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If ¢ is a positive function defined ifd, 1) and0 < p < oo, we consider the spac(p, ¢) which consists
of all functions f analytic in the unit disd for which the integral means of the derivativd, (r, f') =

; 1/ . . .
<i S !f/(re“’)\”d@ " 0 << 1,satisfyM,(r, f') = O(¢(r)), asr — 1. In this paper, for any given

p € (0,1), we characterize the functios among a certain class of weight functions, to be able to embedd
L(p, ¢) into classical function spaces. These results complement other previously obtained by the authors for
p=>1
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1 Introduction.

LetD denote the unitdis¢z € C: |z| < 1}. If 0 < r < 1 andg is a function which is analytic ifd, we set

1 T P 1/p
Mp(T,g) = (27(/ ’g(rel )| d9> , 0<p<oo,

Moo (r, 9) = maxg(2)].
For 0 < p < oo the Hardy spacéf? consists of those functiong analytic inDD, for which

||9HHP = Ssup Mp(rvg) < 0.
o<r<1

We refer to [8] and [9] for the theory of Hardy spaces.

In this paper we shall be dealing with functiofisanalytic inD, for which the integral mean&/,,(r, f’) are
dominated by a certain weight functigrir). Namely, if0 < p < co and¢ is a non-negative function defined in
[0,1), we definel(p, ¢) as the space of all functiorfswhich are analytic ifD and satisfy

M,(r, f') = O(¢(r)), asr— 1.

For1l < p < oo, these spaces were extensively studied by the authors in [4]. In this paper we will focus our
attention in the other values of 0 < p < 1. Our aim is characterizing those “natural” functioh$or which
the space (p, ) is embedded into classical function spaces.

A well known result of Hardy and Littlewood (see Theorem 5.12 of [8]) asserts thatkifp < 1 and¢
is bounded therC(p, ¢) C HY, whereq = p/(1 — p). Moreover, for each value gf, the exponent is best
possible. Consequently, we shall not consider this case. Also, we shall assume without loss of generality that the
function ¢ is increasing and continuous. Certainly, some restriction on the growthisofieeded if we expect to
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2 0. Blasco, D. Girela, and M.A. Bfquez: Embedding of analytic function spaces

be able to embed the spatép, ¢) into some classical spaces. We shall assumegttatL! ((0,1)). This and
the fact thatp is increasing imply that

(1-r)p(r) — 0, asr— 1. Q)

Because of some technical reasons we shall also assume that the funetioh— r)¢(r) is decreasing ifo, 1).
Summarizing, throughout this paper we shall consider the cl&Bsvhich consists of those functions
¢ :[0,1) — [0, 00) which are increasing and continuous, and satisfy

lim 6(r) =co, d€L'((0,1) and (1-r)o(r) |, asr 1 1.

The elements afAF will be called admissible functions. Using the fact thhat-r)¢(r) is a decreasing function,
we readily obtain the following result.

Lemmal.lIf ¢ € AF theng (H2) < 2¢(r), forall r € (0,1).

2 EmbeddingL(p, ¢) into BP.
It is easy to check (see e. g. p. 898 of [4]) that,
if p > 1and¢ € AF, thenL(p,¢) C HP. 2

This is not true forp < 1. Indeed, if0 < p < 1 and

f(2) = ! zeD,

(1 B Z)l/P (log 132)1/17,

then it is not difficult to prove (use for instance the asymptotic expressions (2.33) in p. 192 of Vol. | of [18]) that
f € L(p, ¢) with

1
o(r) = 7p ro <71 <L

(I1—7) (1og ﬁr)

(hencep € AF) but f ¢ HP.
For 0 < p < 1, let B? be the “containing Banach space” or “Banach envelopeH#éf that is, the space of
all analytic functionsf in D such that

/1(1 — r)%_le(r, f)dr < .
0

By Theorem 5.11 of [8] withy = A = 1, we see thati? C BP for all p € (0, 1), a result which was originally
proved by Hardy and Littlewood ([11], p. 412). Duren, Romberg and Shields [7] provedithé dense in

BP? and that the two spaces have the same continuous linear functionals. Our first result is a substitute of (2) for
p <1l

Theorem 2.1 1f 0 < p < 1and¢ € AF, thenL(p, o) C BP.

Proof. Takef € L(p,¢). Adding a positive constant to if necessary, we may assume tidj,(r, f') <
K¢(r) forallr € (0,1). Using Theorem 5.11 of [8] with = A = 1, we obtain

1
/ (L—r)s 2Mi(rs, [')dr < KMy(s, [') < Ké(s), 0<s<L. 3)
0
Now,

1
|f(re?)| < \f(0)|—|—/ If'(sre'®)|ds, 6eR, 0<r<1,
0
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and, hence,

1
Ml(r,f)g\f(0)|—|—/0 Mi(rs, f'Yds, 0<r<1. 4

Then, using (4), Fubini’s theorem, (3) and the fact that L' ((0, 1)), we obtain
1 . 1 . 1
/ (1=r)p " 2My(r, f)dr < K1+/ (1—r)r2/ M (rs, ') ds dr
0 0 0

1 1 1
:K1+/ / (177")%_2M1(T5,f')drds§K1+K2/ @(s)ds < o0.
o Jo 0

Hence,f € BP. O

Let us remark that here and all over the paper we shall be using the conventiéh thiaf . . . , denote positive
constants (which may depend upany, ¢, w, f, ... but not onr, t, s, orn), not necessarily the same at different
occurrences.

3 EmbeddingL(p, ¢) into HY, p < q < oc.
We start this section finding, for any givere [p, oo), a condition onp which implies thatZ(p, ¢) C HY.

Theorem 3.1 Suppose thal < p < 1and¢ € AF. If p < g < ocoande(r) (1 — r)l_% € L7((0,1)), then
L(p, o) C HT.

Before embarking into the proof, let us introduce another family of spaces0 kop < oo, the space of
Dirichlet typeD}I;1 consists of all functiong which are analytic ifD and satisfy

[y ir @ dedy < o
D

The spaceg?fj_1 are closely related to Hardy spaces. Indeed, a direct calculation with power series shows that
H? = D?. A classical result of Littlewood and Paley [14] (see also [15]) asserts thatdf p < oo then
H? C D]ffl. This result can be proved by Riesz-Thorin interpolation. On the other hand, we have

Dy ,CHP, 0<p<2 (5)

For1 < p < 2 this inclusion can also be proved by interpolation, since the incluBipnC H! is trivial.
Vinogradov ([16], Lemma 1.4) gave a proof of the inclusion fox p < 1.

Our proof of Theorem 3.1 will be based on (5). Actually, we shall use the following result which follows from
(5) using the closed graph theorem.

Proposition A If 0 < p < 2 then there exists a positive constdny, which only depends am such that

1% < Kp (If(O)I” + /D(l — PP ()P dwdy) ; (6)

foreveryf € D) _,.

We shall use also the following result, due essentially to Hardy and Littlewood, which can be proved by
modifying the proof of Theorem 5.9 in [8].

Proposition B For 0 < p < ¢ < oo, there exists a constad{,, ,, depending only op andg, such that for
each analytic functionf in D and eachr € (0,1) we have

M,(r, f) < KpgM, <1—2H~f) (1o rih .
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4 0. Blasco, D. Girela, and M.A. Bfquez: Embedding of analytic function spaces

Proof of Theorem 3.1 . Takef € L(p,®). Assume, without loss of generality, tha, (r, f') < K¢(r),
0<r<l.

Suppose first thas < ¢ < 2. Using Proposition A, Proposition B, the fact thae L(p, ¢), Lemma 1.1 and
the monotony of the functios and of the functiort — 1/(1 — ¢) we deduce that

My(r, f)T <K <f(0)|q + /01(1 - S)qqu(rs,f’)qu)

8

Sincegp(r) (1 — r)l_ﬁ € L7((0,1)), we deduce thatup,_, ., My(r, f) < oo, thatis,f € H.

To deal with the case < ¢ < oo we use duality. Ley’ be the exponent conjugate gfthatis,; + ;; = 1.
Take a polynomial. Takingg = oo andp = A = ¢’ in Theorem 5.11 of [8] and using the closed graph theorem,
we see that

1 ) 1/q
( / Moo (r,g)? dr> < Cllgll o ©)
0

Since2 < ¢, we have that(r)(1 — r)l‘% € L?((0,1)) and then, using the case just proved, we deduce that
f € H?. Hence,f has a finite radial limitf (¢*?) for aimost every). We have,

[ e - sonaenrg| 2| [ [ s

< 2/ My (r, fYMoo (1, g)dr.
0

Then, using Proposition B and Lemma 1.1 as above, the facifthatC(p, ¢), Holder’s inequality, (9) and the
hypothesmL e L((0,1)), we obtain
(1-

|/ o)~ F(0)) a(c) o

(10)

<K/ (1—7) %7 Mol gy
¢(r)
gK/O WMOO(WW (11)

IN

w(f (729) @) ([ a)

q 1/q
_‘“;) dr> Il 20

IN
~
N
:\H
N
_
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with K independent of. By duality, this shows thaf € H?. This finishes the proof for all values of [

Our next goal is to prove that the converse of Theorem 3.1 is true if we impose to the admissible firaction
certain natural regularity condition.

Definition 3.2 Given ¢ € AF, we definew, : [0,1) — [0,00) by we(0) = 0 andwy(t) = to(1 — t),
0 <t < 1. Hence,
we(l—r)

, O0<r<l1.
1—r "

o(r) =
Recall that if¢p € AF then(l —r)¢(r) | 0, asr 1 1. Then it follows easily that, is continuous and
increasing ino, 1).
Definition 3.3 Letw : [0,1) — [0,00) be a continuous function with(0) = 0.

(i) We say thatv satisfies the Dini condition, or that is a Dini weight, if there exists a positive constdfit

such that
*w(t)
TdtSKu}(s), 0<s< 1 (12)
0
(i) If «a > 0,we say that satisfies the conditiob,,, or thatw is ab,-weight, if there exists a positive constant
K such that
1
/ w) < k9 gos<cn (13)
s ta+1 e

Dini weights and,,-weights show up in a natural way in many questions concerning spaces of analytic func-
tions (see, e. 9., [2], [3], [4], [5], [6], [10], [13]).

Definition 3.4 For 0 < p < 1, we shall say that a functiop € AF satisfies the conditioty), if wg satisfies
the Dini condition and the conditioy,.

Interesting examples of admissible functions which satisfy the conditjcare given next (see Proposition 1.2
of [2]).

B8
Example 351f 0 < a < 1,8 > 0and¢(r) = W (log1 r) , (ro < r < 1)theng € AF and
satisfies the conditio, for everyp € (0,1).

We shall prove the following resuilt.
Theorem 3.6 Suppose thal < p < 1,p < g < coand¢ € AF. If ¢ satisfies the condition, then the
following statements are equivalent:

() L(p,¢) C H.
(i) ¢(r)(1—r)'"% € L1((0,1)).

The implication (ii)= (i) follows from Theorem 3.1. Several definitions and results will be needed to prove
the other implication.

Definition 3.7 If 0 < p <1and¢ € AF, we define

=
where,§; =2~ J, 5 > 0. Define also
/p
L)t 1
b = e’ = 1. 1
) </o Q-7+t t » O<r< (15)
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6 0. Blasco, D. Girela, and M.A. Bfquez: Embedding of analytic function spaces

Notice that the series in (14) converges uniformly on each compact subBeand, therefore, it defines a
function which is analytic irD.

Now, we have
o(r) < K®,(r), 0<r<l. (16)

Indeed, bearing in mind thatis increasing, the definitions and the fact that 1, we have

147 1/p 1—p 1/p
2 2 2
o(r) < <1—7‘/r ¢(t)Pdt> :(1_7“/1; ¢(1—t)17dt>

1/p 1/p
1—7r P 1—r P
_ < 2 / w(t) dt) <K (/ Wﬁ) < K®,(r).
1—1p 1 tp Lor tP ¢

The other inequality holds if and only ¢f satisfies the conditiot,:

Proposition 3.8 Let 0 < p < 1 and ¢ € AF. The following statements are equivalent:
(i) ¢ satisfies the conditio@,,.
(i) There exists a positive constafitsuch that

O,(r) < Ko(r), 0<r<l. a7)

Proof. For simplicity, writev for w,. Notice tha2(1 —r) > (1 —r +1¢),if 0 <t <1 —r, and then

1 1—r w(t)p 1-r (.A}(t)p
t< K _ PNt < KPP L 18
(1_T)p/" t "= 0 t(l—r+t)pd <SK®(r), 0<r< (18)

Also, sincel — r +t < 2t wheneverl —r <t < 1, we have

1 1
w(t)P w(t)P
< K _— < K®P 1. 1
/1—r tptl it = 1 t(L—r+2t)P it < K@y, 0<r< (19)

Using (18) and (19), we easily deduce that &9 (i).
The implication (i) = (ii) follows using that

() < E /H “pt(t) dt + /1 W) .
0 1

“(1-r _, trtl

Next, for an admissible functios satisfying the conditio,,, we shall prove that the functicé,  belongs
to the space&(p, ¢). This fact will be basic to prove the implication @#> (ii) in Theorem 3.6.
Proposition 3.9 Let 0 < p < 1and¢ € AF. If ¢ satisfies the conditio6, thenG,, 4 € L(p, ¢).

Proof. Writew for wg. Then,
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and, hence we have, for< r < 1,

> g do
j=1 -
SKpr(dj)/ ‘1 — r 6“9|p+1 = sz |p (20)
j:l -n 1+6
<K j J"Pl)'
Z 1—|—(5 —r)P 21 1—|—6 —r)P
Now,
1 1
< . )
5‘71,p(1+§j _r)p = tl_p(l—l-t—r)?” te [5J+17§J]7
and, sincé“i—t) is decreasing,
wP(6; wP(t
o< e )
J
Then 5
P . A J P
W ()0 = 0y01) _ K[ ) 4 i1,
6j(1+6j—r)1’ Sia1 t(l—l—t—’l")p

which, using (20) and Proposition 3.8, implies
MZE(r, G, )<K/1wp(t)dt:K<I>p(r)<K¢p(r) 0<r<l1
PRGOS = ) (Lt — )P Py = ’ ‘
Hence G, 4 € L(p, ¢). O

Proof of Theorem 3.6 . It only remains to prove the implication (B> (ii). So, suppose thdt < p < 1,
p < ¢ < o0, ¢ € AF satisfies the conditiof’, and L(p, ¢) C H9. For simplicity, writew for wg andG for
Gp.o-

Sinceg satisfies the conditiot',,, using Proposition 3.9 we deduce tifatce H? and then, using the Faj
Riesz inequality (see Theorem 3.13 of [8]) we obtain

/1 G(r)dr < 0. (21)
0

Now, bearing in mind the definition @ and the fact the functioh— @ is decreasing, we see that

> —4j) ! w(t) dt
> —_— 1. (22
1—7“—1—5 1—r+5)/p Z(g 1—r+(5 1/;7—/0 (l—l—t—r)l/pt’ 0<r< (22)

J:1

Then, using thab is increasing, we have

/01 G(r)dr > /01 </01 (1+L;(t)r)1/P ?)q dr
- wrime) o= [ (] wiime) o
>K/ (/étpl-lrlt) ds-K/ (1/p l)qu7
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8 0. Blasco, D. Girela, and M.A. Bfquez: Embedding of analytic function spaces

which, together with (21), shows thats) (- — 1) € L% ((0,1)). Clearly, this implies thats2 € L ((0,1))

sl/P

or, equivalently, thai(r)(1 — r)' "% € L9 ((0,1)). O

Let us close this section noticing that the conditipr: co is needed in Theorem 3.1 and in Theorem 3.6.
Indeed, we have already remarked thab i p < 1 and ¢ > 0 then there exists a functioji which is analytic
in Dwith f’ € HP such thatf ¢ HT™57%¢ (hence, f ¢ H). Actually, we can say even more.

Recall that if f is an analytic function irD then f is said to be a Bloch function if

sup(1 — [2[*)] f'(2)] < oo,
zeD

and it is said to be a normal function in the sense of Lehto and Virtanen [12] if

2y 1'(2)]
TG <
The space of all Bloch functions will be denoted Byand A will stand for the class of all normal analytic
functions inD. We refer to [1] for the theory of Bloch functions and normal functions. Notice &t C B C
N. Using Theorem 5.9 of [8] we see that for gmy (0, 1) there exists a functiorf which is analytic inD with
f' € H? but f ¢ B. Aresult of Yamashita [17] implies the following stronger result which should be compared
with Theorem 1.3 of [4].

Theorem A There exists a functiorf which is analytic inD with f’ € H? for all p € (0,1) but such thatf
is not a normal function.

4 EmbeddingL(p, ¢) into B4, p < q < 1.

We can prove the following result.

Theorem 4.1 Suppose thall < p < ¢ < 1 and¢ € AF. If ¢ satisfies that(r) (1 — r)
thenL(p, ¢) C BY.

The proof of Theorem 4.1 follows the lines of that of Theorem 2.1, taking into account Proposition B. We
omit the details.

Q=
=

e L' ((0,1)),

Next we shall see that the converse is trug fatisfies the conditiod’,.

Theorem 4.2 Suppose thal < p < ¢ < 1and¢ € AF. If ¢ satisfies the conditiot, then the following
statements are equivalent:

() L(p,¢) C B,

(i) ¢(r)(1—r)a~5 € L ((0,1)).

Proof. We only have to prove the implication & (ii). So, assume (i). Once more, writefor w, andG
for Gp. 6.
Using Proposition 3.9, we deduce tl@ate B9.

Observe that, if1 — z)_T1 =3 o mz", then

G(rz) = Zvnr" (Z W) 2", 0<r<l, |z| <1,
n=0

= A+ §;)p

and then, using Hardy’s inequality (see p. 48 of [8]), we obtain

2 e o[ w(d;)
Zn—klr (ZW)<KM1(T7G)7 0<r<l. (23)

n=0 j=1
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Notice that

> ,7’” > > PYTL r "
ny @l) . 24
ntl’ (Z(Hé +") Z:: 1+5)% <§n+1<1+5j> ) (24)

n=0

. 1_1
Now, sincey,, = (n+ 1)» ", we see that

oo n 1—1
Tn r r ? 1-1
~|1-— ~(1+6; — v
Zn+1<1+5j> < 1+5j> (140; =)

n=0

and then, using (24), we obtain

— Tn  n ZOO w(dy) - ZOO w(d5)

r 14y ~ 1_ 1>
= n+l (j:l (1+5j)5+ j j '

which, together with (23), implies

Z < KM (r,G), 0<r<1. (25)
= (+9; —r) -1

SinceG € BY, (25) implies

1 oo
/0 1—7" (21—0—5—7")1> dr < o0. (26)

Bearing in mind thad; = 277 (j > 0), we have

1 > > 1 1—7")%_2
(1—r)a—? —1 dr = w(d; / (—1d7“
(Z—: 148; —r)e ) 2:: ) o (148 —r)r?
1=65+1 _ 1=8j+1
w(dj)/l —(1 r dr =~ Zé“ 2w ; /1 SR T dr.

-5 (144 —r) -5 (1+6—r)»

\Y4
M =

j=1
A simple calculation shows that
1-0541 _1
/ %dr:K(ﬁ Pooi>1,
1-4; (1—|—(Sj —’I")Eil
and then (27) and (26) yield

i w(éjl) < oQ.

- P q
j=1 (5]

-

It is easy to see that this implies that

1
o t'trTa

1_
P q

and this is equivalent to

O
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