk,'r‘ < ]-7 ”fk,r”oo <27
and

I
fk,rzg 2 E G 1k Ptk

20 j<ml

with ngml. ey < 1foralll>0,r>0.
For each k € {1,2,..., N}, take s(k) so that k € [ms)—1, myx)) and
denote

o= Breafrr and fl = > Birfur

r>s(k) r<s(k)

Let us assume that ||z || is decreasing and let us write S%, = Zgzl ||z ]]9.

Hence ||z < Snk7 .
Denoting Iy = [1, N]NN and Iy y = [ms_1,ms) N Iy, for all s > 1
we can write

al 4 & 1
= lleal” < 3D Ml £
k=1 k=1

IN

4 N
gZ(Il’kl, Fillzg]19)
k=1

s(N)
4 /
+ gz D el el /A7)

s=1 kel, n

= (I)+(11).

We are going to show that (I) and (I7) are bounded by C'S%, " which
will imply Sy < C.

To deal with the first term we use that
N N Lo .
D el fillzell) < (Q lwala, Q- Nzl fi)7)-
k= k=1 k=1

1
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Now observe that

N
> s
k=1

N
Z k|| Brer freir

—2(

_ Z Z (Z B fror) | 28]

s=1 mg_1<k<mgs r>s

+ Y O Beren)llzkl

mS(N) 1<kJ<N ’r‘>8

s(N)

= > >0 Berferllzl

s=1 r>s kel; n
oo

= Z Z ||xk||qﬁk,rfk,r
r=1 ke[l,m.|NIy

”mquﬁk,r
> ket meiniy 1TkI198k,r

Denoting by v, =

and gr = Zke[l,mr]m[N ’Yk,rfk,r
we get that

ZHMII%—Z( > llzxll"Ber)g

r=1 ke[l,m,]JNIxn

Since % 9r € Hy, then

N
3 llalloff < 28%g for g€ F.

This shows that (I) < CS% ™
To deal with (/1) observe first that for each s € N

card({(k,r) : my_1 <k <mg,r < s}) <m?

which gives

kels v T<s r<s k€ls N

where h, € H,p,, and 75 = > _, Zke]w B ||z ]]9.
Applying now Lemma 1.3 to n = ks and m = m, we get aset By C N

with card(B;) = ks and ||hsxBe|loo < 27°. This allows us to split (/1)
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into two pieces as follows

s(N)
4 1
(1) < 55 E el 2k, (fixpe) )

s=1 kEIs N

+ —Z 3 Nl zalxe., (F)7)

S= 1]{:6151\]

= (1) + (II)".

Hence
1 & 1 1
A1) < 23 (D7 e (D el s ™)
s=1 kel; N kels N

Applying Holder again and using (3.1)

Z|$k| % 24,}/8 SXBc %
4 1 ol 1 1
S (S Zv” ")
s=1 k=1

|hlle <27%and > v, < 1.

oo|4>

where h), = hoxpe € Hm,,
Therefore

s(N)
Uy <C Y0 Y Bl < Csi.

s=1 r<s kely N

Finally to deal with (I7)” we use that ¢! C X with inclusion norm
1 to obtain

s(N) 1
Z Z k|7 (lzkl X B, (7))
s=1 k}EISN
s(N)
< Z<max k<) D [k,
s=1 kel N
s(N) 1 =1
< YoSEmT 3T Y el r<s“2km’
s=1 kEIsN’LGBs

The proof is now finished using the extra assumption on (my). O
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Proof of the main theorem. Take h(n) = 24" > 2 p(1) = 1. This

n

gives H(n) ~ (log(n))? and, using that ﬁ—j < 277 (for p big enough)
one gets k, < eP. Then it suffices to take my, = k24 ekt and ny, = ek
which satisfy the assumptions in Theorem 2.1 and Theorem 3.1 to
obtain an example where X, (F) is g-concave with respect ¢>(¢') but

not g-concave. . U
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