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The pentagon equation is widely investigated in Mathematical Physics.

Our attention has been posed on the study of the set-theoretical solution of

this equation. Specifically, a set-theoretical solution of the pentagon equation

on a set S, briefly a PE solution, is a map s from S×S into itself that satisfies

the relation

s23 s13 s12 = s12 s23,

where s12 = s× idS , s23 = idS × s, and s13 = (idS × τ)s12(idS × τ), with τ

the map given by τ(x, y) = (y, x). First examples of invertible PE solutions

may be found in the pioneering work of Zakrzewski [5], Baaj and Skandalis

[1], Kashaev and Sergeev [4]. In particular, in [4] it is proved that the only

invertible solution s on a group (G, ·) is given by s(x, y) = (x · y, y).

In this talk we firstly present the complete description of PE solutions of

the form s (x, y) = (x · y, θx(y)) on groups (G, ·), where θx is a map from G

into itself, for every x ∈ G, that has been provided in [2].

Among PE solutions one can find examples of solutions to the well-known

Yang-Baxter equation involving particular semigroups. In this context, we

present some solutions of the Yang-Baxter equation that are different from

those known until now, as recently developed in [3].
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