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ABSTRACT. We give a general method for constructing symmetric
sequence spaces that for 1 < g < 2 satisfy a lower g-estimate but
fail to be g-concave and, for 2 < ¢ < oo have the ¢-Orlicz property
but fail to be g-concave. In particular this gives examples of spaces
with the 2-Orlicz property but without cotype 2.
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1. INTRODUCTION.

Let 1 < ¢ < 0o. A Banach lattice X is said to be g-concave if there
exists a constant C > 0 such that

(St el ),

for every choice of elements z,... ,x, in X.
A Banach lattice X is said to satisfy a lower ¢g-estimate if there exists

a constant C' > 0 so that, for every choice of elements z1,... ,z, in X,

(S’ <el( Sl

Obviously g-concavity implies lower g-estimate and both notions are

we have

the same when ¢ = 1. On the other hand, there are Banach lattices
that satisfy a lower g-estimate but fail to be g-concave (see [1, Prop.
3.1], [4, Ex. 1.£.19 and 1.£.20]).

Two related concepts from the theory of Banach spaces are the fol-
lowing;:

A Banach space X is said to have cotype ¢, 2 < g < o0, if there
exists a constant C' > 0 so that

(i el )" < o/olHiw)mkadt

for every choice of elements x1,...,x, in X, where r;, stands for the
Rademacher functions.

X is said to have the ¢-Orlicz property if the identity operator id :
X — X is (¢, 1)-summing. That is, if there exists a constant C' > 0
such that regardless of the choice of x1,... ,z, in X we have

n 1 n
(Z Hxﬂ&) "< C sup Zekka
k=1 lerl=1"k=1 X

Let us observe that every Banach space with cotype ¢ has the ¢-Orlicz

property, 2 < g < co. The converse was an open problem for some time
and was solved by Talagrand in [7] and [8]. Indeed, Talagrand in [§]
showed that if a Banach space has the ¢-Orlicz property for 2 < ¢ < oo
then it also has cotype ¢. Also, he proved in [7] that the situation for
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q = 2 is a bit different. He constructed an example with the 2-Orlicz
property but without cotype 2.
There are many connections between all these notions. The reader

is referred to [2] or [4] for the following chain of implications.

For 2 < ¢ < oo we have that
g-concavity = cotype q < ¢-Orlicz property < lower g-estimate.

The examples mentioned above show that the converse of the first
implication fails.

For ¢ = 2 we have that
2-concavity < cotype 2 = 2-Orlicz property = lower 2-estimate.

The converse of the two last implications fail. E. M. Semenov and
A. M. Shteinberg [6] showed that the Lorentz space Ls1(]0,1]) satis-
fies a lower 2-estimate but fails to have the 2-Orlicz property. As we
said before M. Talagrand in [7] constructed an example with the 2-
Orlicz property but without cotype 2. Moreover in [9] he was even able
to construct a counterexample in the setting of symmetric sequence

spaces.

The aim of this paper is to continue the study of the relationship be-
tween all this notions and to give a general method, which is inspired by
Talagrand’s techniques in [9], to construct symmetric sequence spaces
that satisfy a lower g-estimate but fail to be ¢g-concave, 1 < ¢ < 2, and
that have the ¢-Orlicz property but fail to be g-concave for 2 < g.

Let us recall that a symmetric sequence space (X, | - ||) is a Banach
space of sequences such that

1. If x € X and |y(i)] < |x(i)| for all i € N, then y € X and
[yl < {l]l-
2. If z € X and o € II(N), then zo € X and ||zo|| = ||z]|.

We shall consider the following method to construct symmetric se-
quence spaces generated by a family of sequences.
Let F be a family sequences in /., with the following properties:

(i) (Solid) If f € F and |g(¢)| < |f(7)], for all i € N, then g € F.
(ii) (Symmetric) If f € F and ¢ € II(N) then fo € F.
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(iii) (Bounded) There exists a constant C' > 0 such that
sup || fle., < C.
fer

In this case, it will be called a generating family.

Given 1 < ¢ < oo we consider X,(F) the space of sequences such
that

1
%] x, ) = sup (|z], |f]«) < oo
fer
where (z, f) means Y .o, x(i) f (7).
It is easy to see that X,(F) is a symmetric sequence space and
b — Xy(F) =l
with

! 1 !
Iz ]lenc (sup || Flle) " < [l < [l e, sup [ £
feF feF

Our main theorem can now be stated as follows.

Theorem 1.1. Let 1 < q < oo. There exists a generating family F
such that X,(F) satisfies a lower g-estimate but is not q-concave.

As a corollary we have that X, (F), for 2 < ¢ < oo, are examples
of spaces of cotype ¢ which are not g-concave and Xs(F) satisfies the

2-Orlicz property but is not of cotype 2.

2. FAMILIES GENERATED BY A FUNCTION

In this section we give the main construction for our families.

Let (ks)S2, be a strictly increasing sequence of natural numbers with
ko = k1 := 1 and let ()22, be a sequence in R with g = «;, such
that the sequence (ay/ks)2, is decreasing and

A
1 lim — = 0.
(1) Jim o
Step 1.
We start with a single function on N
) a,
h = k_SX[ksflyks)

@
||
N
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and the set of functions
H = {ho:0ocII(N)}.

By (1) we know that h € ¢,(N) and so H C ¢,(N). Observe also that
H is symmetric and bounded by as/ks.

Proposition 2.1. The following properties hold:

L. Zigks h(i) <> _yay for s > 2.
2. If W € H and A C N with card(A) < ks, s > 2, then

S

PRACES P

icA (=2
3. Let W € H and s > 0. Then, there exists A C N such that
card(A) = ks and ||h' x acl|e., < si1/ksit.
4. Let h' € H and s > 0. Then, there exist h} and hf functions on
N such that

card(supp hy) = ks,
h' = hi + hy with Qar1

h: < .
I <

Proof. 1) Let s > 2. Then

> h(i) Z (kp—hp_y )+ 2t Z—kﬁ— (ks—ky1+1) <

i<k s+1
3) Suppose that i’ = ho, o € TI(N), and let A = o7 '([1,k,]). If
i ¢ A then h'(i) = h(j) with j > ks (j = o(i)), hence W' (i) = h(j) <

aerl/kerl-
2) and 4) follows from 1) and 3), respectively. O

s

=2

Step 2.
For each m € N we consider the family:

COm(H):{ithj : hjEH, Cj€R+, iCle }
j=1 j=1

The family co,,(H) is symmetric, bounded by ay/ks.
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Let (m,)22; be a strictly increasing sequence of natural numbers,
my > 2. Then, for r € N, we define

gr:{f:N—ﬁRJr : fgisz@ WithngCOmg(H)}.
=0

Againgrgco(N) anngglgg2g-'-ggrggr+lg'---

Proposition 2.2. Letr € N, f € G, and s > 2. Then,
LY ea f(3) <370 oy for every A C N with card(A) < k.
2. There ezists A C N such that card(A) = ks and

||fXAc

oo —

< Zzzz Q¢ .
ks

3. There exist fi and fy functions on N such that

card(supp f1) = ks

f=rh+f2 with s
ol < S22

Proof. 1t suffices to show the result for functions in co,,(H) for a fixed

m € N.

1) is immediate. To prove 2) let f € co,,(H) C ¢,(N). Then there
exists i; € N such that f(i;) > f(i) for all i € N. We consider now
Ny = N\ {i1}. Since f € ¢,(Ny), then there exists iy € N; such that
f(iz) > f(i) for all i € N;. Hence we can find A = {iy,... ik, } such
that f(j) < f(z) if i € A and j € A. Therefore

kosup f(7) < D f(0) <) aw.
g =2

icA
3) follows from 2). O

The family G, is a generating family which is almost convex.

Lemma 2.3. Let r € N and let (f;)j<m, be functions in G,. Let &; €
R*, j=1,...,m,, such that 3, & =1. Then

% Z §ifj € G

Jj<my
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Proof. Since f; € G, it holds

fi < 22_6 Z Ve,5,570.5,5
=0

4
s<mf.

with hys; € H, Yes; > 0and Y 0 v, = 1 for all £,5. Hence

DTS SERCLID SR
£=0

Jj<my s < mﬁ

Jj<m,

and the point is that there are at most m‘"! terms in the last summa-

tion. |

Finally we glue the families G, as follows:

G={0<f<> nhifr€G 1203 =1}
r=1 r=1

The family G is again a generating family with the following convexity
property.

Lemma 2.4. Let (g¢)e<ny be a finite collection of functions in G and
let & € R, 0=1,... N, such that Y, & = 1. Then

1 N
gz&ge €g.
=1

PT’OOf. Let us write ge = Ziil ’Yﬂ,rfl,’r with fﬁ,r € grv Yer € R* and
o er =1forall ¢ < N. Welet Iy = [1, N]NN and for each r > 1

we set

gq/n: Z §€7€,rf€,'r and vy = Z 5[74,7“'

Lel,my]NIN Le[l,my]NIN
By Lemma 2.3 we have that ¢g. € 21,.G,.. On the other hand, if we fix
r and take s < r we can show that

(2) Z 6@7@,8][.&5 S 2wsg7~+1

@E(mr,mr_,_l]ﬂIN
where w, = Zze(mhmrmmN &ve,s- Indeed, for all s < r, f,; € G5 and
Gs C G, so that f; s € G411, by Lemma 2.3 we get (2). We take now

g;/ = Z Z 58’7[,5.](2,5 and 5r = Z Ws.

s<r Le(mp,mprp1]NIN s<r
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Then by Lemma 2.3 we have that ¢ € 49,G,.1, since 7 < m,. Now
observe that

ZVT+5 ZZ£€7€T—1
r=1

r=1 (=1
because
D= D> > Gs=) >, > &
r=1

r=1 s<r Ze(mr,mr+1]ﬁIN r=1 Ze(mr,mr+1}ﬂIN s<r
oo
= E E EVer-
r=1 fe(mr,N]ﬂIN
Therefore, using Lemma 2.3 one more time we know that the function

g = >_.,>19, + g, belongs to 8G. Now we are going to see that g =
SO &ge, so that ST &g € 8G. Indeed,

N o N 00
Z&ge = Z Zfﬂz,rfe,r = Z( Z Eeverfor + Z &W,rfe,r>
=1

r=1 /=1 r=1 ée[l,mr]ﬁIN ZE(mT,N]ﬁIN
= Z(Qf« + ) fﬂe,rfz,r>-
r=1 e (me, NNy
But
Z Z gﬁfw,rfﬁ,r = Z Z Z gﬁ’w,sff,s = Z g;,
r=1 fE(mT,N]ﬁIN r=1 Ee(mr,m”_l}ﬂ[N s<r r=1
Therefore,

N 00
Z&ge = Z 9r+ 9,
/=1 r=1

Our first result about concavity of these spaces is the following.
Theorem 2.5. Let 1 < g < co. Then, the space X,(G) is q-concave.

Proof Let xy,... ,zx be a finite number of elements in X,(G). We set

Ze  lze][* and & = szll‘l . Then ZE 1 &e=1
For each / take f, € G such that

el < 5 el /172D
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Hence,

Sq

IN

N
3 S el o], 17D qu/q’ &, /17D
=1
4 e :
= gSq_l > lw@) V1)l

=1 i=1
Using Holder’s inequality and Lemma 2.4 we have that >, [§0fi| €
8G. Now

515 35" 12(2 i) (S lehl)” < 25

This implies

(St < ()’

and the proof is Complete. O

Step 3. For each r > 1 we write

Ay
Fo={reg: fle <370}
Again F, C ¢,(N) and F, are generating families with F; C F5 but
now, for r > 2, F. & Fpi1.

Finally we define the generating family

—{o<r<Y i heFnz0Y =1}
r=1 r=1

We have to observe that the family § depends on the sequences
(ks)5Zos (as)52o and (m,)2.

3. ¢-ORLICZ PROPERTY AND LOWER ¢-ESTIMATE

In this section we prove under suitable conditions on § that the space
X,(F) satisfies a lower g-estimate for 1 < ¢ < oo and has the ¢-Orlicz
property for 2 < ¢ < oo (the reader should notice that this is stronger
only for ¢ = 2).

We begin with some lemmas to be used in the sequel. The first one

follows from Lemma 2.3.
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Lemma 3.1. Let r € N, let (f;)j<m, functions in F, and let {; € RY,
j=1,...,m,., such that ngmT & =1. Then

%Zgjfje}}.

j<my

From here on we will assume another property on the sequence

(s)520-

() There exists a constant C' > 1 such that Z oy < Cag for all s > 2.
=2

Lemma 3.2. Let s, » € N with s < r, let (f;)j<m,., be a collec-

tion of functions in Fs and let § € RY, j = 1,... ,my41, such that

D jemes & = 1. If the sequence ()32, satisfies (x), then there exists

As» €N with card(As,) = k. such that

1
X4, 55 Z &ifi € Frea
.]Smr«l»l

Proof. If r = s = 1 we only have to notice that 7, C F5. Assume that
r > 2. We define g = %ngmrﬂ & f;- If we show that g € G,;; and
that H%QXA;T
be finished.

By hypothesis f; € G, C G, C G,41 for all j < m,44, so by Lemma

2.3 g € G,4+1. On the other hand, by (2) in Proposition 2.2 and (x) we
can find A, C N with card(As,) = k, such that

le.. < . /k, for a set A, of integers then the proof will

T
< Dpmn < &
s~ Ck, — k,

I
CgXAg’T

Our next result shows a convexity property of the family §.

Theorem 3.3. Let (go)e<n a finite collection of functions in § given
by

o0
9 <> e fors
r=1

where fo, € Fr, vor € RT and > 07 vor =1 foralll < N. Let & € R
such that -, & = 1 and assume that the sequence (as)32, satisfies



g-CONCAVITY AND ¢-ORLICZ PROPERTY 11

(x). Then, there exists B, C N with card(B,) < rk,, r > 1, such that
the functions defined by
r(£) )

fi= x5z, S Verfer+ > Veafer
r=1

r=r(£)+1

satisfy
1N
!/

— €

3C ; §f €F
where r({) is chosen so that my@ < € < My(g)41.
Proof. Write Iy = [1, N] NN and set

g; = Z g@f)/@,rff,r and Vp = Z 5@’7@,1"-
Lel,m,]NIN Le[l,my]NIN
Then by Lemma 3.1 we have that ¢, € 2v,.F,.
Fixr € Nand let s < r. We consider the functions (f¢,s)ec(m, myi1jniy

Fs. Then, by Lemma 3.2 we know that there exists A;, C N with
card(As,) = k, such that

XA;T Z 5@’7@,3][@,5 € 2C"ws-,'t;drl

L€(mpr,mrg1]NIN
where w, = Zee(mr,mr+1]ﬂIN Eves- Set B, = U._; A, ., and note that
card(B,) < rk,. Since r < m,, Lemma 3.1 gives that the function
g=xs: >, Y. Evesfes <) xag, > mstes
s<r 0€(myp,mri1]NIN s<r te(mympi1]NIy
belongs to 4C'§, F, 41, where 6§, = > __ w,. Therefore, applying Lemma
3.1 again we see that the function B

g= igi +9;
r=1

belongs to 8CF. Observe also that > 7, v, + 0, = 1.

Now we are going to define functions f; such that ), & f; = g
Let us fix £ € {mq,..., N}, then there exist a unique ' such that
m, < £ < m,y1. We denote by r(¢) this unique r and define the

function
o0

()
fo= XB¢, Zw,rfe,r + Z Ve fer-
r=1

r=r({)+1
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For ¢ € {1,... ,my}, we define (corresponding to r(¢) = 0) the function
=00 Yerfor. Thus f; can also be expressed as

fé = nyf,'rff,rhz,r
r=1

where hy, = 1 it £ < m, and hy, = XB, if m, < £. The same proof
as in Lemma 2.4 gives that Zévzl &f) =g € 8CF. O

We need also some general lemmas.

Lemma 3.4. Let F be a generating family and let 1 < g < oo. Assume
that (x¢)e<n is a finite collection of elements in X,(F) and B C N.
Then,

N N
Z |lzex sl < card(B) sup Z EgQIZH.
=1

— lee|=1 /=1

Proof. Set ¢ = sup sz || f|l¢..- Since M| zlon < 2] < V) \2||gy, We

have
N N N
Yollzexsll < 30D lw@ICYT =N fx(i)|CM
=1 (=1 ieB i€B (=1
N N
< card(B) sup ZeﬂgH CY4 < card(B) sup ZG[I@H

leel =11 boo leel=1""p—1

which yields the result. |

Lemma 3.5. Let F be a generating family, & € RT, £ =1,... N,
and let (fe)e<n be a finite collection of functions in F such that Y, §efr €
F.

a) If 1 < g < oo, then

N N
Z<|$e|, Ve < HZ |xg|H
=1 =1

b) If 2 < q < oo, then

N N
Zdzf’a '\/I £€f£> < V2 sup ZE@Z‘@H.

=1 lee|=1"",—7
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Proof. Since Zzg ~ &efe € F, by Holder’s inequality we get

g:ﬂa?d Ve < <<Z |2¢| ) \ é&ﬂ > < H(é |xe|q)§

=1
. If 1 < g < oo then

N 1 N
| )| < [l
=1 =1

Hence a) is true. If ¢ > 2 by Kintchine’s inequality (see [2, 1.10]) we
have that there exists a constant B; = v/2 such that for all i € N

(i |xz(i)|q>; S(i\f: |$e(z)|2>21’ =B /l‘i T‘g(t)l’g(i))dt,
=1 /=1 0 "p—1

~

Therefore,
N 1. N

S (o, V&ef < V2 [ |30 retyantd re(t)a|
=1 0 V=1 S T

From this we get b) and the proof is complete. O

Lemma 3.6. Let F be a generating family and let 1 < q¢ < 0co. Sup-
pose that ()22, is an increasing sequence of real numbers and that
{z1,...,xN} is a finite collection of elements in X,(F) such that the
sequence (||zel|)e<n is decreasing. Let (C,.),>1 be subsets of N. Con-
sider, for r > 1, the subsets of N

Hy ={t:1<L<N, my <l <mypy and |zl < npllzexe, |}

and let H = U,>1H,. Then,

> el < (Z Jell?)*

leH

L
Py

N 00
nycard(C,.)
s [0 | (o *7):

Proof. We assume that sup.,_; || Zévzl eexel| = 1. By Lemma 3.4 and
the definition of H, we know that

YNzl <0 ) llzexe, || < npcard(C).

teH, ¢cH,
Thus

19 < q—1 ( ) < qg—1 )
>l < (max lz[|"™) >l < (max ||z ||"")n,card(C:)

leH, (cH,
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On the other hand, since (||x/||)¢<n is decreasing we get

N N
o < Sl _ S e
< = 20

my

]

1
7

(et el
Y,

S
Py

Z ||l z||? < (Z [EAk ) (Z mcard )

teH

if ¢ € H, and so ||z,]|7" < . Whence we conclude that

OJ

We are now ready to study the ¢-Orlicz property and a lower g¢-
estimate of the space X, (F).

Theorem 3.7. Let (n,)22, be an increasing sequence of real numbers
with n, > 2. Assume that the sequence (a,)2, satisfies (x) and that
the sequences (1,)2,, (k)2 and (m,)2, satisfy

(3) Z TT/T T

Then if 1 < q < oo the space Xq(S) satisfies a lower q-estimate. Fur-

thermore if 2 < q < oo the space X, () has the q-Orlicz property.

Proof. Let N € N and let (z/);<y a collection of elements in X, (F).
We assume that the sequence (||z¢||)e<n is decreasing. We set S7 =
Yoy llzel|7 and & = 15 Hence Yo, & = 1.

By definition of the norm in X, (§), for each ¢ there exists a function
g¢ € § such that

4
(4) lzell < 5 {lel, g/

llzell®

If we apply Theorem 3.3 to the functions g, and the numbers &, = -,
then we can find functions f; so that Zgzlfg fi € 8CF and subsets
B, C N with card(B,)< rk,.

In order to estimate S? we split it as

ZHWH‘I—lexell‘“rZII:rzllq Yo el

teH (ZHU{L,....ma}
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where H = U,>1H, and
H,={:1<(< N, m, <l<muyy and |lz|| < n.l|zexs, ||}

If ¢ € H then by Lemma 3.6 we have

N o] N
N1k, .
e[| < SY9 sup H 62@“( ; > <TS?" sup H €0y ||
2 2wl g, 2

tcH leel=1 leel=1""p—1

where T' := > "7, % On the other hand, if ¢ € {1,... ,m;} then
ge < f; and hence

ZHfEellq <3 ZHMH" el e ZHfEellq e, V2.

Finally if we assume that ¢ ¢ H U {1,... ,m;}, then there exists a
number 7(¢) > 1 such that m, ) < £ < m, )41 and by the definition of
H,. we have for n, > 2

zell _ el
|zexB, |l < —— < ——
© T (6) 2

. Whence by (4) we have

1 3 1 /

el = Zllzel = Sllaell < (lzel, ¥/90) = llzexs,

(e, ) = el V0 < (wexas, | Va0
(e, /7L < (leds /T

where we have used the fact that f;(i) > 9exBe,, (4) if i € By, and

fii) = er(z)ﬂ Yerfop = 0ifi € B,). It follows from these relations
that

IN

Yo et < 4 Yo ezl /7

ngU{l,...,ml} ZQHU{I,...,ml}

N
Y "zl |zl /1)
(=1

IN
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Thus

mi 4 N - )
dolldlt+ D wlt < (§+4)Z\|Jie\|q N|wel, ¥/ 17)
/=1 /=1

¢¢HU{L,... m1}

16 < , ,
= ?qu_l & |z, /1))
=1

= Do ) (lel, VEf2)-
3

(=1

Assume that 1 < ¢ < co. Then, by (a) in Lemma 3.5, we get

’ N N
16 ¥/
6 v8c Z|xg|H+TSq’1 sup Zeww”.
=1

3 lee|=1 /=1

S1 < Sat

Therefore

(i o) < (AVEC ”’)Hg |

and the space X, (F) satisfies a lower g-estimate.
If 2 < ¢ < oo by (b) in Lemma 3.5 we have

ST < (16 380\/§+T)Sq1 sup

|5€|:1 /=1

€g$gH

and hence the space X,(§) has the ¢-Orlicz property. O

4. g-CONCAVITY

In this section we show that the space X (§) is not g-concave if the
family § satisfies some further conditions. In order to do this we need
to introduce another increasing sequence of natural numbers (n,)2,
with ny = 1.

Again we need some lemmas.

Lemma 4.1. Let s, r € N with r < s. Let (ns)2, be an increasing
sequence of natural numbers, ny = 1, such that ng < kgyq1 for every
s > 1, and assume that the sequence (o), satisfies (x). Then for

every function f € F, there exists a pair of functions f1 and fs such
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n C
d <2m’k, and ) < ag (1= + )
card(suppfi) m,rs an ;fz Os+1 Toin + 9s
Proof. Since f € G, we can assume that
/= ZQ D Gl
j<mt
where h;, € H, (e € R and 3., . (o= 1forall £. We know that for
each h;, € H we can find h}, and b, such that h;, = h’;, + h7,, with
card(supp I’ ,) = ks and ||h” e < zsﬂ Therefore we can decompose
fas f=fi+ fo where
22 D Gl
]<m

and

224 DG+ Y2 Gahya

j<m. (=s+1  j<mi
Now, the support of f; has at most 2k,m; points. Indeed, since m; > 2
and (ms)jil is a strictly increasing sequence we have that

S

St < (30 = miyr < 2 =t

my

N[

Therefore )

card(supp f1) <k, Y mi < 2k,m?.
/=0

On the other hand, by > 1 A, (i) < n.3*, ne < keyy and (1) in

- s+1

Proposition 2.1,

Ng s+1
S0 Sy 3 2 (3
i=1 kst l=s+1 j=2
. Finally, by (%) we get
Z fa(i) < Oés+1 +Cag127°
s+1
and conclude the proof of the lemma. O

As a consequence we have:
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Lemma 4.2. Let s, r € N withr <'s, and let (ns)32, be an increasing
sequence of natural numbers with ny = 1, such that ng < kg1 for every
s > 1. Finally assume that the sequence (o), satisfies (x). If (fr)i_,
are functions in F, and v, € RY so that Y, o, v = 1, then there exist
f"and " functions of § so that B

Z’Wfr:f/_l'fﬂ
r=1

with

s ng . C

card(suppf’) < 2k, <Z mi) and Z (i) < %H( s _>.
r=1 i=1

The new assumption on the sequence (a;)3, that will be needed is

the following:

(#x) There exists a constant K > 0 such that % < K for all s > 2.

Proposition 4.3. Let (ns)22, be a 2-lacunary sequence of natural num-
bers, i.e. 2ngs < ngi1, ny = 1, such that ks < ng < kg1 and assume
that the sequence (as)22,, satisfies (xx). Let 7 > 0 be a fized integer,
1 < g < o0 and let x and y be the vectors belonging to X,(F) defined
by

T

1
xr = E I ————
%//Oé_s\q/k_SX[k8717kS)

s=2

T

1
5=2 WXMS—LTLS) .

Then, there exists a finite number of permutations of the setN, {01, ... ,

and Yy =

on}, such that if we set x; = xo; then

N
1
(5) N ng(z) <2(2K% ' 4+ 1)y1(i), for alli € N.
=1
Proof. Let N=n, —n,_; and let o € II(N) be defined as

olns—1)=mns1, s>2,

o(i) =1i+1, otherwise.
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We take z; = z0?, j = 1,...,N. Then for i € [ns_1,ns), s > 2, we
have
N
1 1 N
10 £ 35 0)(el e
j = _
N = N e, Ng — Ng_1
2 ) .
= gﬁ:7—< BEELVIESDY ﬂUD
sl <<k ks <j<ns
_ 9 ag*llks (ks —ns1) + s+11ks+ (s — ks)
B Ng —Ns—1 .

Let s > 2 and i € [ns_1,ns). Since ks < ng < keyq, ng > 1,
Ng — Ng_q > %ns and (o), satisfies (x*) we conclude that
ks (nsg —ns_1) 1 >
ns—l)

N
1
=3 "ali) < +
v o0 (=) ol (-

2(o
< 2( %1)+ ! )
(o

s+1 (s — Wgy1ksi
2K41

2 ):2@Kfﬁ+nwu)

q 1
s+1ns Qg1 Ms

The main theorem of this section is the following:

Theorem 4.4. Let 1 < ¢ < 0o and let (ng)2, be a sequence of natural
numbers with ny = 1. Assume that the sequence (as), satisfies (x)
and (xx), and that the sequences (ns)2, and (ks)2, are 2-lacunary
and satisfy that ks < ng < key1 for all s > 1. Assume further that the

sequences (ks)2,, (ng)2, and (m,)2, satisfy

Z%/ < oo and Z 1ms)<oo.
s=1 s+1

Then, the space X,(F) fails to be q-concave.

Proof. Let 7 > 0 be a fixed integer and let z, y and z;, 7 =1,... , N,
be the vectors defined in Proposition 4.3. We know that X,(§) is a

rearrangement invariant space, h € § and (k;)22, is a lacunary sequenc.
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Therefore ||z;|| = ||z|| for all j =1,..., N and

ot > (o, 7y = 3" il 5 () 5 2 )

Thus,

N

N
> llell? = Nlle]? = 2 (r = 1)
j=1

In order to show that

(ji_v;nxjuqf /H(ﬁ;w)é

is arbitrarily large we are going to find an upper bound for the de-
nominator in the last expression. By Proposition 4.3 we know that
~ > jen (i) < 22K 4+1)y(i) for all i € N, and hence it is enough
to estimate | y||.

Let f € § and assume that f < > 7. f. with f. € ., 3 > 0 and
ZQl v = 1. Then

(yl, V) = Zly(i)l V) <Y I(s) + 11(s) + 11I(s)

S=

where for s > 2

/

q

1 s
I(s) = ———= Ve fr(9),
as+1 \q/n_s n5§<ns rz:;

1 /
U(S) = vV ’Ys+1fs+1(i)7
Oés—l—l\q/m ns§<ns

1
II(s) = ———= (f Vo fr (9).
Oés—i—l\q/ln/_s ns§<ns 7"225‘;2
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We shall first estimate I1(s). We observe that Holder’s inequality and
(1) in Proposition 2.2 give us

1 LEy 1 ;
[1(s) € ———=> {ver1fori(i) < ————=1{/n"% 4

as+1

1/q
stJrl

- %l/ Ost1

’ ! CO[S ’ !
I1(s) < /st %/ o = s+1 V.
s+1

Thus, again, using Hélder’s inequality, we have

ZII(S) < %Z Vst < VCr—1¢
s=2 s=2

Z%H < YC¥r—1.
s=2

To bound I11(s), we observe that by Holder’s inequality

1 s n
I1I(s) < —— o/n; @ Soli) < (2

=1 r>s+2

where in the last step we used that || f,||,, < 3% < z—ill for r > s+ 2.

= kg —

Finally, we shall estimate I(s). Let us fix s > 2. By Lemma 4.2 we
can find functions f" and f” such that >~°_, v.f, = [+ f” with
card(suppf') < 2k, (ZS: ms> and i 170) < agyq <& + g)
g T 121 — ks_l’_l 28

r=1
This allows us to split I(s) as I(s) < IV (s) 4+ V(s) for all s > 2 where

! )RRL0

V(s)= ——
(5) '/_Oéerl 9N o e,

and

1 /
V(s) = ——— (7).
O = Gy, o, VIO



22 O. BLASCO, T. SIGNES

By Holder’s inequality,

1 LA
IV(s) < WZ \/ T @) X suppyp (2)

mw(ZXsuppf )(Zf )

1
7

1
7

IN

m(card suppf’)) (Zf >

Since card(suppf’) < 2ks(>°_, m?), (*), (1) in Proposition 2.2 yields

IV (s) < \/2]€ ODRELIR D WALLTIN, 1Y/ of LAV L)

Uz (O PEE | ng

On the other hand, Hélder’s inequality and the fact that > !, f”(4)
< aei(p + 5) imply

It follows from these relations that

Iyl V) < %’FOV’T—IHZV SHHFZM

+ %%i q kS(Zr:I mr)‘

N

are finite we have

v_

(lyl, V) <W\/?+2A+21/, +V2 V0B < V0T —1+8
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where S is a constant independent of 7. Putting this altogether we

have
1
(S lleali)™ LYN(r— 1)
H (ZN |x.|q>é T Y2RK T+ )YN(YCYTr —1+5)
j=11Tj
B (tr—1)
202K T+ 1)(YC¥Yr —1+8)

This expression goes to infinity as 7 goes to infinity. |

Proof of the Theorem 1.1. Let 1 < ¢ < oo and take (k5)2, to be
the sequence of natural numbers defined by

k0:k1:17

fogi1 = 32s+252(E[q’}+1) E1t+s(Bld1+1)

and the sequences

) ks
Qg = 3257 (aO = 9), mg = (328k5)E[q]+17 ns = 38, ng = 3_Jsr1

for all s > 1. These sequences satisfy the assumptions in Theorem 3.7
and in Theorem 4.4, hence X, (§) satisfies a lower g-estimate and is not
g-concave. []
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