q-CONCAVITY AND RELATED PROPERTIES ON SYMMETRIC SEQUENCE SPACES.

OSCAR BLASCO AND TERESA SIGNES

ABSTRACT. We introduce a new property between the q-concavity and the lower q-estimate of a Banach lattice and we get a general method to construct maximal symmetric sequence spaces that satisfies this new property but fails to be q-concave. In particular this gives examples of spaces with the Orlicz property but without cotype 2.

1. INTRODUCTION.

The reader is referred to [LT2] for the following notions from the theory of Banach lattices.

Let $1 \leq q < \infty$. A Banach lattice X is said to be q-concave if there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{\frac{1}{q}} \le C \|\left(\sum_{k=1}^{n} |x_k|^q\right)^{\frac{1}{q}}\|$$

for every choice of elements $x_1, x_2, ..., x_n$ in X.

A Banach lattice X is said to satisfy a lower q-estimate if there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{\frac{1}{q}} \le C \|\sum_{k=1}^{n} |x_k|\|$$

for every choice of elements $x_1, x_2, ..., x_n$ in X.

Obviously the q-concavity implies the lower q-estimate. The converse is false. For example, the Lorentz spaces $L_{q,p}$ with $1 \leq p < q$ satisfies a lower q-estimate (see [Cre] Prop. 3.2) but is not q-concave (see [Cre] Prop. 3.1). The first example of a Banach lattice satisfying a lower qestimate, $q \geq 2$, but not being q-concave is due to G. Pisier (see [LT2], examples 1.f.19 and 1.f.20). The reader is referred to [CT] and [KMP]

Date: January 2000.

The research was partially supported by the Spanish grant DGESIC PB98-1426, DGES (PB97-0254) and FP-95 of Ministerio de Educación y Ciencia, respectively.

O. BLASCO, T. SIGNES

for more information on the case p < 1 or more general Lorentz spaces respectively.

Two related concepts from the theory of general Banach spaces are the following:

A Banach space X is said to have cotype q if there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{\frac{1}{q}} \le C \int_0^1 \|\sum_{k=1}^{n} x_k r_k(t)\| dt$$

for every choice of elements $x_1, x_2, ..., x_n$ in X, where r_k stand for the Rademacher functions.

X is said to have the q-Orlicz property if $id : X \to X$ is (q, 1)-summing, that is, there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_{k}\|^{q}\right)^{\frac{1}{q}} \le C \sup_{\epsilon_{k}=\pm 1} \|\sum_{k=1}^{n} \epsilon_{k} x_{k}\|$$

for every choice of elements $x_1, x_2, ..., x_n$ in X.

Let us recall that Kintchine's inequalities (see [DJT] 1.16) tell us that only trivial spaces have cotype q < 2 and that, using an extension of the Dvoretzky-Rogers Theorem (see [DJT], Thm. 10.5), we get that only finite dimensional Banach spaces have q-Orlicz property for $1 \le q < 2$.

Let us mention the relationship between all these notions.

On the one hand, taking into account that

$$\sup_{t \in [0,1]} \|\sum_{k=1}^{n} x_k r_k(t)\| \approx \sup_{\epsilon_k = \pm 1} \|\sum_{k=1}^{n} \epsilon_k x_k\|,$$

one actually has that cotype q implies the q-Orlicz property and that the q-Orlicz property implies a lower q-estimate.

On the other hand Banach lattices X which are q-concave for some $1 \leq q < \infty$ satisfy the so-called Maurey-Kintchine inequalities (see [DJT], Thm. 16.11)

$$\|(\sum_{k=1}^{n} |x_k|^2)^{\frac{1}{2}}\| \approx \int_0^1 \|\sum_{k=1}^{n} x_k r_k(t)\| dt.$$

Using this, one can easily sees that a Banach lattice X is 2-concave if and only if it has cotype 2. Hence we have the following chain of implications

2-concavity \Leftrightarrow cotype 2 \Rightarrow 2-Orlicz property \Rightarrow lower 2-estimate.

The converses of the two last implications are false. In the setting of Banach lattices M. Talagrand (see [T2]) constructed an example with

the 2-Orlicz property but without cotype 2. Actually this author (see [T3]) was even able to construct a symmetric sequence space with the 2-Orlicz property which is not 2-concave. The reader is referred to [BS] for some modifications of [T3].

It is rather interesting to mention that in the setting of rearrangement invariant (r.i.) spaces defined over [0, 1] (see [LT1] for definitions) the notions of cotype 2 and the 2-Orlicz properties coincide. This result is due to E. M. Semenov and A. M. Shteinberg (see [SS]). They actually showed that the Lorentz space $L_{2,1}([0, 1])$ satisfies a lower 2-estimate but fails to have the 2-Orlicz property.

The situation for $2 < q < \infty$ is a bit different. B. Maurey (see [M] or [DJT], Cor. 16.7) showed that if a Banach lattice has the q-Orlicz property then it also has cotype q. Actually he proved (see [M] or [DJT], Cor. 16.15) that X satisfies a lower q-estimate if and only if X has cotype q. Some years later M. Talagrand (see [T2]) showed that the equivalence between q-Orlicz property and cotype q for $2 < q < \infty$ holds true for any Banach space.

Therefore for Banach lattices and $2 < q < \infty$ we have that q-concavity \Rightarrow cotype $q \Leftrightarrow q$ -Orlicz property \Leftrightarrow lower q-estimate

The aim of this paper is to introduce, in the setting of symmetric sequence spaces, a property between the q-concavity and the lower q-estimate, which will allow us to analyze all the cases $1 < q < \infty$ in a unified way. We shall get a general method, introduced by Talagrand in [T3], to construct maximal symmetric sequence spaces which are not q-concave, but still have this new property. The definition is as follows.

Definition 1.1. Let $1 \le q < \infty$ and let X, X_1 be two Banach lattices such that $X \subset X_1$ (with continuous inclusion). X is said to be qconcave with respect to $X_1(l^1)$ if there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_k\|_X^q\right)^{\frac{1}{q}} \le C \max\{\|\sum_{k=1}^{n} |x_k|\|_{X_1}, \|\left(\sum_{k=1}^{n} |x_k|^q\right)^{\frac{1}{q}}\|_X\}$$

for every choice of elements $x_1, x_2, ..., x_n$ in X.

Obviously if X is q-concave then X is q-concave with respect to $X_1(l^1)$ for any X_1 such that $X \subset X_1$ and if there exists X_1 such that X is q-concave with respect to $X_1(l^1)$ then X satisfies a lower q-estimate.

Let us recall that a maximal symmetric sequence space $(X, \|.\|)$ (see [J] [LT2]) is a Banach space of sequences such that

- (a) $l^1 \subset X \subset l^{\infty}$, and $||x||_{\infty} \le ||x|| \le ||x||_1$,
- (b) $|x| \leq |y|, y \in X \Longrightarrow x \in X$, and $||x|| \leq ||y||$,

O. BLASCO, T. SIGNES

(c)
$$y \in X, \sigma \in \Pi(\mathbb{N}) \Longrightarrow x.\sigma \in X$$
, and $||x.\sigma|| = ||x||$,
(d) $||x|| = \sup_{n \in \mathbb{N}} ||P_n(x)||$ where $P_n(x) = \sum_{k=1}^n x_k e_k$ if $x = (x_k)$.

Using that $\|\sum_{k=1}^{n} |x_k|\|_{\infty} = \sup_{\epsilon_k = \pm 1} \|\sum_{k=1}^{n} \epsilon_k x_k\|_{\infty}$, one has that a max-

imal symmetric sequence space X is q-concave with respect to $\ell^{\infty}(l^1)$ if and only if there exists a constant C > 0 such that

$$\left(\sum_{k=1}^{n} \|x_{k}\|^{q}\right)^{\frac{1}{q}} \leq C \max\{\sup_{\epsilon_{k}=\pm 1} \|\sum_{k=1}^{n} \epsilon_{k} x_{k}\|_{\infty}, \|\left(\sum_{k=1}^{n} |x_{k}|^{q}\right)^{\frac{1}{q}}\|\}$$

for every choice of elements $x_1, x_2, ..., x_n$ in X. In particular, for $2 \leq q < \infty$ the q-concavity with respect to $\ell^{\infty}(l^1)$ implies the q-Orlicz property.

We shall consider the following method of constructing maximal symmetric sequence spaces generated by a family of sequences.

Let \mathcal{F} be a family of non-negative sequences in the unit ball of l^{∞} with the following properties:

- (i) If $f \in \mathcal{F}$ and $0 \leq g \leq f$ then $g \in \mathcal{F}$.
- (ii) If $f \in \mathcal{F}$ and $\sigma \in \Pi(\mathbb{N})$ then $f \cdot \sigma \in \mathcal{F}$.
- (iii) There exists $f \in \mathcal{F}$ such that $\max_{i \in \mathbb{N}} f(i) = 1$.

We call it a generating family.

Let h be a non-negative, non-increasing sequence in $c_0(\mathbb{N})$, h(1) = 1and denote by $\mathcal{H} = \{h.\sigma, \sigma \in \Pi(\mathbb{N})\}$. For each $m \in \mathbb{N}$ we write

$$\mathcal{H}_{m} = \{ 0 \le f \le \sum_{l \ge 0} 2^{-l} \sum_{j \le m^{l}} \alpha_{j,l} h_{j,l} : \sum_{j \le m^{l}} \alpha_{j,l} \le 1, \forall l \ge 0, h_{j,l} \in \mathcal{H} \}.$$

Given an increasing sequence $(m_k) \subseteq \mathbb{N}, m_0 = 1$, we define

$$\mathcal{F} = \mathcal{F}(h, (m_k)) = \{ f : 0 \le f \le \sum_{r=0}^{\infty} \beta_r f_r, \sum_{r=0}^{\infty} \beta_r \le 1, \\ \|f_r\|_{\infty} \le 2^{-r}, f_r \in \mathcal{H}_{m_r} \}.$$

Let H be a non-decreasing sequence of positive real numbers and let us denote by ℓ_H the space of sequences (x(n)) such that

$$\sum_{n \in A} |x(n)| \le H(card(A))$$

for all finite sets $A \subseteq \mathbb{N}$.

Starting with a fixed sequence h and a fixed sequence (m_k) we shall produce a way to find families $\mathcal{F} \subseteq \ell_H$ where $H(n) = \sum_{k=1}^n h(k)$.

Lemma 1.2. Let h, H and (m_k) be as above. Then $\mathcal{F} = \mathcal{F}(h, (m_k))$ is a generating family and $\mathcal{F} \subseteq \ell_H$.

Proof. The properties (i), (ii) and (iii) in the definition are immediate. To see that $\mathcal{F} \subseteq \ell_H$ it suffices to see that $\mathcal{H} \subseteq \ell_H$ and this follows from

$$\sum_{k \in A} h(k) \le \sum_{i=1}^{card(A)} h(i) = H(card(A)).$$

Lemma 1.3. Let $m, n \in \mathbb{N}$ and $f \in \mathcal{H}_m$. Then there exists a set $B \subseteq \mathbb{N}$ with card (B) = n and $\|f\chi_{B^c}\|_{\infty} \leq \frac{H(n)}{n}$.

Proof. Take i_1 such that $f(i_1) = \max_{i \in \mathbb{N}} f(i)$ (this exists since $f \in c_0(\mathbb{N})$) and, inductively, choose i_k so that $f(i_k) = \max_{i \in \mathbb{N} \setminus \{i_1, \dots, i_{k-1}\}} f(i)$. Let $B = \{i_1, \dots, i_n\}$. Now it is clear that if $i \notin B$ then $f(i) \leq f(i_k)$, $k = 1, \dots, n$. Hence

$$n \sup_{i \notin B} f(i) \le \sum_{i \in B} f(i) \le H(n).$$

Given $1 < q < \infty$ let $X_q = X_q(\mathcal{F})$ be the space of sequences such that

$$||x||_{X_q} = \sup_{f \in \mathcal{F}} \langle |x|, f^{\frac{1}{q'}} \rangle < \infty$$

where $\langle x, f \rangle$ means $\sum_{i \in \mathbb{N}} x(i) f(i)$.

It is easy to see that X_q is a maximal symmetric sequence space.

Our main theorem can be now stated as follows

Theorem 1.4. Given $1 < q < \infty$. There exists a generating family \mathcal{F}_q such that $X_q(\mathcal{F}_q)$ is q-concave with respect to $\ell^{\infty}(l^1)$ but is not q-concave.

As a corollary we have that $X_q(\mathcal{F}_q)$, for $2 < q < \infty$, are examples of spaces of cotype q which are not q-concave, $X_2(\mathcal{F}_2)$ satisfies the 2-Orlicz property but is not of cotype 2, and $X_q(\mathcal{F}_q)$, for 1 < q < 2, satisfies a lower q-estimate but fails to be q-concave.

2. Construction of spaces which are not q-concave

With the notation in the above section, we can find the following conditions to get maximal symetric sequence spaces $X_q(\mathcal{F})$ which are not *q*-concave.

Theorem 2.1. Let $h \in c_0(\mathbb{N})$, $h \geq 0$ non-increasing, h(1) = 1 and such that there exists a convex subsequence $(n_k) \subset \mathbb{N}$, i.e. $2n_k \leq n_{k+1} + n_{k-1}$, $n_0 = 0$, for which

$$\sup_{k} \frac{H(n_k)}{kH(n_k - n_{k-1})} = \infty$$

Let $1 < q < \infty$, $(m_k) \subseteq \mathbb{N}$, $m_0 = 1$ and $\mathcal{F} = \mathcal{F}(h, (m_k))$. Then $X_q = X_q(\mathcal{F})$ is not a q-concave space.

Proof. Let us fix $\tau \in \mathbb{N}$ and $(x(k)) = (h^{\frac{1}{q}}(k))_{k \leq n_{\tau}}$. Taking $N = n_{\tau} - n_{\tau-1}$ we consider $\sigma \in \Pi(\mathbb{N})$ given by

$$\begin{cases} \sigma(n_k) = n_{k-1} + 1, & k \in \mathbb{N} \\ \sigma(p) = p + 1 & otherwise. \end{cases}$$

Let us define $x_j = x.\sigma^j$, j = 1, 2..., N and denote $D_k = (n_{k-1}, n_k] \cap \mathbb{N}$, $k \in \mathbb{N}$.

A simple computation shows that

$$\begin{aligned} (\sum_{j=1}^{N} |x_{j}|^{q})^{\frac{1}{q}} &\leq \sum_{k=1}^{\tau} \left(\left(\left[\frac{N}{card(D_{k})} \right] + 1 \right) \sum_{i \in D_{k}} x^{q}(i) \right)^{\frac{1}{q}} \chi_{D_{k}} \right. \\ &\leq 2^{\frac{1}{q}} N^{\frac{1}{q}} \sum_{k=1}^{\tau} \left(\frac{1}{card(D_{k})} \sum_{i \in D_{k}} x^{q}(i) \right)^{\frac{1}{q}} \chi_{D_{k}}. \end{aligned}$$

Hence

$$\left(\sum_{j=1}^{N} |x_j|^q\right)^{\frac{1}{q}} \le CN^{\frac{1}{q}} \sum_{k=1}^{\tau} \left(\frac{1}{card(D_k)} \sum_{i \in D_k} h(i)\right)^{\frac{1}{q}} \chi_{D_k}.$$

To show that $X_q(\mathcal{F}(h, (m_k)))$ is not q-concave it is enough to see that

$$\sup_{\tau} \frac{\left(\sum_{j=1}^{N} \|x_j\|^q\right)^{\frac{1}{q}}}{\|\left(\sum_{j=1}^{N} |x_j|^q\right)^{\frac{1}{q}}\|} = \infty.$$

Since $h \in \mathcal{F}$ then we have

$$||x_j|| = ||x|| \ge \langle |x|, h^{\frac{1}{q'}} \rangle = H(n_{\tau})$$

for all j = 1, 2, ..., N.

On the other hand, if $y = \sum_{k=1}^{\tau} \left(\frac{1}{\operatorname{card}(D_k)} \sum_{i \in D_k} h(i)\right)^{\frac{1}{q}} \chi_{D_k}$ then, for any $f \in \mathcal{F}$, we have

$$\langle y, f^{\frac{1}{q'}} \rangle = \sum_{k=1}^{\tau} \left(\frac{H(n_k) - H(n_{k-1})}{card(D_k)} \right)^{\frac{1}{q}} \sum_{i \in D_k} f^{\frac{1}{q'}(i)}$$

(Hölder)
$$\leq \sum_{k=1}^{\tau} \left(H(n_k) - H(n_{k-1}) \right)^{\overline{q}} \left(\sum_{i \in D_k} f(i) \right)^{\overline{q'}}$$

(Lemma 1.2) $\leq \sum_{k=1}^{\tau} \left(H(n_k) - H(n_{k-1}) \right)^{\frac{1}{q}} \left(H(n_k - n_{k-1}) \right)^{\frac{1}{q'}}$

(Hölder)
$$\leq \left(H(n_{\tau}-n_{\tau-1})\right)^{\frac{1}{q'}}(H(n_{\tau}))^{\frac{1}{q}}.\tau^{\frac{1}{q'}}$$

Hence

$$\frac{\left(\sum_{j=1}^{N} \|x_{j}\|^{q}\right)^{\frac{1}{q}}}{\|\left(\sum_{j=1}^{N} |x_{j}|^{q}\right)^{\frac{1}{q}}\|} \geq \frac{\|x\|}{C\|y\|} \geq \frac{H(n_{\tau})}{C(H(n_{\tau}))^{\frac{1}{q}}(H(n_{\tau}-n_{\tau-1}))^{\frac{1}{q'}}\tau^{\frac{1}{q'}}} \\
= \frac{1}{C}\left(\frac{H(n_{\tau})}{\tau H(n_{\tau}-n_{\tau-1})}\right)^{\frac{1}{q'}}.$$

This finishes the proof.

3. Construction of spaces which are q-concave with respect to $\ell^{\infty}(l^1)$.

Theorem 3.1. Let $1 < q < \infty$, (m_k) such that $m_k \ge k$, $m_0 = 1$ and

$$\sum_{s=1}^{\infty} k_s m_{s-1}^{\frac{-1}{q'}} < \infty.$$

where $k_p = \min\{i : \frac{H(i)}{i} \le 2^{-p}\}, p \ge 0.$ If $\mathcal{F} = \mathcal{F}(h, m_k)$ then $X_q = X_q(\mathcal{F})$ is q-concave with respect to $\ell^{\infty}(l^1).$

Proof. Let us take N elements $(x_k)_{k=1}^N$ such that

$$\sup_{i \in \mathbb{N}} \sum_{k=1}^{N} |x_k(i)| \le 1, \| (\sum_{k=1}^{N} |x_k|^q)^{\frac{1}{q}} \| \le 1.$$

First choose $f_k \in \mathcal{F}, k = 1, 2, \dots, N$ such that

$$||x_k|| \le \frac{4}{3} \langle |x_k|, f_k^{\frac{1}{q'}} \rangle.$$

Let us write $f_k = \sum_{r\geq 0} \beta_{k,r} f_{k,r}$ where $\sum_{r\geq 0} \beta_{k,r} \leq 1$, $||f_{k,r}||_{\infty} \leq 2^{-r}$ and

$$f_{k,r} = \sum_{l \ge 0} 2^{-l} \sum_{j \le m_r^l} \alpha_{j,l,k,r} h_{j,l,k,r}$$

with $\sum_{j \leq m_r^l} \alpha_{j,l,k,r} \leq 1$ for all $l \geq 0, r \geq 0$. For each $k \in \{1, 2, \dots, N\}$, take s(k) so that $k \in [m_{s(k)-1}, m_{s(k)})$ and denote

$$f'_k = \sum_{r \ge s(k)} \beta_{k,r} f_{k,r}$$
 and $f''_k = \sum_{r < s(k)} \beta_{k,r} f_{k,r}$.

Let us assume that $||x_k||$ is decreasing and let us write $S_N^q = \sum_{k=1}^N ||x_k||^q$. Hence $||x_k|| \leq S_N k^{\frac{-1}{q}}$. Denoting $I_N = [1, N] \cap \mathbb{N}$ and $I_{s,N} = [m_{s-1}, m_s) \cap I_N$, for all $s \geq 1$

we can write

$$S_{N}^{q} = \sum_{k=1}^{N} \|x_{k}\|^{q} \leq \frac{4}{3} \sum_{k=1}^{N} \|x_{k}\|^{q-1} \langle |x_{k}|, f_{k}^{\frac{1}{q'}} \rangle$$

$$\leq \frac{4}{3} \sum_{k=1}^{N} \langle |x_{k}|, \sqrt[q']{f'_{k} \|x_{k}\|^{q}} \rangle$$

$$+ \frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s,N}} \|x_{k}\|^{q-1} \langle |x_{k}|, \sqrt[q']{f''_{k}} \rangle$$

$$= (I) + (II).$$

We are going to show that (I) and (II) are bounded by CS_N^{q-1} which will imply $S_N \leq C$.

To deal with the first term we use that

$$\sum_{k=1}^{N} \langle |x_k|, \sqrt[q']{f'_k ||x_k||^q} \rangle \leq \langle (\sum_{k=1}^{N} |x_k|^q)^{\frac{1}{q}}, (\sum_{k=1}^{N} ||x_k||^q f'_k)^{\frac{1}{q'}} \rangle.$$

Now observe that

$$\sum_{k=1}^{N} \|x_k\|^q f'_k = \sum_{k=1}^{N} \sum_{r \ge s(k)} \|x_k\|^q \beta_{k,r} f_{k,r}$$

$$= \sum_{s=1}^{s(N)-1} \sum_{m_{s-1} \le k < m_s} (\sum_{r \ge s} \beta_{k,r} f_{k,r}) \|x_k\|^q$$

$$+ \sum_{m_{s(N)-1} \le k \le N} (\sum_{r \ge s} \beta_{k,r} f_{k,r}) \|x_k\|^q$$

$$= \sum_{s=1}^{s(N)} \sum_{r \ge s} \sum_{k \in I_{s,N}} \beta_{k,r} f_{k,r} \|x_k\|^q$$

$$= \sum_{r=1}^{\infty} \sum_{k \in [1,m_r] \cap I_N} \|x_k\|^q \beta_{k,r} f_{k,r}$$

Denoting by $\gamma_{k,r} = \frac{\|x_k\|^q \beta_{k,r}}{\sum_{k \in [1,m_r] \cap I_N} \|x_k\|^q \beta_{k,r}}$ and $g_r = \sum_{k \in [1,m_r] \cap I_N} \gamma_{k,r} f_{k,r}$ we get that

$$\sum_{k=1}^{N} \|x_k\|^q f_k' = \sum_{r=1}^{\infty} (\sum_{k \in [1,m_r] \cap I_N} \|x_k\|^q \beta_{k,r}) g_r.$$

Since $\frac{1}{2}g_r \in \mathcal{H}_{m_r}$ then

$$\sum_{k=1}^N \|x_k\|^q f'_k \le 2S_N^q g \quad \text{for } g \in \mathcal{F}.$$

This shows that $(I) \leq CS_N^{q-1}$. To deal with (II) observe first that for each $s \in \mathbb{N}$

$$card(\{(k,r): m_{s-1} \le k < m_s, r < s\}) \le m_s^2$$

which gives

(3.1)
$$\sum_{k \in I_{s,N}} \sum_{r < s} \beta_{k,r} f_{k,r} \| x_k \|^q = \left(\sum_{r < s} \sum_{k \in I_{s,N}} \beta_{k,r} \| x_k \|^q \right) 4h_s = 4\gamma_s h_s$$

where $h_s \in \mathcal{H}_{m_s}$ and $\gamma_s = \sum_{r < s} \sum_{k \in I_{s,N}} \beta_{k,r} ||x_k||^q$. Applying now Lemma 1.3 to $n = k_s$ and $m = m_s$ we get a set $B_s \subset \mathbb{N}$ with $card(B_s) = k_s$ and $||h_s \chi_{B_s^c}||_{\infty} \leq 2^{-s}$. This allows us to split (II)

into two pieces as follows

$$(II) \leq \frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s,N}} ||x_k||^{q-1} \langle |x_k|, (f_k'' \chi_{B_s^c})^{\frac{1}{q'}} \rangle + \frac{4}{3} \sum_{s=1}^{s(N)} \sum_{k \in I_{s,N}} ||x_k||^{q-1} \langle |x_k| \chi_{B_s}, (f_k'')^{\frac{1}{q'}} \rangle = (II)' + (II)''.$$

Hence

$$(II)' \leq \frac{4}{3} \sum_{s=1}^{s(N)} \langle (\sum_{k \in I_{s,N}} |x_k|^q)^{\frac{1}{q}}, (\sum_{k \in I_{s,N}} ||x_k||^q f_k'' \chi_{B_s^c})^{\frac{1}{q'}} \rangle$$

Applying Hölder again and using (3.1)

$$(II)' \leq \frac{4}{3} \langle (\sum_{k=1}^{N} |x_k|^q)^{\frac{1}{q}}, (\sum_{s=1}^{s(N)} 4\gamma_s h_s \chi_{B_s^c})^{\frac{1}{q'}} \rangle$$
$$= \frac{4}{3} (\sum_{s=1}^{s(N)} 4\gamma_s)^{\frac{1}{q'}} \langle (\sum_{k=1}^{N} |x_k|^q)^{\frac{1}{q}}, (\sum_{s=1}^{s(N)} \gamma_s' h_s')^{\frac{1}{q'}} \rangle$$

where $h'_s = h_s \chi_{B_s^c} \in \mathcal{H}_{m_s}$, $\|h'_s\|_{\infty} \leq 2^{-s}$ and $\sum_s \gamma'_s \leq 1$. Therefore

$$(II)' \le C(\sum_{s=1}^{s(N)} \sum_{r < s} \sum_{k \in I_{s,N}} \beta_{k,r} \|x_k\|^q)^{\frac{1}{q'}} \le CS_N^{q-1}.$$

Finally to deal with (II)'' we use that $\ell^1 \subset X$ with inclusion norm 1 to obtain

$$\sum_{s=1}^{s(N)} \sum_{k \in I_{s,N}} \|x_k\|^{q-1} \langle |x_k| \chi_{B_s}, (f_k'')^{\frac{1}{q'}} \rangle$$

$$\leq \sum_{s=1}^{s(N)} (\max_{k \in I_{s,N}} \|x_k\|^{q-1}) \sum_{k \in I_{s,N}} \|x_k \chi_{B_s}\|$$

$$\leq \sum_{s=1}^{s(N)} S_N^{q-1} m_{s-1}^{\frac{-1}{q'}} \sum_{k \in I_{s,N}} \sum_{i \in B_s} |x_k(i)| \leq S_N^{q-1} \sum_{s=1}^{\infty} k_s m_{s-1}^{\frac{-1}{q'}}$$

The proof is now finished using the extra assumption on (m_s) .

<u>Proof of the main theorem</u>. Take $h(n) = \frac{\log(n)}{n}$, $n \ge 2$, h(1) = 1. This gives $H(n) \sim (\log(n))^2$ and, using that $\frac{p^2}{e^p} \le 2^{-p}$ (for p big enough) one gets $k_p \le e^{-p}$. Then it suffices to take $m_k = k^{2q'}e^{kq'}$ and $n_k = e^{k^2}$ which satisfy the assumptions in Theorem 2.1 and Theorem 3.1 to obtain an example where $X_q(\mathcal{F})$ is q-concave with respect $\ell^{\infty}(\ell^1)$ but not q-concave. . \Box

References

- [BS] O. Blasco, T. Signes q-concavity and q-Orlicz property on symmetric sequence spaces, Preprint.
- [Cre] J. Creekmore, Type and Cotype in Lorentz L_{pq} spaces, Indag. Math. 43 (1981) 145-152.
- [CT] B. Cuartero, M.A. Triana (p,q)-convexity in quasi-Banach lattice and applications, Studia Math. 84 (1986) 113-124.
- [DJT] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators. Cambridge University Press, 1995.
- [J] M. Junge, Comparing gaussian and Rademacher cotype for operators on the space of continuous functions. Studia Math., 118 (2) (1996) 101-115.
- [KMP] A. Kaminska, L. Maligranda, L.E. Persson Convexity, concavity, type and cotype of Lorentz spaces. Indad. Mathema. N.S., 9 (3) (1998) 367-382..
- [LT1] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Lecture Notes in Mathematics, vol. 338, Springer-Verlag (1973)
- [LT2] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, New York (1979).
- [M] B. Maurey, Type et cotype dans les éspaces munis de structures locales inconditionelles. École Polyt. Palaiseau, Sém. Maurey-Schwartz 1973/74, Exp. XXIV-XXV.
- [MP] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendentes et propriétés géométriques des éspaces de Banach, Studia Mathematica 58 (1976) 45-90.
- [SS] E. M. Semenov, A. M. Shteinberg, The Orlicz property of symmetric spaces. Soviet Math. Dokl. 42 (1991) 679-682.
- [T1] M. Talagrand, Cotype of operators from C(K). Invent. Math. 107 (1992) 1-40.
- [T2] M. Talagrand, Cotype and (q,1)-summing norm in a Banach space. Invent. Math. 110 (1992) 545-556.
- [T3] M. Talagrand, Orlicz property and cotype in symmetric sequences spaces. Isr. J. Math. 87 (1994) 181-192.

Address of the authors:

Oscar Blasco Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner, 50 E-46100 Burjassot (Valencia), Spain

O. BLASCO, T. SIGNES

Oscar.Blasco@uv.es

Teresa Signes Departamento de Análisis Matemático Universidad Complutense de Madrid 28040 Madrid, Spain teresass@eucmos.sim.ucm.es