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INTRODUCTION.

The duality between H1 and BMO, the space of functions of bounded mean oscillation
(see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were
obtained. Using the atomic decomposition approach ([C], [L]) the author studied the
problem of characterizing the dual space of H1 of vector-valued functions . In [B2] the
author showed, for the case Ω = {|z| = 1} , that the expected duality result H1-BMO
holds in the vector valued setting if and only if X∗ has the Radon-Nikodym property. If
we want to get a duality result valid for all Banach spaces we may consider vector valued
measures (see [BT], where the vector valued Lp case is treated, for an explanation) and
therefore to deal with the general case it was necessary to consider a new space of vector
valued measures closely related to BMO (see[B1]).

In this paper we shall study such space in little more detail and we shall consider
the H1-BMO duality for vector-valued functions in the more general setting of spaces of
homogeneous type (see [CW]).

Throughout the paper X will stand for a Banach space, Ω will be a space of homoge-
neous type (see definition in the preliminary section) and we write Lp(Ω, X) for the space
of measurable functions on Ω with values in X such that ‖f(x)‖ belongs to Lp(Ω). As
usual C will denote a constant not necessarily the same at each occurrence.

PRELIMINARIES

A space of homogeneous type Ω is a topological space endowed with a Borel measure
m and a quasi-distance d , that is d : X ×X → IR+ with

a) d(x, y) = d(y, x) ,

b) d(x, y) = 0 if and only if x = y ,

c) d(x, y) ≤ K(d(x, z) + d(z, y)) .

and we assume that the balls Br(x) = {y ∈ Ω : d(x, y) < r} form a basis of open
neighborhoods of the point x and there exists a constant A satisfying

(1.0) m(Br(x)) ≤ Am(Br/2(x))
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From (1.0) we can assume that 0 < m(B) < ∞ for every ball B (otherwise m would be
identically 0 or ∞) and therefore m is a σ-finite measure on Ω. Denote by Σ0 the ring of
bounded measurable sets. The σ-finiteness condition implies that the σ-algebra generated
by Σ0 coincides with the Borel σ-algebra that we shall denote by Σ.

Let us now recall the notion of atom with values is X. Given 1 < p ≤ ∞ , a function
a in Lp(Ω, X) is called (X,p)-atom if

a) the support is contained in a ball B = Br(xo)

(b)
( 1
m(B)

∫
B

‖a(x)‖p dm(x)
)1/p ≤ 1

m(B)
(p < ∞)

(b′) ‖a(x)‖ ≤ 1
m(B)

m− a.e. (p = ∞)

c)
∫

B

a(x) dm(x) = 0

In the case m(Ω) < ∞ the constant function 1
m(Ω) b, where b ∈ X with ‖b‖ = 1, is

also considered as a (X,p)-atom.
Note that the atoms are in the unit ball of L1(Ω, X).

Following [CW] we define H1
p (Ω, X) as the space of functions f in L1(Ω, X) admitting

an atomic decomposition

(1.1) f =
∞∑

j=0

λjaj

where the aj ’s are (X,p)-atoms and
∑∞

j=0 |λj | < ∞ .(The convergence of (1.1) is taken in
L1(Ω, X) ).

We get a Banach space if we consider the norm

‖.‖H1
p

= inf
∞∑

j=0

|λj |

where the infimum is taken over all representations f =
∑∞

j=0 λjaj .

The same arguments as in [CW] show that, in fact, for 1 < p, r ≤ ∞

(1.2) H1
p (Ω, X) = H1

r (Ω, X) (with equivalent norms) .



Let us also recall the definition of vector-valued BMO. Let 1 ≤ q < ∞, an X-valued
function which is locally in Lq(Ω, X) is said to belong to BMOq(Ω, X) provided that

(1.3) sup
ballB

( 1
m(B)

∫
B

‖g(x) − gB‖q
dm(x)

)1/q ≤ C

where gB = 1
m(B)

∫
B
g(x) dm(x).

Let us denote by

‖g‖∗,q = sup{
( 1
m(B)

∫
B

‖g(x) − gB‖q
dm(x)

)1/q : B ball}

When m(Ω) = ∞ then ‖g‖BMOq = ‖g‖∗,q gives a norm on the set of equivalence
classes of functions which differ by a constant in X.

For m(Ω) < ∞ we consider the norm ‖g‖BMOq
= ‖g‖∗,q + ‖

∫
Ω
g(x) dm(x)‖ .

Let us recall now a few definitions about vector-valued measures we shall use later on.
Let (Ω,Σ,m) be any σ-finite measure space , A a measurable set and 1 < p < ∞. Given
a vector valued measure G, we denote by |G| the variation of G, that is

(1.4) |G|(A) = sup{
n∑

i=1

‖G(Ei)‖ : (Ei) partition of A}

and by |G|p(A) the p-variation on A, that is

(1.5) |G|p(A) = sup{
( n∑

i=1

‖G(Ei)‖p

m(Ei)p−1

)1/p}

where the supremum is taken over all finite partitions (Ei) of disjoint measurables sets
contained in A with m(Ei) > 0.

For the case p = ∞ we shall denote by V∞(Ω, X) the space of X-valued measures G
satisfying

(1.6) ‖G(E)‖ ≤ Cm(E) for all measurable set E

Defining the norm by the infimum of the constants satisfying (1.6) we get a Banach space.

Remark 1.1. It is not hard to see that in fact ‖G(Ei)‖ can be replaced by |G|(Ei) in
the definition of p-variation.(See Lemma 1 in [B3])

Remark 1.2. If G is a vector valued measure defined on Σ0 which is absolutely
continuous with respect to m, that is lim

m(E)→0
G(E) = 0, then it can be extended to a

measure on Σ, being still absolutely continuous with respect to m.(See [D],[DU])



We refer the reader to ([DU], [D]) and to ([J], [GC-RF]) for general theory and the
properties we shall use about vector valued measures and Hardy spaces respectively.

VECTOR VALUED MEASURES OF BOUNDED MEAN OSCILLATION.

Definition 2.1. Let 1 ≤ q < ∞ . Given a countably additive measure G defined on
Σ and with values in X, it is said that G belongs to MBMOq(Ω, X) if

(2.1) |G|∗,q = sup{
( n∑

i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖qm(Ei)
m(B)

)1/q} < ∞

where the supremun is taken over all balls B and over all finite partitions of B in pairwise
disjoint measurable sets Ei with m(Ei) > 0 .

When m(Ω) = ∞ then ‖G‖MBMOq = |G|∗,q gives a norm on the set of equivalence
classes of measures: G1 ∼ G2 if there is b in X such that G1(E)−G2(E) = bm(E) for all
measurable set E .

For m(Ω) < ∞ we consider the norm ‖G‖MBMOq = |G|∗,q + ‖G(Ω)‖.

It is obvious that if 1 < q1 < q2 < ∞ then

(2.2) V∞(Ω, X) ⊂ MBMOq2(Ω, X) ⊂ MBMOq1(Ω, X)

Remark 2.1. Let us assume G belong to MBMOq(Ω, X). Given a ball B and a measurable
set E ⊂ B, it is quite immediate to find a constant CB depending on B satisfying

(2.3) ‖G(E)‖ ≤ CB max(m(E),m(E)1−1/q)

Suposse we consider Bn = {y ∈ Ω : d(x0, y) < n} and denote by GBn the measure G
concentrated on Bn , that is GBn(E) = G(E ∩Bn). A glance at (2.3) allows us to say that
for any 1 < q < ∞ if G belongs to MBMOq(Ω, X) then GBn

are necessarily absolutely
continuous with respect to m and this clearly implies that also G is absolutely continuous
with respect to m. (Recall that for vector-measures on σ-algebras it suffices to check that
they vanish on m-null sets).

Proposition 2.1. Let 1 ≤ q < ∞, g be locally in Lq(Ω, X) and G be an X- valued
measure such that G(E) =

∫
E
g(x) dm(x) for all measurable bounded set E.

Then g belongs to BMOq(Ω, X) if and only if G belongs to MBMOq(Ω, X).
Moreover ‖G‖MBMOq = ‖g‖BMOq .

Proof.- Given any ball B , consider GB(E) = G(E ∩ B) − G(B)
m(B) m(E ∩ B). Observe

that

sup{
( n∑

i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖qm(Ei)
m(B)

)1/q : (Ei) partition of B}



coincides with the q-variation of GB on Ω divided by m(B)1/q and GB is a measure
represented by the function (g − gB)χB , that is

GB(E) =
∫

E

(g(x) − gB)χB dm(x).

Therefore the proposition follows from the equality between the q-variation and the norm
in Lq of the function which represents the measure (see [D]).♦

Remark 2.2. In general it is not true that any measure in MBMOq(Ω, X) is repre-
sentable by a function, this depends on the Radon-Nikodym property. We refer the reader
to [B1] for the case Ω = {|z| = 1}, but a similar result and proof can be established also
in this general setting.

Proposition 2.2. Let 1 ≤ q < ∞. G belongs to MBMOq(Ω, X) if and only if there
exists a family of vectors in X , say {aB : B ball}, such that

(2.4) sup{
( n∑

i=1

‖G(Ei)
m(Ei)

− aB‖qm(Ei)
m(B)

)1/q} < ∞

where the supremum is taken over all balls B and over all finite partitions of B in pairwise
disjoint measurable sets Ei with m(Ei) > 0 .

Proof.- The direct implication is obvious by taking aB = G(B)
m(B) . To show the converse

let us assume that we have {aB : B sphere} with the above property, and notice that

‖aB − G(B)
m(B)

‖ ≤ C

for all B ( simply take the partition of B given only by B).
Therefore for any B and any partition

( n∑
i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖qm(Ei)
m(B)

)1/q ≤

( n∑
i=1

‖G(Ei)
m(Ei)

− aB‖qm(Ei)
m(B)

)1/q +
( n∑

i=1

‖aB − G(B)
m(B)

‖qm(Ei)
m(B)

)1/q ≤ C ♦

As in the case of functions we can define an equivalent norm in MBMOq(Ω, X).

(2.5) |G|′∗,q = sup
ballB

{ inf
a∈X

1
m(B)1/q

|G− am|q(B)}.



Note that essentially the same argument as in Proposition 2.2. shows the following

(2.6) |G|′∗,q ≤ |G|∗,q ≤ C |G|′∗,q

Proposition 2.3. Let 1 < q < ∞. If G belongs to MBMOq(Ω, X) then there exists
a non negative function φ in BMOq(Ω) such that

|G|(E) =
∫

E

φ(x) dm(x).

Moreover ‖φ‖BMOq
≤ C ‖G‖MBMOq

.

Proof.- Since G is countably additive and m-continuous then the same is true for
the variation of G, |G|. Therefore using the Radon-Nikodym theorem there exists a non
negative measurable function φ which represents the measure |G|. To show that φ belongs
to BMOq(Ω), we shall use Propositions 2.2 and 2.1. We simply have to find a family of
real numbers {aB} such that

sup{
( n∑

i=1

∣∣ |G|(Ei)
m(Ei)

− aB

∣∣qm(Ei)
m(B)

)1/q} < ∞

Take aB = ‖G(B)‖
m(B) , and observe that

∣∣ |G|(E) − ‖G(B)‖
m(B)

m(E)
∣∣ ≤ |G− G(B)

m(B)
m|(E)

Then

sup{
( n∑

i=1

∣∣ |G|(Ei)
m(Ei)

− ‖G(B)‖
m(B)

∣∣qm(Ei)
m(B)

)1/q} ≤

sup{ 1
m(B)1/q

( n∑
i=1

(
|G− G(B)

m(B)
m|(Ei)

)q
m(Ei)1−q

)1/q} ≤ |G|∗,q

The last inequality follows from Remark 1.1.♦

THE THEOREM AND ITS PROOF.

In the sequel 1 < p, q < ∞ , with 1
p + 1

q = 1. In this section we shall achieve the duality
result between H1

p (Ω, X) and MBMOq(Ω, X∗). We shall need several lemmas before we
prove the result. The next result was done in [B1] for the circle and for q = 2, and here we
present a different approach which is valid for general spaces of homogeneous type. The
author would like to point out that a similar and independent proof of the following lemma
has been obtained by T. Wolniewicz (personal communication).



Lemma 3.1. Let G be a measure in MBMOq(Ω, X). Then for each integer n ∈ N
we can find a measure Gn in V∞(Ω, X) and a constant Cn satisfying |Gn|∗,q ≤ Cn and
such that

(3.1) |G|∗,q ≤ lim
n→∞

Cn ≤ K|G|∗,q

(3.2) lim
n→∞

Gn(E) = G(E) for all measurable bounded set E.

Proof.- Using Proposition 2.3 we first get a function φ in BMOq(Ω).
Denote by Ωn = {x ∈ X : φ(x) > n } and φn(x) = min(1, n/φ(x)). Let us define now

(3.3) Gn(E) =
∫

E

φn(x) dG(x) (E ∈ Σ0)

Notice that

‖Gn(E)‖ ≤ |Gn|(E) ≤
∫

E

φn(x) d|G|(x) ≤
∫

E

φn(x)φ(x) dm(x) ≤ nm(E)

This, using Remark 1.2., allows to extend Gn to Σ and shows that Gn belongs to V∞(Ω, X).
On the other hand

(3.4) G(E) −Gn(E) =
∫

E∩Ωn

(
1 − φn(x)

)
dG(x)

Therefore if E is contained in some ball B

‖G(E) −Gn(E)‖ ≤ 2
∫

E∩Ωn

φ(x)dm(x)

Since φχB is in L1(Ω) then taking limit as n → ∞ shows (3.2).
From (2.6) we have finally to estimate m(B)−1/q|Gn −am|q(B) for all balls B. Using

(3.4) we have that for any E ⊂ B

‖G(E) −Gn(E)‖ ≤
∫

E∩Ωn

(
1 − n/φ(x)

)
d|G|(x)

If ‖a‖ ≤ n then

‖G(E) −Gn(E)‖ ≤
∫

E∩Ωn

(
φ(x) − n

)
dm(x) ≤

∫
E∩Ωn

(
φ(x) − ‖a‖

)
dm(x)

Therefore we have

(3.5) |Gn −G|q(B) ≤ |G− am|q(B ∩ Ωn)



Though |G|q is not a measure for q > 1 the q-variation es subadditive and therefore
we get that for all ‖a‖ ≤ n

(3.6) m(B)−1/q|Gn − am|q(B) ≤ 2m(B)−1/q|G− am|q(B)

Denoting now by
Dn = sup

ballB
inf

‖a‖≤n
{m(B)−1/q|G− am|q(B)}

we get (3.1) for Cn = 2C Dn where C is the constant appearing in (2.6).♦

Notice that V∞(Ω, X∗) can be obviously identified with the dual of L1(Ω, X). Indeed
any measure G in V∞(Ω, X∗) defines a functional TG acting on X-valued simple functions
(which are dense in L1(Ω, X) ) by the formula

(3.7) TG

( n∑
i=1

aiχEi

)
=

n∑
i=1

< G(Ei), ai >

where <,> means duality betweenX and X∗.

Lemma 3.2. Let 1 < p, q < ∞, 1
p + 1

q = 1 and G belong to V∞(Ω, X∗). Then

(3.8) |TG(f)| ≤ C‖G‖MBMOq ‖f‖H1
p

for all f in H1
p (Ω, X).

Proof.- Let us first take a “simple atom” in H1
p (Ω, X), that is

s =
∑n

i=1 biχEi , Ei ⊂ B for some sphere B,
∑n

i=1 bi m(Ei) = 0
and

∑n
i=1 ‖bi‖

p
X m(Ei) ≤ m(B)1−p .

For such an atom we can write

TG(
n∑

i=1

biχEi) =
n∑

i=1

< G(Ei), bi >=
n∑

i=1

< G(Ei) −
G(B)
m(B)

m(Ei), bi >

Therefore

|TG(s)| ≤
n∑

i=1

‖G(Ei) −
G(B)
m(B)

m(Ei)‖X∗m(Ei)−1/pm(Ei)1/p‖bi‖X ≤

≤
( n∑

i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖q
X∗m(Ei)

)1/q( n∑
i=1

‖bi‖p
X m(Ei)

)1/p ≤

≤
( n∑

i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖q
X∗

m(Ei)
m(B)

)1/q ≤ |G|∗,q

For a general atom a supported in B in H1
p (Ω, X) we can use approximation by

simple functions in Lp(Ω, X) , and find a sequence of simple functions dk supported in B



converging to a in Lp(Ω, X) , and take the sequence sk =
(
dk −

∫
B
dk(x) dm(x)

)
χB which

clearly also converges to a in Lp(Ω, X) . Hence ‖sk‖p ≤ 2 ‖a‖p for k large enough, and
therefore sk/2 are “simple atoms”.

Using now that TG is continuous as operator on L1(Ω, X), and that sk converges to a
in L1(Ω, X), then

(3.9) |TG(a)| = lim
k→∞

|T (sk)| = 2 lim
k→∞

|T (sk/2)| ≤ 2 |G|∗,q

For a general function f , take any representation of f in H1
p (Ω, X), say f =

∑∞
j=0 λjaj ,

where the aj are (X,p)-atom and
∑∞

j=0 |λj | < ∞ and notice that (3.8) follows from (3.9)
and the fact that the series f =

∑∞
j=0 λjaj is absolutely convergent in L1(Ω, X) what

implies that TG(f) =
∑∞

j=0 λj TG(aj) .♦

Theorem 3.1. Let 1 < p, q < ∞ and 1
p + 1

q = 1. Then

(3.10) (H1
p (Ω, X))∗ = MBMOq(Ω, X∗) (equivalent norms)

Proof.- Let us take G in MBMOq(Ω, X∗), and define as above

TG

( n∑
i=1

biχEi

)
=

n∑
i=1

< G(Ei), bi >

From the definition of H1
p (Ω, X) we can easily see that simple functions with support in

balls are dense in the space, therefore it is enough to see that

(3.11) |TG

( n∑
i=1

biχEi

)
| ≤ C |G|∗,q ‖

( n∑
i=1

biχEi

)
‖H1

p

To see (3.11) we first invoke Lemma 3.1 to find a sequence of measures Gn in V∞(Ω, X∗),
that according to (3.2) verifies limn→∞TGn(s) = TG(s) for all simple function supported
in a ball.

Secondly we use Lemma 3.2, together with (3.1) to get

|TG(s)| ≤ lim
n→∞

|TGn(s)| ≤ C lim
n→∞

|Gn|∗,q‖s‖H1
p
≤

C lim
n→∞

Cn ‖s‖H1
p
≤ C |G|∗,q‖s‖H1

p
.

For the converse we shall deal first with the case m(Ω) < ∞. Let us take now a functional
T in

(
H1

p (Ω, X)
)∗. Since constant functions are also considered as X-atoms in the case of

finite measure we have that aχE ∈ H1
p (Ω, X), what allows us to define the following X∗

valued measure.

(3.12) < G(E), a >= T (aχE) ( a ∈ X )



Given a ball B and a partition of B , say {Ei} , of pairwise disjoint sets, using the duality
(lp(X))∗ = lq(X∗), we have

( n∑
i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖q
X∗

m(Ei)
m(B)

)1/q =

( n∑
i=1

‖
(G(Ei)
m(Ei)

− G(B)
m(B)

)(m(Ei)
m(B)

)1/q‖q
X∗

)1/q =

sup{
n∑

i=1

<
(G(Ei)
m(Ei)

− G(B)
m(B)

)(m(Ei)
m(B)

)1/q
, bi > | :

n∑
i=1

‖bi‖p
X = 1}.

On the other hand we have

|
n∑

i=1

<
(G(Ei)
m(Ei)

− G(B)
m(B)

)(m(Ei)
m(B)

)1/q
, bi > | =

1
m(B)1/q

|
n∑

i=1

<
G(Ei)

m(Ei)1/p
, bi > − <

G(B)
m(B)

,

n∑
i=1

m(Ei)1/q bi) > | =

=
1

m(B)1/q
|T

( n∑
i=1

m(Ei)−1/p bi χEi

)
− T (b χB) |

where b = 1
m(B)

(∑n
i=1 m(Ei)1/qbi

)
.

Denote by a = 1
2 m(B)1/q

(∑n
i=1 m(Ei)−1/pbiχEi − b χB

)
. It is elementary to show that

if
∑n

i=1 ‖bi‖
p
X = 1 then a is a (X,p)-atom.

Therefore we obtain

( n∑
i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖q
X∗

m(Ei)
m(B)

)1/q ≤ 2 |T (a)| ≤ 2 ‖T‖

This shows |G|∗,q ≤ 2 ‖T‖. Since T and TG coincide over simple atoms, we have T = TG.
On the other hand

‖G(Ω)‖ ≤ sup{ |T (b χΩ)| : ‖b‖ ≤ 1 } ≤ m(Ω) ‖T‖

and this finishes the proof for the finite measure case.
Let us deal now with the case of m(Ω) = ∞. Take a functional T in

(
H1

p (Ω, X)
)∗ and

a ball B in Ω. Let us consider the following space

Lp
0(B,X) = {f ∈ Lp(Ω, X) : supp f ⊂ B and

∫
B

f(x) dm(x) = 0}



The following function is an (X,p)-atom

a(x) =
f(x)

m(B)1/q‖f‖p
for f ∈ Lp

0(B,X).

hence
‖f‖H1

p
≤ m(B)1/q ‖f‖p

and therefore
‖Tf‖ ≤ ‖T‖m(B)1/q ‖f‖p

This shows that T defines a bounded functional on Lp
0(B,X) and hence from the Hahn-

Banach extension theorem,we get an element in the dual of Lp(B,X). The characterization
of the dual space

(
Lp(B,X)

)∗ in terms of X∗-valued measures of bounded q-variation
allows us to find a measure GB with values in X∗ verifying

(3.13) T (f) =
∫

B

f dGB f ∈ Lp
0(B,X)

(Note that this measure is uniquely determined up to a measure F (E) = ξ m(E ∩ B) for
some ξ ∈ X∗). Now if we take an increasing sequence of balls converging to Ω, say Bn, and
we determine GBn by the assumption GBn(B1) = 0, then we can construct a vector-valued
measure on Σ0, given by G(E) = GBn(E) for E ⊂ Bn. It is clear that GBn are absolutely
continuous and hence the same is true for G. Now from remark 1.2 we get an extension
to Σ.

( n∑
i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖∗Xqm(Ei)
m(B)

)1/q = sup
‖f‖p=1

| 1
m(B)1/q

∫
B

f d(G− G(B)
m(B)

m) |

For each f ∈ Lp(B,X), consider a = 1
2 m(B)1/q (f − fB)χB and therefore

( n∑
i=1

‖G(Ei)
m(Ei)

− G(B)
m(B)

‖∗Xqm(Ei)
m(B)

)1/q = sup
a

2 |T (a)| ≤ 2 ‖T‖

This completes the proof.♦

Remark 3.1. For 1 < p, r < ∞,

MBMOq(Ω, X) = MBMOr(Ω, X) with equivalent norms

For dual spaces follows from the theorem and (1.1), and the general case is consequence
of the embedding X ⊂ X∗∗
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