[1] | Sergio Camp-Mora and Carmine Monetta. Groups with some families of complemented subgroups. Arch. Math. (Basel), 115(2):131--137, 2020. [ DOI | Full text ] |
[2] | A. Ballester-Bolinches, S. Camp-Mora, M. R. Dixon, R. Ialenti, and F. Spagnuolo. On locally finite groups whose subgroups of infinite rank have some permutable property. Ann. Mat. Pura Appl. (4), 196(5):1855--1862, 2017. [ DOI | Full text ] |
[3] | A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko, and F. Spagnuolo. On groups whose subgroups of infinite rank are Sylow permutable. Ann. Mat. Pura Appl. (4), 195(3):717--723, 2016. [ DOI | Full text ] |
[4] | A. Ballester-Bolinches, S. Camp-Mora, and F. Spagnuolo. On p-nilpotency of hyperfinite groups. Monatsh. Math., 176(4):497--502, 2015. [ DOI | Full text ] |
[5] | A. Ballester-Bolinches, S. Camp-Mora, and L. A. Kurdachenko. A note on Sylow permutable subgroups of infinite groups. J. Algebra, 398:156--161, 2014. [ DOI | Full text ] |
[6] | A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko, and J. Otal. Extension of a Schur theorem to groups with a central factor with a bounded section rank. J. Algebra, 393:1--15, 2013. [ DOI | Full text ] |
[7] | Sergio Camp-Mora. Groups with every subgroup ascendant-by-finite. Cent. Eur. J. Math., 11(12):2182--2185, 2013. [ DOI | Full text ] |
[8] | A. Ballester-Bolinches and S. Camp-Mora. A Bryce and Cossey type theorem in a class of locally finite groups. Bull. Austral. Math. Soc., 63(3):459--466, 2001. [ DOI | Full text ] |
[9] | Sergio Camp-Mora. Locally finite groups with two normalizers. Comm. Algebra, 28(11):5475--5480, 2000. [ DOI | Full text ] |
[10] | A. Ballester-Bolinches and S. Camp-Mora. A Gaschütz-Lubeseder type theorem in a class of locally finite groups. J. Algebra, 221(2):562--569, 1999. [ DOI | Full text ] |
This file was generated by bibtex2html 1.99.