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Lorentz invariance plays a pivotal role in the derivation of the Hawking effect, which cru-
cially requires an integration in arbitrarily small distances or, equivalently, in unbounded
energies. New physics at the Planck scale could, therefore, potentially modify the emis-
sion spectrum. We argue, however, that the kinematic invariance can be deformed in
such a way that the thermal spectrum remains insensitive to trans-Planckian physics.
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The combination of gravity, relativity and quantum mechanics offers us natural
scales for energy and length — EP =

√
~c5/G and lP =

√
~G/c3, respectively —

at which the standard description of space–time is expected to break down, opening
an exciting window for new physics. However, this same combination leads to the
phenomenon of black hole radiance,1–4 whose derivation requires the assumption
of exact local Lorentz invariance. In fact, any emitted Hawking quanta will have
an unbounded, exponentially increasing energy when propagated backward in time
and measured by a freely falling observer near the horizon. In a sense, the horizon
acts as an unbounded boost machine. Any cutoff for the energy or the wavelength of
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the quanta created by the horizon that breaks Lorentz invariance will also destroy
the steady thermal radiation.5–7

How can this tension between black hole radiance and the existence of new
energy/length scales be overcome? Obviously one could give up (semiclassical) black
hole radiance. But this is not for free, because of the deep connection between the
Hawking effect and black hole thermodynamics,8 including the generalized second
law.9,10 A less dramatic way out is to modify Lorentz invariance in such a way
that the bulk of the Hawking effect remains unaltered by Planck scale effects. The
simplest approach would be to deform the dispersion relation E2 = m2 + p2 of
special relativity, introducing a Planck length parameter α ∼ lP and letting E2 =
m2 + p2 + αF (p2), where the function F specifies the deformation. This approach
has been exploited in the last decade in high energy physics and astrophysics,11,12

and also in condensed matter analogs for gravity.13 In this article we will follow an
alternative route. We study the phenomenon of black hole radiance by means of the
correlation functions of the matter fields and explore the effects that the existence
of the Planck length might have on the radiation.

The number of particles of a scalar field in the mode uout
i (x) measured by a

congruence of “out” observers in the vacuum state |in〉 of a congruence of “in”
observers can in general be expressed, in curved or flat space–time, as the integral

〈in|Nout
i |in〉 =

1
~

∫

Σ

dΣµ
1dΣ

ν
2 [uout

i (x1)
↔
∂ µ][uout∗

i (x2)
↔
∂ ν ]

× [〈in|φ(x1)φ(x2)|in〉 − 〈out|φ(x1)φ(x2)|out〉], (1)

where Σ is an initial value hypersurface. A glance at this expression shows that
in Minkowski space–time the “out” observers will detect no particles if they are
related to the “in” observers by Lorentz transformation. If their relation is not
inertial, then 〈in|Nout

i |in〉 6= 0 in general. Note that the regularity of (1) is guaran-
teed by the universality of the short-distance singularity of the two-point function
(the so-called Hadamard condition14). In fact, for any physical state |ψ〉, we have
〈ψ|φ(x1)φ(x2)|ψ〉 ∼ ~

4π2σ(x1,x2)
for any two nearby points x1 and x2, where σ(x1, x2)

is the squared geodesic distance.
From (1) it is straightforward to derive the Hawking effect. In the simplest case

of a Schwarzschild black hole and a massless scalar field, the expectation values
〈in|Nout

wlm|in〉, where w, l,m are frequency and angular momentum quantum num-
bers, can be worked out as15,16

〈in|Nout
wlm|in〉 =

4
~

∫

I−
dv1r

2
1dΩ1

∫

I−
dv2r

2
2dΩ2u

out
wlm(x1)uout∗

wlm(x2)

× [〈in|∂v1φ(x1)∂v2φ(x2)|in〉 − 〈out|∂v1φ(x1)∂v2φ(x2)|out〉]. (2)

The propagated-backward “out” modes can be approximated by uout
wlm ≈

tl(w)(4πw)−1/2r−1e−iwu(v)Ylm(Ω)Θ(vH − v), where vH represents the location of
the null ray that will form the event horizon and tl(w) are the transmission coef-
ficients. The relation between null inertial coordinates u at I+ and v at I− is
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given by the well-known expression u(v) ≈ constant − κ−1 lnκ(vH − v). The rele-
vant derivatives of the two-point functions in (2) can be also expanded in spherical
harmonics:

〈in|∂v1φ(x1)∂v2φ(x2)|in〉 =
1
r1r2

∞∑

l=0

l∑

m=−l

Ylm(Ω1)Y ∗lm(Ω2)Gin
l (v1, r1; v2, r2). (3)

A similar expansion holds for 〈out|∂u1φ(x1)∂u2φ(x2)|out〉. In the asymptotic regions
I− and I+, we have Gin

l |I− = − ~
4π

1
(v1−v2)2

and Gout
l |I+ = − ~

4π
1

(u1−u2)2
. The latter,

when propagated backward to I−, becomes Gout
l |I− = − ~

4π

du
dv (v1)

du
dv (v2)

(u(v1)−u(v2))2
. Inserting

the above expressions in (2), and performing the angular integrations, we end up
with

〈in|Nout
wlm|in〉 = −|tl(w)|2

4π2w

∫ vH

−∞
dv1dv2e

−iw[u(v1)−u(v2)]

×


 1

(v1 − v2)2
−

du

dv
(v1)

du

dv
(v2)

[u(v1)− u(v2)]2


 , (4)

which, for u(v) ≈ constant − κ−1 lnκ(vH − v), leads to the thermal emission rate
(per unit frequency and unit time)

〈in|Nout
wlm|in〉 =

|tl(w)|2
e2πw/κ − 1

. (5)

Note that this result crucially requires that the short-distance singularity of the
“in” state be the same as that of the “out” state. Note also that the above integral
displays an apparent sensitivity to ultrashort distances due to the highly oscillatory
behavior of the modes in the region close to vH .

Let us now assume that the two-point functions are deformed by unknown quan-
tum gravity effects and focus on the derivatives of the two-point functions relevant
to the calculation for black hole particle production. The simplest deformation in
the asymptotically flat regions I− and I+ can be obtained by replacing Gin

l |I− and
Gout

l |I+ with (from now on we omit the subindex l)

Gin
α |I− = − ~

4π
1

(v1 − v2)2 + α2
, Gout

α |I+ = − ~
4π

1
(u1 − u2)2 + α2

, (6)

where α ∼ lP is the deformation parameter. To ensure the invariance of the
above correlation functions under radial boosts with rapidity ξ: (u, v) → (ū, v̄) =
(eξu, e−ξv) at both asymptotic regions, the action of Lorentz transformations should
also be deformed as

Ḡout
α |I+ = − ~

4π

dū1

du1

dū2

du2

(ū1 − ū2)2 + α2 dū1

du1

dū2

du2

, (7)
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and an analogous expression for Ḡin
α at I−. When α → 0 we recover the trans-

formation law of the unmodified theory. An important consequence of the above
deformation is the absence of particle creation under Lorentz boosts, as required on
physical grounds if all inertial observers are regarded in flat space–time as physically
equivalent.

Our interest now is to compute the particle production rate with the above
deformed two-point functions. Due to our heuristic modification of the theory, we
face two problems for the computation of the particle production rate: (1) how
to evolve the “out” two-point function Gout

α |I+ from I+ to I−, and (2) how to
evolve the “out” modes from I+ to I−. Since the propagation to I− implies a
strong blueshift, the uout

w modes and Gout
α might manifest some dependence on the

particular details of the modified theory, which are unknown to us. Thus, we see no
simple way to estimate the form of the uout

w modes. For this reason, it is preferable
to evaluate the particle production as an integral on I+. In this region we can use
the standard form of the “out” modes if we consider emission frequencies much
lower than the Planck frequency wP ∼ 1/lP . We thus find that

〈in|Nout
wlm|in〉 =

|tl(w)|2
~πw

∫

I+
du1du2e

−iw(u1−u2)

×
[
Gin

α |I+ +
~
4π

1
(u1 − u2)2 + α2

]
. (8)

The problem is then reduced to simply unraveling the form of Gin
α |I+ . The modified

short-distance physics near the horizon could have dramatic effects on the evolution
of the two-point function, so that its form at I+ could be rather different from that
at I−. However, the deformed action of boosts (7) implies that, under the “black
hole boost” v → u = u(v) ≈ constant− κ−1 lnκ(vH − v), we should have

Gin
α |I+ = − ~

4π

dv1
du1

dv2
du2

(v1 − v2)2 + α2 dv1
du1

dv2
du2

. (9)

This, in turn, implies that the short-distance behavior of Gin
α at I+ is identical

to that of the two-point function for the “out” state: limu1→u2 G
in
α (u1, u2)|I+ ∼

limu1→u2 G
out
α (u1, u2)|I+ . This condition, which by itself requires (9), can be seen

as a natural generalization of the Hadamard condition, i.e. universality of the short-
distance behavior for all quantum states. Using (9) in (8) and performing the inte-
gration in the complex plane, the particle production rate becomes [we omit the
overall factor |tl(w)|2 for simplicity]

〈in|Nout
wlm|in〉 =

eπw/κ

e2πw/κ − 1

sinh
[w
κ

(θ − π)
]

w

κ
sin θ

+
e−wα

2wα
, (10)
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where θ ≡ 2 arcsin
(

ακ
2

)
. The thermal Planckian spectrum is smoothly recovered in

the limit θ ≈ ακ¿ 1 as follows:

〈in|Nout
w |in〉 ≈ 1

e2πw/κ − 1
− ακ

16w/κ
. (11)

Since α ∼ lP ≈ 1.6 × 10−33 cm, the departure from thermality is negligible in
general. In fact, for a solar mass black hole, ακ ∼ 10−40, the ratio of ακ

16w/κ by
1

e2πw/κ−1
in (11) gives a correction at wtypical ≡ κ/2π of order 10−40. For primordial

black holes, M ∼ 1015 g, the correction is of order 10−21. Moreover, in the solar
mass case, we need to look at the high frequency region, w/wtypical ≈ 100, to find
a ratio of order unity. For primordial black holes this happens at w/wtypical ≈ 50.
Note that for mini–black holes in TeV gravity scenarios17,18 the deviations from
thermality might therefore be nontrivial, even before reaching the end stages of the
evaporation.

Our calculations indicate that only at high emission frequencies could an under-
lying quantum theory of gravity, with the usual Planck scale, predict significant
deviations from the thermal spectrum. Therefore, the fact that string theory exactly
reproduces the semiclassical result for some near-extremal black holes and for low
emission frequencies19–21 should not come as a big surprise. Furthermore, since
string theory respects Lorentz invariance, it seems that this kinematical symmetry
group, with a suitable deformation of its action on the fields, should be able to
maintain the essential properties of the Hawking effect.

We have seen that the generalized Hadamard condition is enough to pre-
serve the conformal (Möbius) symmetry, and particularly the Lorentz symme-
try, present in the theory with α = 0. When a Planck scale parameter α is
introduced, that condition implies the existence of a universal quantity, namely
limx1→x2 G

in
α = limx1→x2 G

out
α = − ~

4πα2 . This invariant length scale, α, modifies the
divergent behavior when x1 → x2 and becomes the new universal label of the theory.
The main lesson of this note is that the way one keeps Hawking radiation as a low
energy effect has deep implications for physics and symmetries at very high energy.
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