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Abstract: Georeferenced data are crucial for addressing societal spatial challenges, as most corporate
and governmental information is location-compatible. However, many open-source solutions lack
automation in geocoding while ensuring quality. This study evaluates the functionalities of various R
packages and their integration with external APIs for converting postal addresses into geographic
coordinates. Among the fifteen R methods/packages reviewed, tidygeocoder stands out for its
versatility, though discrepancies in processing times and missing values vary by provider. The
accuracy was assessed by proximity to original dataset coordinates (Madrid street map) using a
sample of 15,000 addresses. The results indicate significant variability in performance: MapQuest
was the fastest, ArcGIS the most accurate, and Nominatim had the highest number of missing values.
To address these issues, an alternative web scraping methodology is proposed, substantially reducing
the error rates and missing values, but raising potential legal concerns. This comparative analysis
highlights the strengths and limitations of different geocoding tools, facilitating better integration of
geographic information into datasets for researchers and social agents.
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1. Introduction

In the era of digitalization and connectivity, the use of data is the cornerstone of the
technological revolution. Huge amounts of data are generated around the world every
second, from financial transactions and health records to social media posts and online
purchases [1]. The reduction in the prices of storage systems and technological advances has
facilitated the storage, processing, and analysis of this huge amount of data, (potentially)
offering a powerful tool for companies, governments, and institutions. However, data
alone cannot add value. They must be adequate and of sufficient quality, with a double
objective: (i) to facilitate adequate decision-making [2,3]; and (ii) to generate transparency,
trust, and knowledge, enabling society to be more efficient [4].

In recent years, initiatives related to offering open data and the reuse of information
have increased considerably [5,6]. But having data is not enough. Steps must be taken to
ensure the quality and accessibility of the data, as well as the interoperability of the systems
used for the data collection, storage, and processing [7]. Clear standards and protocols
must, therefore, be established to guarantee the quality of the data and facilitate their use
and reuse by the scientific community and other stakeholders [8].

Much of the data that are currently being generated are unstructured data that (may)
contain the location of a certain event, obtained from sensors and mobile devices with
positioning systems. In contrast, much of the (structured) data available in open data
repositories, compatible with spatial information, are not georeferenced. In fact, it is
estimated that half of the data openly available do not have geographic information [9],
possibly because incorporating the spatial component can be a more complex and costly
process than simply collecting information on an object or topic.
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The importance of spatial data lies in the data’s ability to provide a deeper and more
detailed understanding of the world around us [10]. Data are used in a wide variety of
applications, from urban planning and transportation to natural disaster management and
precision agriculture [11]. Knowing what is happening, and where, is extremely relevant
for various social and economic agents, with this being the second category of data most
reused and consulted by companies in the EU [12]. For this reason, it is of great interest to
the scientific community, and to society in general, to have tools and techniques that make
it possible to elaborate/complete/improve datasets with spatial information.

Despite their usefulness, however, spatial data present some common problems and
difficulties. One of the biggest challenges is the complexity of data collection and processing.
The number and variety of spatial data sources available can be overwhelming, and data
processing and analysis can be costly and time consuming. Some of the problems that the
researcher usually encounters (when using location data) are related to: (i) missing values;
(ii) precision in the coordinates; and (iii) the absence in the metadata of the Coordinate
Reference System (CRS) used [13].

The objective of this paper is to propose methods and tools that enable quality datasets
to be built/improved that include the spatial component. Specifically, two techniques
are proposed to obtain geographic coordinates from postal addresses (geocoding): one
based on the use of Application Programming Interfaces (APIs), and another based on
the automated extraction of data from websites (web scraping). In both cases, R statistical
software [14] is used (version 4.3.2), as this is a free tool widely used in research [15].

2. Related Work

Geocoding, geolocation, or address matching is defined as the action of attributing
geographic coordinates (latitude, longitude) to one or more events, using the postal address
as a reference [16]. This technique allows researchers and other economic and social agents
to carry out analyses and identify patterns based on spatial information. It is a technique
that has its uses in multiple areas and fields of research; for example, in: (i) market
analysis, where the behavior and trends of various agents can be analyzed according
to their geographical location [17]; (ii) tourism, in identifying the behavior patterns of
tourists to optimize the offer of certain services [18]; (iii) logistics and transportation,
in identifying the locations of distribution centers and facilitating the optimization of
routes [19]; (iv) emergency services, to obtain the location of an emergency quickly and
accurately [20]; (v) urbanism, in assisting with urban development planning and improving
the quality of life of citizens [21]; and (vi) scientific research, in facilitating the study
of spatial patterns and the interactions of natural phenomena, as well as carrying out
epidemiological analyses [22].

Geocoding has become a widely used technique, both for performing multiple spatial
analyses and for decision-making [23]. Various authors refer to geocoding as a powerful
tool that enables complex spatial analysis, highlighting the added value that the spatial
component brings to datasets. Präger et al. [24] highlight the usefulness of the online
geocoding services of Google and OpenStreetMap (OSM) in the detection of factors that
promote obesity, concluding that its validity is reasonable, and that it can be used in diabetes
surveillance. Chopin and Caneppele [25] use geocoding to carry out an exploratory analysis
of mobility between aggressors and victims in crimes of child abuse in France. McIntire
et al. [26] geocodes the addresses of 10,750 patients with prostate cancer in the state of
Pennsylvania (USA) to create a composite index that identifies the neighborhoods with
the highest incidence of the disease. Geocoding also becomes especially relevant in data
obtained from social media. Ref. [27] tackled the challenge of geocoding non-geotagged
tweets from location-based social networks, proposing a privacy-preserving geocoding
method, P-GENT, which ensures privacy while maintaining a high accuracy and utility of
the social media data for spatial analysis.

Given the diversity of the geocoding services available, it is crucial to systematically
evaluate their output, so as to ensure that decision-makers are relying on the most accurate
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and reliable data. While some previous work has focused on assessing the accuracy of
these services [28,29], there is a need for more in-depth evaluations considering a broader
range of current service providers and their evolving technologies. This could lead to a
better understanding of their respective strengths and limitations, ultimately enhancing
the precision of geocoding applications across different fields.

Due to the growing interest that geocoding is arousing in various economic and
social fields, there is now a wide range of methods that address this issue from different
perspectives [30–34]. One of the most widely used tools is a web map viewer which, due
to its appealing presentation and easy access, allows any citizen to quickly obtain the
geographic coordinates of practically any postal address. While there are many options,
such as Bing Maps, Here Map, MapQuest, or Waze Map [35], the most used option is
Google Maps, with 80% of the market share worldwide [36].

Web map viewers are a perfectly valid option when working with just a few addresses.
However, when the goal is to obtain hundreds or thousands of locations, automating
the process is essential. Below are two methods that automate the process of obtaining
coordinates from postal addresses.

3. Materials and Methods

This section details the systematic approach used to enrich datasets with geospatial
information, utilizing various geocoding tools. Our methodology encompasses several
steps, starting from the initial data input, through the variable selection and address
compilation, to the application of the geocoding processes using different R packages and
geocoding service providers. Figure 1 outlines the sequence of operations performed,
including decisions on the use of APIs or web scraping based on the effectiveness of the
initial geocoding results. Sections 3.1 and 3.2 further elaborate on the specific tools and
techniques employed, illustrating our comprehensive approach to ensuring the accuracy
and utility of the geospatial data obtained.
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3.1. Application Programming Interfaces (APIs)

APIs help to significantly smooth out these automation processes, allowing for appli-
cations and/or computer systems to be connected with extensive and updated databases
of geographic information [37,38]. Some examples of APIs that allow for geocoding pro-
cesses to be carried out are: (i) Google Maps Geocoding API; (ii) OpenCage Geocoding
API; (iii) HERE Geocoding & Search API; (iv) Bing Maps API; (v) Esri ArcGIS REST
APIs–Geocoding Services; (vi) Mapbox Geocoding API; (vii) TomTom Geocoding API;
(viii) MapQuest Geocoding API; and (ix) Nominatim (free and open source geocoding API
using data from OpenStreetMap).
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Many of the existing geocoding APIs can be managed using R. This is currently one of
the most widely used programming languages in data analysis, and can facilitate massive
data collection and subsequent processing. Table 1 shows the correspondence between
different geocoding APIs and some R packages that facilitate their use.

Table 1. Correspondence of geocoding APIs and R packages.

Name of API R Package

Google Maps Geocoding API ggmap, tidygeocoder, googleway, RgoogleMaps
Bing Maps API tidygeocoder
HERE Geocoding & Search API hereR, tidygeocoder, nominatimlite
MapQuest Geocoding API mapquestr, tidygeocoder, nominatimlite
Nominatim API osmar, tidygeocoder, ggspatial, osmdata, nominatimlite, tmaptools
OpenCage Geocoding API opencage, tidygeocoder, nominatimlite
Mapbox Geocoding API tidygeocoder
TomTom Geocoding API tidygeocoder
ArcGIS REST API-Geocoding Services arcgisbinding, tidygeocoder

Two of the most prominent R packages shown in Table 1 are ggmap [39] and tidy-
geocoder [40]; the first for being the one that was downloaded the most times from the
CRAN repository during 2023 (see Table 2), and the second for offering great versatility,
since it can work with all of the aforementioned APIs.

Table 2. The number of times each R package was downloaded from the CRAN repository during
2023. Source: compiled by the authors, based on the results reported by the cranlogs R package.

R Package Number of Downloads

ggmap 724,324
RgoogleMaps 286,308

tmaptools 187,888
ggspatial 115,003
osmdata 89,737

tidygeocoder 42,605
googleway 42,265

nominatimlite 7798
mapboxapi 7724

hereR 7494
opencage 4061

osmar 1267

While APIs simplify the process of geocoding, every provider sets specific limitations
on the utilization of their service without incurring costs. For instance, accessing the Google,
Bing, or HERE APIs requires users to first register and acquire a personal key (API-KEY).
Table 3 presents the various features and conditions for the free use of each API, detailing
the requirements and the extent of the free access provided by these platforms.

Since there are different options (R packages) that enable geocoding processes to be car-
ried out, a comparison of their effectiveness would be useful. To do this, we use a large dataset
(the street map of Madrid), which contains more than two hundred thousand observations
(postal addresses) and 20 variables [41]. These variables include road type (VIA_CLASE),
street name (VIA_NOMBRE, VIA_NOMBRE_ACENTOS), house number (NUMERO), type of
numbering (TIPO_NDP), and unique identifiers for the road (COD_VIA) and house number
(COD_NDP). Additionally, the dataset comprises the district (DISTRITO) and neighborhood
codes (BARRIO), postal codes (COD_POSTAL), and geographical coordinates in both the
ED50 (UTMX_ED, UTMY_ED) and ETRS89 (UTMX_ETRS, UTMY_ETRS, LATITUD, LONGI-
TUD) geodetic systems. It also includes the angle of the house number signage relative to the
building facade (ANGULO_ROTULACION).
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Table 3. Characteristics and conditions of use of different geocoding APIs.

Name of API API-KEY Needed Conditions of Use

Google Maps Geocoding API YES Credit of USD 200 per month (equivalent to 28,500 requests). *
Bing Maps API YES 50,000 requests per day for educational/non-commercial uses.
HERE Geocoding & Search API YES 1000 free requests per day.
MapQuest Geocoding API YES 15,000 free transactions per month.
Nominatim API NO
OpenCage Geocoding API YES 2500 free requests per day (for testing purposes).
Mapbox Geocoding API YES 100,000 free requests per month. *
TomTom Geocoding API YES 2500 free requests per day.
ArcGIS REST API-Geocoding Services NO

* Bank details must be entered into the registration platform.

This dataset enables two actions to be completed: (i) obtaining coordinates from postal
addresses; and (ii) determining the geographic distances between the coordinates obtained in
the geocoding process and those provided in the dataset itself. A random sample (n = 15,000)
of postal addresses is selected, and the different R packages under analysis in this paper are
tested. Given the usage limitations outlined in Table 3, the sample is divided into 100 subsam-
ples (S1 to S100) of 150 observations each.

The versatility of the tidygeocoder R package is scrutinized, emphasizing its support
for up to 13 different geocoding services. Nine methods (service providers) have been
selected, applying this function across 150 subsamples. The geocoding process is conducted
using the package’s geo() function, showcasing its extensive capabilities. Similarly, six al-
ternative R packages are analyzed, each with a function developed to geocode using a
single service provider: (i) ggmap [42] for Google Maps Geocoding API; (ii) hereR [43]
for HERE Geocoding & Search API; (iii) mapquestr [44] for MapQuest Geocoding API;
(iv) tmaptools [45]; (v) opencage [46]; and (vi) mapboxapi [47] for the Mapbox Geocoding
API. All tests were conducted using the same computer, with the following specifications:
3.30 GHz processor speed and 8 GB of RAM.

Knowing the speed of the process (computation time) and the success/error rate
(number of missing values) for each package and method (service provider) allows the
researcher to select the appropriate option for the task in hand. However, this is not enough;
the reliability of the data is also a fundamental characteristic. For this reason, we consider
it appropriate to audit the results obtained, calculating the Euclidean distance between the
coordinates obtained in the geocoding process and the coordinates included in the dataset
used, implementing the st_distance() function of the sf package [48]. This verification
process, in addition to providing confidence to the end user, fulfils one of the purposes of
this document: to generate (sets of) quality data.

3.2. Automated Data Extraction from Websites (Web Scraping)

The use of R packages that interact with geolocation service APIs has proven to be
an efficient option for geocoding postal addresses and obtaining geographic coordinates
quickly. However, in some cases, the results are seen to be unreliable, which gives rise
to the need to explore other alternatives. One such alternative is the promising strategy
of web scraping on web map viewers. This technique offers the possibility of extracting
geographic information directly from online platforms, which expands the data sources
available for geocoding. Also, by getting data directly from map viewers, dependency on
third-party geolocation service providers can be reduced, which helps increase autonomy
in the geocoding process. In this section we explore in detail the use of web scraping as
a valuable tool for obtaining coordinates from postal addresses, offering a reliable and
complementary alternative to the methods presented in the previous section.

The widespread use of the Internet, together with different platforms, both private
and open source, allows any agent to locate a specific postal address on the map and, con-
sequently, to obtain its geographic coordinates. Online map viewers, such as Google Maps,
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have become very popular and useful tools nowadays, due to their appealing presentation,
easy access, and the large amount of geographic information they provide. In addition to
Google Maps, there are other options, such as Bing Maps, HERE WeGo, OpenStreetMap,
and many others, each with their own interface, but with a similar appearance. These
map viewers allow users to locate postal addresses, explore remote locations around the
world, and plan routes. They also make it possible to search for and obtain geographic
coordinates from postal addresses. However, as we mentioned at the beginning of the
paper, this process carried out manually fulfils its objective for specific enquiries, but it is
not efficient when multiple coordinates are needed.

A possible solution to this problem is to use web scraping techniques, which enable
information to be extracted from web pages, their HTML code scanned, and data extraction
patterns generated [49]. These techniques can be implemented in R with the rvest [50] and
RSelenium [51] R packages, among others, although there are notable differences between
them. On the one hand, rvest enables the extraction of data from web pages through static
web scraping; that is, selecting elements of a web page using CSS and XPath selectors [52].
On the other hand, with RSelenium, the user can connect with web pages that require
interaction to extract data. RSelenium uses a Selenium server [53] to control a web browser
and perform tasks, such as clicking buttons, filling in forms, or browsing different pages.
In this way, data can be extracted from web pages that require interaction.

The proposed method consists of automating the sequential scheme, represented in
Figure 2, by implementing various functions of the RSelenium package. To verify the
operation of this procedure, and purely for academic purposes, we develop an R script that
allows the described sequence to be carried out (see the Supplementary Materials).
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Figure 2. Sequential diagram of the manual retrieval process to obtain coordinates from a web
map viewer.
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When using web scraping techniques, it is essential to include pauses in the script,
allowing the browser to perform certain actions, such as opening pages and loading content,
before continuing. When defining a sequential system, in which the user must wait until
one step is finished to start the next, several issues must be considered, such as the need
for a certain web page to be fully loaded before interacting with its content. In fact, since
this procedure is based on interacting with specific elements of the web, such as clicking
buttons or filling in forms, the possible limitations of the equipment/computer system
used (internet connection speed, etc.) should also be considered.

4. Results

This section presents the results obtained from applying the methodology outlined in
the previous section. Following the procedures and analyses described, we have systemati-
cally evaluated the performance, accuracy, and limitations of various geocoding services.
The outcomes of these evaluations, including computational times, the incidence of missing
values, and overall efficiency of each method, are detailed in this part of the paper. The
results are crucial for understanding the practical implications of choosing one geocoding
service over another, as they provide concrete data on performance metrics and reliability
across different platforms.

Table 4 shows the computing times for the subsample and method (service provider)
used, as well as the missing values (number of non-geocoded addresses, from here on NA).
As can be seen, MapQuest is the fastest method, with an average of 2.099 s per subsample
(314.86 s for the 15,000 observations), while the slowest methods are OSM and OpenCage,
with a computation time of 139.641 and 104.805 s per subsample, respectively. Regarding
missing values, OSM is the method with the highest error rate, at 3.1% (466 NAs), followed
by HERE, with 0.95% (142 NAs).

Table 4. Time and number of NAs (in brackets) using tidygeocoder R package.

Method S1 S2 S3 S98 S99 S100 Average *
(S1 to S100)

Google 16.399 (0) 14.927 (0) 14.161 (0) 13.309 (0) 11.689 (0) 13.055 (0) 15.172 (0)
Bing 34.862 (0) 41.397 (0) 34.254 (0) 45.591 (0) 47.16 (0) 46.922 (0) 39.658 (0.007)

HERE 22.591 (0) 21.751 (1) 22.067 (0) 21.888 (0) 21.799 (2) 21.905 (0) 22.08 (0.947)
MapQuest 2.095 (0) 1.966 (0) 2.002 (0) 1.992 (0) 1.903 (0) 2.053 (0) 2.099 (0)

OSM 103.15 (3) 105.852 (3) 106.63 (7) 153.322 (1) 243.697 (1) 176.853 (4) 139.641 (3.107)
OpenCage 102.294 (0) 102.24 (0) 102.413 (0) 102.121 (0) 102.385 (0) 102.24 (0) 104.805 (0)

Mapbox 16.286 (0) 19.577 (0) 18.654 (0) 17.618 (0) 18.15 (0) 20.239 (0) 20.968 (0)
TomTom 19.125 (0) 19.485 (0) 18.885 (0) 19.107 (0) 19.677 (0) 18.981 (0) 19.894 (0.007)
ArcGIS 48.599 (0) 53.701 (0) 54.623 (0) 50.831 (0) 49.717 (0) 51.08 (0) 50.785 (0)

* All results in the Supplementary Materials.

Complementing the previous information, we analyze other R packages that enable
geocoding by implementing some of the methods presented in the first column of Table 4.
The ggmap and hereR packages present results like those obtained with the “Google” and
“HERE” methods of tidygeocoder. In the case of the mapquestr package, the computation
times are much higher than those obtained with the “MapQuest” method. The method
tmaptools halves the computation times of the “OSM” method, but maintains the same
number of missing values (NA). The opencage package reports computation times higher
than those obtained by the “OpenCage” method. The opposite occurs with the mapboxapi
package, which reduces the computing times of the Mapbox service used in tidygeocoder
by more than 60% (see Table 5).
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Table 5. Time and number of NAs (in brackets) using different R packages.

R Package S1 S2 S3 S98 S99 S100 Average *
(S1 to S100)

ggmap 12.284 (0) 17.146 (0) 15.662 (0) 15.64 (0) 16.008 (0) 15.369 (0) 16.706 (0)
hereR 26.773 (0) 24.621 (0) 24.395 (0) 24.472 (0) 25.554 (0) 26.036 (0) 24.743 (0)

mapquestr 26.432 (0) 26.001 (0) 27.406 (0) 27.417 (0) 27.412 (0) 27.031 (0) 27.169 (0)
tmaptools 59.07 (3) 57.651 (3) 57.134 (7) 54.086 (1) 56.773 (1) 54.241 (4) 57.908 (3.053)
opencage 128.102 (0) 130.952 (0) 123.679 (0) 124.793 (0) 125.149 (0) 124.511 (0) 131.743 (0)

mapboxapi 7.25 (0) 18.988 (0) 18.333 (0) 16.164 (0) 15.829 (0) 16.144 (0) 16.335 (0)

* All results in the Supplementary Materials.

To audit the results obtained, we have compared geocoded coordinates with the
original data. Table 6 shows the median of the Euclidean distances obtained for each
subsample analyzed and for each of the 15 methods used (M1–M15). The median is used
instead of the average, to avoid the distortions produced by the extreme values caused by
geocoding errors that report greater distances with respect to the coordinates offered in
the original dataset. M9 is the method that best replicates the coordinates provided in the
Madrid street map. The M3, M11 and M12 methods also offer results with a high degree of
accuracy, giving an average distance within less than 2 m.

Table 6. Median of the Euclidean distance, in meters, between the coordinates included in the original
dataset and those obtained by geocoding for each subsample and method.

Method S1 S2 S3 S98 S99 S100 Average *
(S1 to S100)

M1 Google ** 6.6925 6.779 7.985 5.2305 8.453 7.771 6.5186
M2 Bing ** 4.9065 6.0135 6.3115 5.487 5.2745 4.7655 5.2322
M3 HERE ** 1.7485 1.775 1.7635 1.756 1.7815 1.92 1.7739
M4 MapQuest ** 9.5625 8.6115 9.7975 9.628 8.932 9.8735 9.6415
M5 OSM ** 65.413 56.843 91.327 60.341 74.502 83.3505 71.2541
M6 OpenCage ** 461.807 264.147 1286.724 270.0545 709.77 242.6665 483.547
M7 Mapbox ** 9.711 8.1825 15.6265 9.4355 9.896 15.297 10.6494
M8 TomTom ** 6.8475 6.46 7.1395 5.4055 5.53 5.6115 5.7818
M9 ArcGIS ** 0.003 0.002 0.003 0.002 0.003 0.002 0.0025
M10 ggmap 6.502 6.967 7.985 5.2305 8.453 7.771 6.5124
M11 hereR 1.7485 1.775 1.7635 1.756 1.767 1.92 1.7744
M12 mapquestr 1.7485 1.7845 1.7635 1.756 1.829 1.92 1.7957
M13 tmaptools 79.43 65.845 79.323 61.588 75.837 87.4775 70.0706
M14 opencage 466.58 264.147 1286.724 270.0545 686.682 242.6665 481.9236
M15 mapboxapi 9.711 8.335 15.468 9.4355 9.896 15.297 10.6473

* All results in the Supplementary Materials. ** Method from the tidygeocoder R package.

Based on the distance between the coordinates obtained by geocoding and the coor-
dinates included in the original dataset, the methods M5, M6, M13 and M14 are seen to
be the ones that return the greatest discrepancies in distances. This is mainly due to detec-
tion/interpretation errors by the municipality. For example, for the first subsample (S1),
the methods M5 and M13 (Nominatim service), in addition to not geocoding three postal
addresses (see Tables 4 and 5), impute ten locations to municipalities other than Madrid
(see the red dots on the left panel of Figure 3). Of these ten points, nine are located in towns
close to the Spanish capital, within the Community of Madrid itself (lightly brown-colored
area), while another point is located in the American continent, specifically in Mexico City.
Similar errors occur with the M6 and M14 (OpenCage) methods. In this case, all of the
postal addresses of S1 are geocoded, but the results are not as accurate as one would hope
(see the black dots in the right panel of Figure 3). Twenty-five locations are outside the
municipal boundaries of Madrid, two of which are positioned again in Mexico City. The
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green dots indicate the coordinates offered in the original dataset, corresponding to the
150 postal addresses in the subsample.
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Regarding the use of web scraping techniques, the following results have been ob-
tained. On the one hand, in terms of accuracy and missing values, the proposed method
matches the performance of APIs, as it can retrieve the same coordinates reported by the
R packages explored in this document. On the other hand, as expected, the time taken to
obtain the coordinates is substantially longer than that reported by the R packages, largely
due to the waiting times that must be introduced into the algorithm to allow the browser to
load the necessary data. Despite this, this method significantly reduces the time and effort
required to manually collect geographical data.

5. Discussion and Conclusions

In a world where georeferenced data offers substantial added value, most freely
available databases lack spatial information. This study provides a comparative analysis
of geocoding techniques to address this gap, focusing on API management through R
packages and web scraping methods. Our findings highlight the significant variability in
performance across different methods.

We evaluated fifteen geocoding methods using tidygeocoder and other R packages,
noting computation times, missing values, and accuracy relative to the original dataset
coordinates. Key outcomes include: (i) computation time: MapQuest emerged as the
fastest method, averaging 2.099 s per subsample, significantly quicker than others like
OSM and OpenCage, which took over 100 s; (ii) missing values: Nominatim (OSM) had
the highest error rate, with an average of 3.107% missing values per subsample, while
most methods, including Google and Bing, had negligible missing values; (iii) accuracy:
ArcGIS was the most accurate, with an average Euclidean distance of 0.0025 m from the
original coordinates, outperforming others like OpenCage, which had an average error of
483.547 m.

The results equip researchers and social agents with insights to select the most suitable
geocoding method based on their needs. The significant outcome of this study is the
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identification of MapQuest as the fastest tool, ArcGIS as the most accurate, and the caution
against using Nominatim for high-precision tasks due to its higher error rates.

Web scraping techniques were proposed as an alternative, demonstrating reduced error
rates and missing values compared to some API-based methods. However, this approach
raises potential legal and ethical concerns, and requires adaptation to specific platforms.

Future research could develop an R package to automate the geocoding method se-
lection based on specific criteria, potentially integrating machine learning techniques to
predict the methods’ performance. This advancement would further enhance the integra-
tion of spatial data into existing and new databases, offering substantial economic and
social benefits.

By providing a detailed comparative analysis, this research aids in making informed
decisions about geocoding approaches, ultimately facilitating better integration of geo-
graphic information into datasets across various research settings needs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijgi13060170/s1, Table S1: Time and number of NAs using tidygeocoder
R package; Table S2: Time and number of NAs using different R packages; Table S3: Median of the
Euclidean distance, in meters, between the coordinates included in the original dataset and those
obtained by geocoding for each subsample and method; File S4: Web scraping R script.
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