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Abstract

We study both existence and nonexistence of nonnegative solutions for nonlinear
elliptic problems with singular lower order terms that have natural growth with
respect to the gradient, whose model is−∆u+

|∇u|2

uγ
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded subset of RN , γ > 0 and f is a function which is
strictly positive on every compactly contained subset of Ω. As a consequence of
our main results, we prove that the condition γ < 2 is necessary and sufficient
for the existence of solutions in H1

0 (Ω) for every sufficiently regular f as above.

Key words: Nonlinear elliptic equations, singular natural growth gradient
terms, large solutions.

1. Introduction

In this paper we are going to study existence and nonexistence of nonnegative
solutions for the following boundary value problem{

−div (M(x, u)∇u) + g(x, u)|∇u|2 = f in Ω,
u = 0 on ∂Ω.

(1.1)

Here Ω is a bounded, open subset of RN , N ≥ 3, M(x, s) def= (mij(x, s)), i, j =
1, . . . , N is a matrix whose coefficients mij : Ω × R −→ R are Carathéodory
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functions (i.e., mij(·, s) is measurable on Ω for every s ∈ R, and mij(x, ·) is
continuous on R for a.e. x ∈ Ω) such that there exist constants 0 < α ≤ β
satisfying

α|ς|2 ≤M(x, s)ς · ς and |M(x, s)| ≤ β, for a.e. x ∈ Ω, ∀(s, ς) ∈ R× RN .
(1.2)

The function g : Ω × (0,+∞) → R is a Carathéodory function (i.e., g(·, s) is
measurable on Ω for every s ∈ (0,+∞), and g(x, ·) is continuous on (0,+∞) for
a.e. x ∈ Ω) such that

g(x, s) ≥ 0, for a.e. x ∈ Ω, ∀s > 0. (1.3)

We will be mainly interested to the case of a function g which is singular near
s = 0, such as, for example, g(x, s) = 1/sγ , γ > 0. On the datum f , we first
suppose that it belongs to L

2N
N+2 (Ω) and that it satisfies

mω(f) def= ess inf {f(x) : x ∈ ω} > 0, ∀ω ⊂⊂ Ω. (1.4)

Note that (1.4) implies that f ≥ 0 in Ω and that f 6≡ 0 in Ω.
There are several papers concerned with existence and nonexistence of so-

lutions for (1.1). If g is nonsingular, that is if g is a Carathéodory function on
Ω × [0,∞), problem (1.1) has been exhaustively studied by Boccardo, Murat
and Puel [15], Bensoussan, Boccardo and Murat [7] and Boccardo, Gallouët [11]
with data f in suitable Lebesgue spaces.

On the contrary, as stated before, in this paper we shall focus our attention
on problem (1.1) with g(x, s) having a singularity at s = 0 (uniformly with
respect to x). More precisely, we look for a distributional solution of problem
(1.1), i.e. a function u ∈ W 1,1

0 (Ω) which solves the equation in the sense of
distributions, u > 0 almost everywhere in Ω, and such thatg(x, u)|∇u|2 in L1(Ω).
If moreover u ∈ H1

0 (Ω), we say that u is a finite energy solution for problem
(1.1). A possible motivation for the study of these problems arises from the
Calculus of Variations. If 0 ≤ f ∈ Lq(Ω), q > N

2 and γ ∈ (0, 1), a purely
formal computation shows that the Euler-Lagrange equation associated to the
functional

J(v) =
1
2

∫
Ω

(1 + |v|1−γ)|∇v|2 −
∫

Ω

fv ,

is
−div

(
(1 + |u|1−γ)∇u

)
+

1− γ
2

u

|u|1+γ
|∇u|2 = f.

Observe that this is a nonlinear elliptic equation that involves a singular natural–
growth gradient term.

Therefore, it is natural to wonder whether we can handle general not neces-
sarily variational problems whose simplest model is−∆u+

|∇u|2

uγ
= f in Ω,

u = 0 on ∂Ω,
(1.5)
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and to determine the optimal range of γ > 0 for which solutions exist.

Recently, existence of solutions for (1.5) has been proved in [1, 2, 3] for
0 < γ ≤ 1. We also quote the even more recent papers [8] and [20]. Specifically,
the existence of positive solutions of (1.1) is proved in [8] provided 0 6≡ f ∈
Lq(Ω) (q > 2N/(N + 2)) with f ≥ 0 and provided g(x, s) = 1/sγ with γ ≤ 1.
On the other hand, a related different problem is studied in [20]. Namely, if
χ{u>0} denotes the characteristic function of the set {x ∈ Ω : u(x) > 0},
0 ≤ f ∈ L∞(Ω), µ ∈ R and λ, γ > 0, the differential equation

−div (M(x, u)∇u) + λu+ µ
|∇u|2

uγ
χ{u>0} = f

is considered. The given results about existence of nonnegative solutions in
H1

0 (Ω) depend on γ. Indeed, existence is proved for every µ ∈ R if γ < 1, while
the case γ ≥ 1 requires that µ < 0. Thus, if γ ≥ 1 the term with quadratic
dependence in ∇u is negative (i.e., the opposite assumption with respect to
(1.3)). In this direction, result for similar equations can be also found in [21]
and [34] (see also references cited therein).

The purpose of this paper is twofold. First of all, we will extend the above
results to a more general class of nonlinearities both in the principal part of
the operator and in the lower order term, as well as to general, possibly L1(Ω),
data. Then, we will give a sharp range of nonlinearities g(x, s) for which these
problems admit a solution for every datum f ∈ Lq(Ω), with q > N/2, satisfying
(1.4).

In order to prove our results, we will have to strengthen assumption (1.3).
Specifically, for the results of existence of solutions, we will suppose that the
function g(x, s) satisfies

0 ≤ g(x, s) ≤ h(s), for a.e. x ∈ Ω, ∀s > 0, (1.6)

where h : (0,+∞)→ [0,+∞) is a continuous nonnegative function such that

lim
s→0+

∫ 1

s

√
h(t) dt < +∞,

h(s) is nonincreasing in a neighborhood of zero.
(1.7)

Our result of existence of finite energy solutions (proved in Section 2) is the
following.

Theorem 1.1. Let f in L
2N
N+2 (Ω) be such that (1.4) holds, and suppose that

(1.2), (1.6) and (1.7) hold. Then there exists a finite energy solution u for
problem (1.1). Furthermore, u g(x, u)|∇u|2 ∈ L1(Ω).

Note that the fact u g(x, u)|∇u|2 ∈ L1(Ω) implies that the solution u itself
is allowed as test function (since f ∈ H−1(Ω)) in the weak formulation of (1.1)
(see (2.1) in Section 2). With respect to the proof, due to the fact that the
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lower order term g(x, u)|∇u|2 is (possibly) singular as the solution is near 0,
we will approximate the function g(x, s) by nonsingular ones gn(x, s) in such a
way that the corresponding approximated problems have finite energy solutions
un for every n in N. The main difficulty in the proof of Theorem 1.1 relies on
a suitable local uniform estimate from below of these solutions. To do it, it
suffices by (1.6) to prove that any supersolution z > 0 for the equation

−div (M(x, z)∇z) + h(z)|∇z|2 = f in Ω

is above some positive constant in every ω ⊂⊂ Ω, i.e.

∀ω ⊂⊂ Ω ∃cω > 0 : z(x) ≥ cω > 0. (1.8)

This is proved in Proposition 2.3 via a suitable change of variable which turns
the goal into a local L∞ estimate for solutions of quasilinear problems. The
local L∞ estimate is then obtained using a result of [27] (see also the pioneering
paper [17] and also [13, 19]) on an equation whose model is

−div(M̃(x, v)∇v) + f(x)b(v) = 0 in Ω, (1.9)

where M̃ satisfies (1.2) and b(s) is a function with b(s)/s increasing for large
s > 0 and satisfying the Keller-Osserman condition∫ +∞ dt√

2
∫ t

0
b(τ)dτ

< +∞.

For the convenience of the reader, the exact result that we need is proved in
the appendix (see Theorem A.1). For such type of L∞ estimates we refer to
the “classical” literature on the so-called large solutions (see, among others,
[5, 31, 32, 38]) and on local estimates (see, among others, [13, 17, 19, 27, 37]).

Section 3 of this paper will be concerned with some extensions of the exis-
tence result. First of all, combining the above ideas with those in [35] (see also
[26]), we handle the case of data f in L1(Ω), proving the existence of distribu-
tional solutions u of (1.1), with u in W 1,q

0 (Ω) for every q < N
N−1 . More precisely,

in Section 3.1, we shall prove the following result.

Theorem 1.2. Let f in L1(Ω) be such that (1.4) holds and suppose that (1.2),
(1.6) and (1.7) hold. Then there exists a distributional solution u of (1.1), with
u in W 1,q

0 (Ω), for every q < N
N−1 . If, in addition, there exist s0 > 0 and µ > 0

such that
g(x, s) ≥ µ for a.e. x ∈ Ω, ∀s ≥ s0, (1.10)

then u ∈ H1
0 (Ω) (i.e., it is a finite energy solution).

On the other hand, in Section 3.2, we will also provide an analogous of
Theorem 1.1 involving more general differential operators whose principal part
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is not in divergence form and data in Lq(Ω) with q > N
2 . Namely, we consider

the following problem
−

N∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

N∑
i=1

bi(x)
∂u

∂xi
(x) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,
(1.11)

where the coefficients aij(x) satisfy the ellipticity condition

0 < α|ς|2 ≤
N∑

i,j=1

aij(x)ςiςj ≤ β|ς|2, ∀ς ∈ RN , (1.12)

for some 0 < α ≤ β. We prove the following result.

Theorem 1.3. Suppose that aij ∈ W 1,∞(Ω) satisfy (1.12), and that bi ∈
L∞(Ω). Assume that f(x) satisfies (1.4) and belongs to Lq(Ω) with q > N

2 . Sup-
pose moreover that g(x, s) satisfies (1.3), (1.6) (with h such that (1.7) holds).
Then there exists a solution u ∈ H1

0 (Ω) ∩ L∞(Ω) for (1.11). Furthermore,
g(x, u)|∇u|2 ∈ L1(Ω).

We are also concerned with nonexistence of positive solutions for problem
(1.1) for data f in Lq(Ω) for some q > N

2 , with f ≥ 0 and f 6≡ 0. In contrast with
the previous existence results, we will assume in this case that the nonlinearity
g(x, s) is above a function h(s) whose square root is not integrable in (0, 1).
Specifically, we assume that

0 ≤ h(s) ≤ g(x, s), for a.e. x ∈ Ω, ∀s > 0, (1.13)

where h : (0,+∞)→ [0,+∞) is a nonnegative continuous function such that

lim
s→0+

h(s) = +∞, lim
s→0+

∫ 1

s

√
h(t) dt = +∞, (1.14)

and

lim
s→0+

√
h(s) e

∫ s

1

√
h(t)dt

= h0 ≥ 0. (1.15)

Among others, we are going to prove in Section 4 that if λ1(f) denotes the first
positive eigenvalue of the laplacian operator −∆ with zero Dirichlet boundary
conditions and weight f ∈ Lq(Ω), (q > N/2), then the following result holds.

Theorem 1.4. Let f in Lq(Ω), with q > N
2 , be such that f ≥ 0 and f 6≡ 0,

and assume that (1.2), (1.13), (1.14), (1.15) hold. If λ1(f) > β
α , then (1.1) does

not have any finite energy solution.

As an easy consequence of Theorem 1.4, we will prove (see Corollary 4.5)
that the model problem (1.5) does not have any finite energy solution provided
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γ ≥ 2. By gathering together this nonexistence result and Theorem 1.1 we
conclude immediately that, in the case of the model problem (1.5), we have a
sharp range of values of γ for which there exist solutions. In addition, if γ is
not in this range, we prove also what happens if we try to approximate problem
(1.5) with a sequence of problems for which solutions exist.

Theorem 1.5. Problem (1.5) has a finite energy solution for every f ∈ Lq(Ω)
(q > N

2 ) satisfying (1.4) if and only if γ < 2. Moreover, let λ1 be the first
eigenvalue of the laplacian in the N -dimensional unit ball (i.e. the first positive
zero of the Bessel function Jm with m = N/2 − 1), assume f ∈ L∞(Ω), and
either

γ > 2 or γ = 2 and ‖f‖L∞(Ω) <
λ1

diam(Ω)2 . (1.16)

Then the sequence {un} of solutions of−∆un +
|∇un|2(
un + 1

n

)γ = f in Ω,

un = 0 on ∂Ω,

tends to 0 in H1
0 (Ω), and the sequence |∇un|2

(un+ 1
n )γ converges to f in the weak∗

topology of measures.

To conclude this introduction, some remarks are in order. First, we have
to mention that uniqueness of solutions for (1.5) is proved in [4] for the case
0 < γ < 1. Secondly, let us explicitly state that we have chosen to present the
results and to perform the proofs in the case N ≥ 3. However, all the results but
Theorem 1.1 hold true also in the case N = 2 (with easier proofs). In addition,
if N = 2 (which implies 2N

N+2 = 1), Theorem 1.1 is also true provided we replace

the assumption f ∈ L
2N
N+2 (Ω) with f ∈ Lm(Ω), and assume m > 1.

The plan of the paper is the following: in Section 2 we will prove a local
estimate from below for the solutions, together with Theorem 1.1. Section 3
is devoted to provide further existence results for L1 data (Theorem 1.2) and
operators in non divergence form (Theorem 1.3). In Section 4 we prove the
nonexistence result (both theorems 1.4 and 1.5). Finally we present in the
Appendix some results related to the local estimate (1.8). For instance, we
show in detail how to get the lower bound for solutions of (1.1), through a
suitable change of variable, proving a local bound from above for solutions of a
semilinear equation whose model is (1.9) (Theorem A.1). Such topic is strictly
related to the possibility of constructing estimates for solutions of (1.9) that do
not depend on the behavior at the boundary: and indeed in Theorem A.8 we
prove the existence of solutions that blow-up at the boundary (i.e., the so-called
“large solutions”) for such equations.

Notation. For any k > 0 we set Tk(s) = min(k,max(s,−k)) and Gk(s) =
s − Tk(s). Moreover, for any q > 1, q′ = q

q−1 will be the Hölder conjugate
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exponent of q, while for any 1 < p < N , p∗ = Np
N−p is the Sobolev conjugate

exponent of p. As usual, S denotes the best Sobolev constant, i.e.,

S = sup{‖u‖L2∗ (Ω) : ‖u‖H1
0 (Ω) = 1}.

In Section 3 we will use some ideas related to Marcinkiewicz spaces; for the
convenience of the reader we recall here their definition and some properties.
For s > 1, we denote by Ms(Ω) the space of measurable functions v : Ω → R
such that there exists c > 0, with

meas{x ∈ Ω : |v(x)| ≥ k} ≤ c

ks
, ∀k > 0. (1.17)

The spaceMs(Ω) is a Banach space, and on it can be defined the pseudo-norm

‖v‖sMs(Ω) = inf {c > 0 : (1.17) holds} .

We also recall that, since Ω is bounded, for every ε ∈ (0, s − 1], there exists a
positive constant C such that

‖v‖Ms(Ω) ≤ ‖v‖Ls(Ω), ∀v ∈ Ls(Ω)
‖w‖Ls−ε(Ω) ≤ C ‖w‖Ms(Ω), ∀w ∈Ms(Ω). (1.18)

Finally, following [15], we set ϕλ(s) = seλs
2
, λ > 0; in what follows we will

use that for every a, b > 0 we have

aϕ′λ(s)− b|ϕλ(s)| ≥ a

2
, (1.19)

if λ > b2

4a2 . We will also denote by ε(n) any quantity that tends to 0 as n
diverges.

Acknowledgment: The authors wish to express his thanks to Prof. Serrin for
his suggestion of extending our existence main result to non-divergence opera-
tors.

2. Finite energy solutions

In this section we will prove the existence of finite energy solutions for prob-
lem (1.1). Let us recall its definition.

Definition 2.1. A supersolution (resp. subsolution) for problem (1.1) is a func-
tion u ∈W 1,1

loc (Ω) such that

1) u > 0 almost everywhere in Ω,

2) g(x, u)|∇u|2 belongs to L1
loc(Ω),

3) for every 0 ≤ φ ∈ C∞c (Ω), it holds∫
Ω

M(x, u)∇u · ∇φ+
∫

Ω

g(x, u)|∇u|2φ ≥
(≤)

∫
Ω

f φ .

7



A function u ∈ W 1,1
0 (Ω) is a distributional solution for (1.1) if g(x, u)|∇u|2

belongs to L1(Ω), and u is both a supersolution and a subsolution for such a
problem.
If moreover u ∈ H1

0 (Ω), we say that u is a finite energy solution for problem
(1.1). In this case, we have∫

Ω

M(x, u)∇u·∇ψ+
∫

Ω

g(x, u)|∇u|2ψ =
∫

Ω

f ψ, ∀ψ ∈ H1
0 (Ω)∩L∞(Ω). (2.1)

The proof of Theorem 1.1 relies on approximating the datum f ∈ L
2N
N+2 (Ω)

by its truncature fn = Tn(f) and the nonlinearity g by a suitable sequence of
Carathéodory functions gn (for n ∈ N). Specifically, we define

gn(x, s) def=


g(x, s) s ≥ 1

n
,

nh

(
1
n

)
s

h(s)
g(x, s) 0 < s ≤ 1

n
,

0 s ≤ 0.

Since h is nonincreasing in a neighborhood of zero, we observe that there exists
n0 ∈ N, such that gn satisfies, for a.e. x ∈ Ω, ∀s > 0,

lim
n→+∞

gn(x, s) = g(x, s) ,

gn(x, s) ≤ g(x, s) ,∀n ≥ n0 ,

gn(x, s) ≥ 0 .

(2.2)

Since for fixed n both functions fn(x) (x ∈ Ω) and |ς|2
1+ 1

n |ς|2
(ς ∈ RN ) are

bounded, classical results allow us to deduce that problem−div (M(x, un)∇un) + gn(x, un)
|∇un|2

1 + 1
n |∇un|2

= fn in Ω,

un = 0 on ∂Ω,
(2.3)

has a solution un that belongs to H1
0 (Ω) (see [30]) and to L∞(Ω) (see [36]).

We are going to prove now some properties of the sequence un that we will
use in the sequel.

Lemma 2.2. Assume that 0 6≡ f ∈ L
2N
N+2 (Ω) satisfies f ≥ 0 and that M(x, s)

satisfies (1.2). If, for every n ∈ N, the function un ∈ H1
0 (Ω) is a solution of

problem (2.3), then:

1. The sequence {un} is bounded in H1
0 (Ω) and

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

is bounded in L1(Ω).
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2. The functions un are continuous in Ω and un(x) > 0 for every x ∈ Ω and
n ∈ N.

Proof. 1. Taking un as test function in (2.3) and using Hölder and Sobolev
inequalities we obtain that∫

Ω

M(x, un)∇un · ∇un +
∫

Ω

gn(x, un)un
|∇un|2

1 + 1
n |∇un|2

=
∫

Ω

fnun

≤ S‖f‖
L

2N
N+2 (Ω)

‖∇un‖L2(Ω).

By the ellipticity condition (1.2) and the nonnegativeness of gn(x, s)s, we con-

clude that the sequences un and ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

are bounded, respec-

tively, in H1
0 (Ω) and in L1(Ω).

2. We take u−n
def= min(un, 0) as test function in (2.3), so that, by (1.2),

α

∫
Ω

|∇u−n |2 +
∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

u−n ≤
∫

Ω

fn u
−
n .

Using that fn ≥ 0 and gn(x, s) is zero for every s ≤ 0, we obtain

α

∫
Ω

|∇u−n |2 ≤
∫

Ω

fn u
−
n ≤ 0.

Thus u−n ≡ 0 and so un ≥ 0. Moreover,

−div (M(x, un)∇un) = fn − gn(x, un)
|∇un|2

1 + 1
n |∇un|2

∈ L∞(Ω).

Hence un belongs to the space of the Hölder continuous functions in Ω (see for
instance [25], Theorem 1.1 in Chapter 4).

We are now going to prove that un > 0 in Ω. Let Cn > 0 be such that
gn(x, s) ≤ Cns, for s ∈

[
0, ‖un‖L∞(Ω)

]
. Thus the nonnegative function un

satisfies in the sense of distributions in Ω

−div (M(x, un)∇un) + nCnun ≥ −div (M(x, un)∇un) +
gn(x, un)|∇un|2

1 + 1
n |∇un|2

= fn .

Observing that fn is nonnegative and not identically zero (since f 6≡ 0), by
the strong maximum principle (see [23] for instance) we deduce that un > 0 in
Ω.

In the next proposition we will prove that the sequence {un} is uniformly
bounded from below, away from zero, in every compact set in Ω. This result
will be crucial in order to prove the existence of a solution for (1.1).
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Proposition 2.3. Suppose that f ∈ L∞loc (Ω) satisfies (1.4), and that h is such
that (1.7) holds. Let ω be a compactly contained open subset of Ω. Then there
exists a constant cω > 0 such that every supersolution 0 < z ∈ H1

loc(Ω) ∩ C(Ω)
of the equation

−div (M(x, z)∇z) + h(z)|∇z|2 = f in Ω, (2.4)

satisfies
z ≥ cω in ω.

Remark 2.4. The above proposition will be crucial in the proofs of both The-
orem 1.1 and 1.2. In fact, we will use the following consequences:

(i) Let un be a solution of (2.3) with n ≥ n0 (n0 given by (2.2)). By
Lemma 2.2, un > 0 in Ω and it is continuous. In particular h(un)|∇un|2 ∈
L1

loc(Ω). Thus, from the inequalities gn(x, s) ≤ g(x, s) ≤ h(s) for every
s > 0 and fn ≥ f1 we obtain that un is a supersolution for

−div (M(x, z)∇z) + h(z)|∇z|2 = f1 in Ω.

Therefore, by the above proposition (with f = f1 and z = un ∈ H1
0 (Ω) ∩

C(Ω) (Lemma 2.2-2.)) for any ω ⊂⊂ Ω we get the existence of a positive
constant cω such that un ≥ cω in ω. Taking k > 0 and m0 > max{n0,

1
cω
},

we deduce, by the definition of gn, that for all n ≥ m0

gn(x, un(x)) = g(x, un(x)) ≤ ck(ω) def= max
s∈[cω,k]

h(s) ,

for every x ∈ ω such that un(x) ≤ k.

(ii) If 0 < un ∈ H1
0 (Ω) ∩ C(Ω) is a finite energy solution of

−div (M(x, un)∇un) + g(x, un)|∇un|2 = fn in Ω,

then, using again that g(x, s) ≤ h(s), fn ≥ f1 and h(un)|∇un|2 ∈ L1
loc(Ω),

we derive that un is also a supersolution of

−div (M(x, z)∇z) + h(z)|∇z|2 = f1 in Ω.

Consequently, if ω ⊂⊂ Ω and cω has been defined above (with f = f1),
then un ≥ cω in ω. Therefore,

g(x, un(x)) ≤ ck(ω) def= max
s∈[cω,k]

h(s) ,

for every x ∈ ω such that un(x) ≤ k.

Proof of Proposition 2.3. Let z > 0 be a supersolution of (2.4). We are going
to consider a suitable change of variable. In order to make it, since in general
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the function h may be integrable in (0, 1), we set h̃(s) = h(s) +
α

s
, and define,

for s > 0, the nondecreasing function

H(s) =
∫ s

1

h̃(t)dt =
∫ s

1

h(t)dt+ log sα, (2.5)

and the nonincreasing function

ψ(s) =
∫ 1

s

e−
H(t)
α dt =

∫ 1

s

t−1e−
R t
1 h(τ)dτ

α dt. (2.6)

Observing that

lim
s→0+

ψ(s) = +∞, lim
s→+∞

ψ(s)= ψ∞ ∈ [−∞, 0),

we can define
v

def= ψ(z). (2.7)

Since z is continuous and strictly positive in Ω, we get that z is bounded
away from zero (with the bound depending on z) in every open set ω compactly
contained in Ω. Consequently, by the chain rule, we have

∇v = −e−
H(z)
α ∇z ∈ L2(ω), ∀ω ⊂⊂ Ω, (2.8)

and thus v ∈ H1(ω) for every ω ⊂⊂ Ω, i.e., v ∈ H1
loc(Ω).

Let 0 ≤ φ ∈ C∞c (Ω), and take (as in [8]) e−
H(z)
α φ as test function in (2.4) to

deduce from the inequality h(s) ≤ h̃(s) that

−
∫

Ω

M(x, z)∇z · ∇z h̃(z)
α

e−
H(z)
α φ +

∫
Ω

M(x, z)∇z · ∇φ e−
H(z)
α

+
∫

Ω

h̃(z)|∇z|2e−
H(z)
α φ ≥

∫
Ω

fe−
H(z)
α φ .

Using (1.2) together with (2.8) we get,

−
∫

Ω

M(x, z)∇ψ(z) · ∇φ ≥
∫

Ω

fe−
H(z)
α φ≥

∫
Ω

(
e−

H(z)
α − 1

)
fφ .

If we define M̃(x, s) = M(x, ψ−1(s)) and

b(s) = e−
H(ψ−1(s))

α − 1 for every s ∈ (ψ∞,+∞), (2.9)

then v is subsolution of

−div (M̃(x, v)∇v) + f(x) b(v) = 0 in Ω.

Observe that b(s)
s is nondecreasing for large s > 0; indeed, this is equivalent

to prove that Υ(t) = e−
H(t)
α −1
ψ(t) is nonincreasing in a neighborhood of t = 0. To

11



show this, let w0 ∈ (0, 1) be such that h̃(t) is nonincreasing in (0, w0], and, note
that

−e
H(t)
α ψ2(t)Υ′(t) =

h̃(t)
α
ψ(t)− (e−

H(t)
α − 1) =

∫ 1

t

[h̃(t)− h̃(s)]
α

e−
H(s)
α ds

≥
∫ 1

w0

[h̃(t)− h̃(s)]
α

e−
H(s)
α ds = h̃(t)M1 −M2

where

M1 =
1
α

∫ 1

w0

e−
H(s)
α ds and M2 =

1
α

∫ 1

w0

h̃(s)e−
H(s)
α ds.

Thus, if t belongs to the interval (0, h̃−1(min{w0,M2/M1})), then the right hand
side of the above inequality is positive, and consequently Υ(t) is nonincreasing
in this interval.

We also claim now that since
∫ 1

0

√
h(s)ds < +∞ and h is nonincreasing in

a neighborhood of zero, then the function b(s) satisfies the well-known Keller-
Osserman condition (see [24] and [33] for instance), i.e., there exists t0 > 0 such
that ∫ +∞

t0

dt√
2
∫ t

0
b(s)ds

< +∞. (2.10)

We postpone the proof of the claim for the moment, and we show how to
conclude the proof by using the claim. Indeed, by applying [27, Theorem 7] (see
also Theorem A.1 in the Appendix where, for the convenience of the reader, we
have also included a proof of the precise result that we need here) we derive
that for every ω ⊂⊂ Ω, there exists Cω > 0 such that

v ≤ Cω in ω.

Therefore, undoing the change

z ≥ ψ−1(Cω) = cω > 0 in ω ,

as desired.
Consequently, to conclude the proof it suffices to show (2.10) or, equivalently,

that ∫ +∞

t0

dt√
2
∫ t

0
e−

H(ψ−1(s))
α ds

< +∞.

Using the change τ = ψ−1(s), we obtain

∫ +∞

t0

dt√
2
∫ t

0
e−

H(ψ−1(s))
α ds

=
∫ +∞

t0

dt√
2
∫ ψ−1(0)

ψ−1(t)
e−2

H(τ)
α dτ

.

12



Now we apply the change w = ψ−1(t) to deduce that∫ +∞

t0

dt√
2
∫ t

0
e−

H(ψ−1(s))
α ds

≤
∫ w0

0

dw√
2
∫ w0

w
e

2
α [H(w)−H(τ)]dτ

,

with 0 < w0 = ψ−1(t0) < 1 = ψ−1(0) since ψ is nonincreasing, and we choose
t0 >> 1 such that h is nonincreasing in (0, w0].

Since h satisfies (1.7), also h̃ satisfies it, so that we conclude the proof if we
show that there exists a positive contant c0 such that

h̃(w)
∫ w0

w

e
2
α [H(w)−H(τ)] dτ ≥ c0 > 0, ∀w ∈ (0, w0). (2.11)

Indeed, the only difficulty is near zero. To overcome it, we use that h (hence h̃)
is nonincreasing in (0, w0], to obtain

h̃(w)
∫ w0

w

e
2
α [H(w)−H(τ)] dτ ≥

∫ w0

w

h̃(τ)e
2
α [H(w)−H(τ)] dτ

= −αe
2
αH(w)

2

∫ w0

w

− 2
α
h̃(τ)e−

2
αH(τ) dτ

= −αe
2
αH(w)

2

[
e−

2
αH(τ)

]w0

w
= −α

2
e

2
αH(w)

e
2
αH(w0)

+
α

2
.

Using the above inequality and the fact that e
2
αH(w) is close to zero for w small

enough, we can choose w ∈ (0, w0) such that

h̃(w)
∫ w0

w

e
2
α [H(w)−H(τ)] dτ ≥ α

4
,

for 0 < w < w. Thus the existence of c0 such that (2.11) holds is deduced.

Remark 2.5. If h is such that

lim
s→0+

∫ 1

s

h(t) dt = +∞,

there is no need to define the above function h̃. Indeed, in this case, the proof
of the above theorem works by using directly h instead of h̃.

Proof of Theorem 1.1. We are going to prove that, up to a subsequence, the
sequence {un} of finite energy solutions of (2.3) converges to a finite energy
solution of (1.1).

By Case 1. of Lemma 2.2, we obtain the existence of constants C1, C2 > 0
such that

‖un‖H1
0 (Ω) ≤ C1 and

∫
Ω

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

≤ C2. (2.12)
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Thus, up to a subsequence, we can assume that un converges to some u ∈ H1
0 (Ω)

weakly in H1
0 (Ω) and, by Rellich’s Theorem, strongly in L2(Ω) and a.e. in Ω.

Choosing 1
εTε(un) as test function in (2.3) and taking into account that

fn ≤ f in Ω, we deduce that∫
Ω

Tε(un)
ε

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

≤
∫

Ω

fn ≤
∫

Ω

f .

If we take the limit as ε tends to zero, and we use that, by Lemma 2.2, un > 0
in Ω, we get∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

=
∫
{un>0}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

≤
∫

Ω

f . (2.13)

The proof will be concluded by proving the following steps:
Step 1. For every k > 0, Tk(un)→ Tk(u) strongly in H1

loc(Ω).
Step 2. un is strongly convergent in H1

loc(Ω).
Step 3. We pass to the limit in (2.3).

Step 1. Here we want to prove that

lim
n→+∞

∫
Ω

|∇(Tk(un)− Tk(u))|2φ = 0, ∀φ ∈ C∞c (Ω) with φ ≥ 0. (2.14)

Reasoning as in [12], we consider the function ϕλ(s) defined in (1.19) and
we choose ϕλ(Tk(un)− Tk(u))φ as test function in (2.3): we have∫

Ω

M(x, un)∇un · ∇(Tk(un)− Tk(u))ϕ′λ(Tk(un)− Tk(u))φ

+
∫

Ω

M(x, un)∇un · ∇φϕλ(Tk(un)− Tk(u))

+
∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

ϕλ(Tk(un)−Tk(u))φ =
∫

Ω

fn ϕλ(Tk(un)−Tk(u))φ .

Since Tk(un)→ Tk(u) weakly in H1
0 (Ω) and strongly in L2(Ω), we note that∫

Ω

fn ϕλ(Tk(un)−Tk(u))φ −
∫

Ω

M(x, un)∇un · ∇φϕλ(Tk(un)−Tk(u)) = ε(n).

Moreover, choosing ωφ ⊂⊂ Ω with suppφ ⊂ ωφ, we deduce, by Case (i) of
Remark 2.4 and by the nonnegativeness of both gn and ϕλ(k − Tk(u)), that∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

ϕλ(Tk(un)− Tk(u))φ

≥
∫
{un≤k}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

ϕλ(Tk(un)− Tk(u))φ
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≥ −ck(ωφ)
∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un)− Tk(u))|φ .

Thus ∫
Ω

M(x, un)∇un · ∇(Tk(un)− Tk(u))ϕ′λ(Tk(un)− Tk(u))φ

−ck(ωφ)
∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un)− Tk(u))|φ ≤ ε(n).
(2.15)

Note that∫
Ω

M(x, un)∇un · ∇(Tk(un)− Tk(u))ϕ′λ(Tk(un)− Tk(u))φχ{un≥k}

= −
∫

Ω

M(x, un)∇un · ∇Tk(u)ϕ′λ(k − Tk(u))φχ{un≥k} = ε(n),

so that, adding

−
∫

Ω

M(x, un)∇Tk(u) · ∇(Tk(un)− Tk(u))ϕ′λ(Tk(un)− Tk(u))φ = ε(n)

in both sides of (2.15) and since∫
Ω

|∇Tk(un)|2|ϕλ(Tk(un)− Tk(u))|φ

≤ 2
∫

Ω

|∇(Tk(un)− Tk(u))|2|ϕλ(Tk(un)− Tk(u))|φ

+2
∫

Ω

|∇Tk(u)|2|ϕλ(Tk(un)− Tk(u))|φ

= 2
∫

Ω

|∇(Tk(un)− Tk(u))|2|ϕλ(Tk(un)− Tk(u))|φ + ε(n),

we find, using also (1.2) (for the sake of brevity, we omit writing the argument
Tk(un)− Tk(u) for ϕλ and ϕ′λ),∫

Ω

|∇(Tk(un)− Tk(u))|2
[
αϕ′λ − 2ck(ωφ)|ϕλ|

]
φ ≤ ε(n).

Choosing λ such that (1.19) holds with a = α and b = 2ck(ωφ), we obtain (2.14).

Step 2. We prove now that the sequence un is strongly convergent in H1
loc(Ω).

Let us choose Gk(un) as test function in (2.3) and drop the positive inte-
gral involving the lower order term. By using (1.2), and Hölder and Sobolev
inequalities, we have

∫
Ω

|∇Gk(un)|2 ≤ S
2

α2

(∫
{un≥k}

f
2N
N+2

)1+ 2
N

,
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and the right hand side of the previous inequality is arbitrarily small if k is large
enough. This and the convergence proved in Step 1 of Tk(un) in H1

0 (Ω) implies
that |∇un|2 is equiintegrable in every ω ⊂⊂ Ω.

Moreover, since

−div(M(x, un)∇un) = fn − gn(x, un)
|∇un|2

1 + 1
n |∇un|2

,

and the right hand side is bounded in L1(Ω) by the assumptions on f and by
(2.13), we can apply Lemma 1 of [9] (see also [14]) to deduce that, up to (not
relabeled) subsequences, ∇un converges to ∇u a.e. in Ω. Hence, by Vitali
theorem

un → u in H1
loc(Ω).

Step 3. Let us observe that, by applying Fatou lemma in (2.12) and (2.13), we
deduce that∫

Ω

ug(x, u)|∇u|2 ≤ C2 and
∫

Ω

g(x, u)|∇u|2 ≤
∫

Ω

f ,

respectively. Therefore, to conclude the proof we only have to prove that u is
a distributional solution of the problem (1.1). We begin by passing to the limit
on n in the equation satisfied by un, i.e., in∫

Ω

M(x, un)∇un · ∇φ +
∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

φ =
∫

Ω

fnφ , ∀φ ∈ C∞c (Ω).

First of all, the weak convergence of un to u and the weak-∗ convergence of
M(x, un) to M(x, u) in L∞(Ω) implies that

lim
n→+∞

∫
Ω

M(x, un)∇un∇φ =
∫

Ω

M(x, u)∇u∇φ , ∀φ ∈ C∞c (Ω). (2.16)

On the other hand, if we fix ω ⊂⊂ Ω, then, by Remark 2.4,

gn(x, un(x)) ≤ ck(ω), ∀n >> 1, and ∀x ∈ ω satisfying un(x) ≤ k.

Consequently, if E ⊂⊂ ω we have∫
E

|gn(x, un(x))| |∇un(x)|2

1 + 1
n |∇un(x)|2

≤
∫
E∩{un≤k}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

+
∫
E∩{un≥k}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

≤ ck(ω)
∫
E∩{un≤k}

|∇Tk(un)|2 +
∫
{un≥k}

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

. (2.17)
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Let ε > 0 be fixed. Observe that if, for k > 1, we use T1(Gk−1(un)) as test
function in (2.3) and drop positive terms, we deduce that∫

{un≥k}
gn(x, un)

|∇un|2

1 + 1
n |∇un|2

≤
∫
{un≥k−1}

fn ≤
∫
{un≥k−1}

f .

Thus, since the right hand side tends to 0 uniformly in n as k diverges, we
obtain the existence of k0 > 1 such that∫

{un≥k}
gn(x, un)

|∇un|2

1 + 1
n |∇un|2

≤ ε

2
, ∀k ≥ k0, ∀n ∈ N.

Moreover, since Tk(un) is strongly compact in H1
loc(Ω), there exist nε, δε such

that for every E ⊂⊂ Ω with meas (E) < δε we have∫
E∩{un≤k}

|∇Tk(un)|2 <
ε

2ck(ω)
, ∀n ≥ nε.

In conclusion, by (2.17), taking k ≥ k0 we see that meas (E) < δε implies∫
E

|gn(x, un(x))| |∇un(x)|2

1 + 1
n |∇un(x)|2

≤ ε, ∀n ≥ nε,

i.e., the sequence gn(x, un) |∇un|2
1+ 1

n |∇un|2
is equiintegrable. This, together with its

a.e. convergence to g(x, u)|∇u|2, implies by Vitali theorem that

lim
n→+∞

∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

φ =
∫

Ω

g(x, u)|∇u|2φ, ∀φ ∈ C∞c (Ω).

Therefore, using the above limit, (2.16) and since fn tends to f strongly in
L1(Ω) we conclude that∫

Ω

M(x, u)∇u∇φ +
∫

Ω

g(x, u)|∇u|2φ =
∫

Ω

fφ , ∀φ ∈ C∞c (Ω).

Remark 2.6. In addition, if f ∈ Lq(Ω) with q > N/2, then the solution
u given by Theorem 1.1 is continuous in Ω. Indeed, by using ψ = Tm(Gk(u)),
with m > k, as test function in (2.1), it is easy to adapt the idea of Stampacchia
([36]) in order to obtain that u ∈ L∞(Ω). Now, consider a function ζ ∈ C∞(Ω)
with 0 ≤ ζ(x) ≤ 1, for every x ∈ Ω and compact support in a ball Bρ of radius
ρ > 0, and set Ak,ρ = {x ∈ Bρ ∩ Ω : u(x) > k}. Following the idea of the proof
of Theorem 1.1 of Chapter 4 in [25], take φ = Gk(u)ζ2 as test function in (2.1)
to deduce by (1.2) and Hölder’s inequality that

α

∫
Ak,ρ

|∇u|2ζ2 ≤ ‖f‖Lq(Ω)‖u‖L∞(Ω)(meas Ak,ρ)1− 1
q +2β

∫
Ak,ρ

|∇u||∇ζ|ζGk(u).
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Using again Young’s inequality we get∫
Ak,ρ

|∇u|2ζ2 ≤
2‖f‖Lq(Ω)‖u‖L∞(Ω)

α
(meas Ak,ρ)1− 1

q +
4β
α2

∫
Ak,ρ

|∇ζ|2G2
k(u).

In particular, if for σ ∈ (0, 1) we choose ζ such that it is constantly equal to 1
in the concentric ball Bρ−σρ (to Bρ) of radius ρ− σρ and |∇ζ| < 1

σρ , we obtain

∫
Ak,ρ−σρ

|∇u|2 ≤ γ

(
1 +

1

σ2ρ2(1− N
2q )

max
Ak,ρ

(u− k)2

)
(meas Ak,ρ)1− 1

q ,

where γ = max
{

2‖f‖Lq(Ω)‖u‖L∞(Ω)

α , 4β
α2ω

1
q

N

}
with ωN denoting the measure of

the unit ball of RN .
This means that for δ > 0 small enough and every M ≥ ‖u‖L∞(Ω), the

function u belongs to the class B2(Ω,M, γ, δ, 1
2q ) with 2q > N (see [25], pag.

81). Applying Theorem 6.1 of [25] we deduce that u is Hölder continuous in Ω.

3. Further Existence Results

3.1. Existence for data in L1(Ω)
In this section we prove Theorem 1.2. In this case, taking advantage of

Theorem 1.1, we approximate problem (1.1) by{
−div (M(x, un)∇un) + g(x, un)|∇un|2 = fn in Ω,

un = 0 on ∂Ω,
(3.1)

where fn = Tn(f).
Note that the existence of a nonnegative finite energy solution un ∈ H1

0 (Ω)∩
C(Ω) such that g(x, un)|∇un|2 ∈ L1(Ω) follows from Theorem 1.1 and Re-
mark 2.6.

Lemma 3.1. If f ∈ L1(Ω) satisfies (1.4), g(x, s) satisfies (1.6) (with h(s) sat-
isfying (1.7)), and un is a solution of (3.1), then

(i) un is bounded in M
N
N−2 (Ω) and |∇un| is bounded in M

N
N−1 (Ω);

(ii) up to subsequences, the sequence un is weakly convergent to some u in
W 1,q

0 (Ω) for every q ∈ [1, N
N−1 );

(iii) for any k > 0 and for any ω ⊂⊂ Ω,

Tk(un)→ Tk(u) in H1(ω).

Proof. (i) Taking Tk(un) as test function in (3.1) and using (1.2), we have

α

∫
Ω

|∇Tk(un)|2 +
∫

Ω

g(x, un)Tk(un)|∇un|2 ≤ k‖fn‖L1(Ω).
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Since 0 ≤ fn ≤ f and g(x, un) ≥ 0, we have

α

∫
Ω

|∇Tk(un)|2 ≤ k‖f‖L1(Ω). (3.2)

Standard estimates (see [6, Lemmas 4.1 and 4.2]) imply that un is bounded in
M

N
N−2 (Ω) and that |∇un| is bounded in M

N
N−1 (Ω).

(ii) Let 1 ≤ q < N
N−1 . By the preceding case and by the embedding (1.18), we

deduce that un is bounded in W 1,q
0 (Ω) and thus, passing to a subsequence if

necessary, there exists u such that un ⇀ u weakly in W 1,q
0 (Ω).

(iii) Our aim is to show that

lim
n→+∞

∫
Ω

|∇(Tk(un)− Tk(u))|2φ = 0 , ∀φ ∈ C∞c (Ω) , φ ≥ 0.

Here we adapt to our case a technique to obtain the strong convergence of
truncations first introduced in [26] (see also [35]). Let us choose ϕλ(wn)φ as
test function in (3.1) where ϕλ(s) has been defined in (1.19) and

wn = T2k[un − Tl(un) + Tk(un)− Tk(u)], 0 < k < l.

Thus we have∫
Ω

M(x, un)∇un · ∇wnϕ′λ(wn)φ +
∫

Ω

M(x, un)∇un · ∇φϕλ(wn)

+
∫

Ω

g(x, un)|∇un|2ϕλ(wn)φ =
∫

Ω

fn φϕλ(wn) .

(3.3)

Observing that ∇Tk(un) = 0 if un > k and ∇wn ≡ 0 if un ≥ 2k + l ≡ K (we
recall that l > k), we have∫

Ω

M(x, un)∇un · ∇wnϕ′λ(wn)φ

=
∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un)− Tk(u))ϕ′λ(wn)φ

+
∫
{un≥k}

M(x, un)∇TK(un) · ∇T2k(Gl(un) + k − Tk(u))ϕ′λ(wn)φ .

Moreover, using that

∇TK(un) · ∇(Gl(un)− Tk(u)) = ∇TK(un) · ∇Gl(un)−∇TK(un)∇Tk(u)
≥ −∇TK(un) · ∇Tk(u),

we have∫
{un>k}∩{Gl(un)−Tk(u)≤k}

M(x, un)∇TK(un) · ∇(Gl(un)− Tk(u))ϕ′λ(wn)φ

≥ −
∫
{Gl(un)+k−Tk(u)≤2k}

|M(x, un)∇TK(un) · ∇Tk(u)|ϕ′λ(wn)φχ{un>k} ,
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and thus, since the above integral tends to zero as n diverges,∫
Ω

M(x, un)∇un · ∇wnϕ′λ(wn)φ

≥
∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un)− Tk(u))ϕ′λ(wn)φ + ε(n).

(3.4)

On the other hand, since Gl(un) + k − Tk(u) ≥ 0,∫
Ω

g(x, un)|∇un|2ϕλ(wn)φ ≥
∫
{un≤k}

g(x, un)|∇un|2ϕλ(wn)φ .

Thanks to Case (ii) of Remark 2.4 applied to a subset ωφ ⊂⊂ Ω with
suppφ ⊂ ωφ, we have g(x, un(x)) ≤ ck(ωφ) for every x ∈ ω with un(x) ≤ k.

Then, we get∣∣∣∣∣
∫
{un≤k}

g(x, un)|∇un|2ϕλ(Tk(un)− Tk(u))φ

∣∣∣∣∣
≤ ck(ωφ)

∫
Ω

|∇Tk(un)|2|ϕλ(Tk(un)− Tk(u))|φ

≤ 2ck(ωφ)
∫

Ω

|∇(Tk(un)− Tk(u))|2|ϕλ(Tk(un)− Tk(u))|φ

+2ck(ωφ)
∫

Ω

|∇Tk(u)|2|ϕλ(Tk(un)− Tk(u))|φ .

Note that the last integral tends to 0 as n diverges since ϕλ(Tk(un)−Tk(u)) con-
verges to zero in the weak-∗ topology of L∞(Ω) and Tk(u) ∈ H1

0 (Ω). Therefore,
we deduce from this, (3.3) and (3.4) that∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un)− Tk(u))ϕ′λ(wn)φ

−2ck(ωφ)
∫

Ω

|∇(Tk(un)− Tk(u))|2|ϕλ(wn)|φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n),

and adding to both sides of the previous inequality

−
∫

Ω

M(x, un)∇Tk(u) · ∇(Tk(un)− Tk(u))ϕ′λ(wn)φ = ε(n),

we find from (1.2),∫
Ω

|∇(Tk(un)− Tk(u))|2
[
αϕ′λ(wn)− 2ck(ωφ)|ϕλ(wn)|

]
φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).
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Choosing λ such that ϕλ satisfies (1.19) with a = α and b = 2ck(ωφ), we get

α

2

∫
Ω

|∇(Tk(un)− Tk(u))|2φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).

Moreover, wn a.e. (and weakly-∗ in L∞(Ω)) converges towards w = T2k(Gl(u))
and thus, recalling that ∇un → ∇u weakly in (Lq(Ω))N , q < N/(N − 1),

lim
n→+∞

∫
Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn)

=
∫

Ω

fφϕλ(w) −
∫

Ω

M(x, u)∇u · ∇φϕλ(w) .

Consequently, using (1.2)

α

2

∫
Ω

|∇(Tk(un)− Tk(u))|2φ ≤
∫

Ω

fφϕλ(w) −
∫

Ω

M(x, u)∇u · ∇φϕλ(w) + ε(n)

≤ ϕλ(2k)
∫
{u≥l}

(f + β|∇u||∇φ|) + ε(n).

Since the last integral tends to zero as l diverges, (iii) is proved.

Now, we prove our main result concerning L1(Ω) data:

Proof of Theorem 1.2. We begin by proving the first part of the theorem, i.e.
that there exists a solution u ∈ W 1,q

0 (Ω), for every q < N
N−1 , of problem (1.1).

We first observe that we deduce from the results of [14] that ∇un → ∇u a.e.,
and from Lemma 3.1 the estimates on un and |∇un| inM

N
N−2 (Ω) andM

N
N−1 (Ω)

respectively. Thus un → u strongly in W 1,q
0 (Ω), for every q < N

N−1 . Arguing
as in the proof of Theorem 1.1, we can show that, choosing 1

εTε(un) as test
function in (3.1) and applying Fatou lemma, we have g(x, u)|∇u|2 ∈ L1(Ω).

In order to prove that for all ω ⊂⊂ Ω, {g(x, un)|∇un|2} is strongly con-
vergent in L1(ω) to g(x, u)|∇u|2, it suffices to show the local uniform equiin-
tegrability of such sequence. To prove the claim, we choose T1(Gk−1(un)) (for
k > 1) as test function in the equation (3.1) and we deduce, by dropping the
first positive term (in virtue of (1.2)), and since fn ≤ f , that∫

{un≥k}
g(x, un)|∇un|2 ≤

∫
{un≥k−1}

f . (3.5)

By a similar argument to the one used in Step 3 of the proof of Theorem 1.1, we
prove the claim. Indeed, let E ⊂ ω ⊂⊂ Ω be a measurable set. By Remark 2.4-
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(ii) and (3.5), we have, ∀k1,∫
E

g(x, un)|∇un|2 =
∫
E∩{un≤k}

g(x, un)|∇un|2

+
∫
E∩{un≥k}

g(x, un)|∇un|2 ≤ ck(ω)
∫
E∩{un≤k}

|∇Tk(un)|2

+
∫
{un≥k}

g(x, un)|∇un|2 ≤ ck(ω)
∫
E

|∇Tk(un)|2 +
∫
{un≥k−1}

f .

Since meas ({x ∈ Ω : un ≥ k − 1}) tends to zero (uniformly with respect
to n) as k tends to +∞ (because of the boundedness of {un} in the space
MN/(N−2)(Ω) by Lemma 3.1-(ii)), we obtain that the last integral in the above
inequalities tends to zero as k goes to +∞. This, and the local equiintegrability
of |∇Tk(un)|2 (by Lemma 3.1-(iii)), then show the local equiintegrability of
{g(x, un)|∇un|2}.

Using moreover that ∇un → ∇u a.e., we conclude by Vitali theorem that

g(x, un)|∇un|2 → g(x, u)|∇u|2 in L1(ω) , ∀ω ⊂⊂ Ω . (3.6)

Now, using (3.6) and the strong convergence of ∇un to ∇u in (Lq(Ω))N , for
every q < N

N−1 , we can pass to the limit in (3.1) to show that u is a solution for
(1.1).

In order to prove the second part of the theorem, we simply note that we
can fix k ≥ max{s0, 1} so that (1.10) and (3.5) imply

µ

∫
Ω

|∇Gk(un)|2 = µ

∫
{un≥k}

|∇un|2 ≤
∫
{un≥k−1}

f ≤ ‖f‖L1(Ω). (3.7)

Hence, taking into account both (3.2) and (3.7), we have∫
Ω

|∇un|2 =
∫

Ω

|∇Tk(un)|2 +
∫

Ω

|∇Gk(un)|2 ≤
(
k

α
+

1
µ

)
‖f‖L1(Ω),

i.e., the boundedness of the sequence {un} in H1
0 (Ω). This implies that the

solution u, which is the limit of (a subsequence of) {un}, belongs to H1
0 (Ω).

Remark 3.2. Actually, if (1.10) holds, it is possible to prove, in this latter
case, that the approximate sequence un is strongly convergent to u in H1(ω),
for every ω ⊂⊂ Ω. Indeed, due to the a.e. convergence of ∇un to ∇u in Ω, it
suffices to check the equiintegrability of |∇un|2 in every ω ⊂⊂ Ω. To do that,
we take a measurable set E ⊂ ω ⊂⊂ Ω, and we observe that, thanks to (3.7),
for any k ≥ max{s0, 1}, we can write∫

E

|∇un|2 =
∫
E

|∇Tk(un)|2 +
∫
E

|∇Gk(un)|2

≤
∫
E

|∇Tk(un)|2 +
1
µ

∫
{un≥k−1}

f . (3.8)

22



Therefore, using again both the boundedness of un in M
N
N−2 (Ω) and the equi-

integrability of |∇Tk(un)|2 in ω given by Lemma 3.1, we see that (3.8) yields
the desired result.

3.2. Non-divergence operators
In this section we sketch the proof of Theorem 1.3 without giving all the

details since they are straightforward adaptations of the applied arguments in
the proof of Theorem 1.1.

Proof of Theorem 1.3. We denote by P (x) the vector field whose ith component
is
Pi(x) = bi(x) +

∑N
j=1

∂aij
∂xj

(x) (i = 1, . . . , N) and by M(x) the transpose of
the matrix (aij(x))i,j=1,...,N . Let gn(x, s) also be given by (2.2). Consider the
sequence un ∈ H1

0 (Ω) ∩ L∞(Ω) of solutions for the problem{
−div(M(x)∇un) + P (x) · ∇un + gn(x, un)|∇un|2 = f in Ω,

un = 0 on ∂Ω.
(3.9)

The proof is divided into several steps.
Step 1. L∞(Ω) estimate. Using the ideas of [16], we choose v = e2λGk(un)−

1, with λ >> 1 as test function in the weak formulation of (3.9) to prove that
the sequence {un} is bounded in L∞(Ω).

Step 2. H1
0 (Ω) estimate. By the previous L∞(Ω) estimate, it is easy to

see that {un} is bounded in H1
0 (Ω), and so un weakly converges in H1

0 (Ω) to a
function u in H1

0 (Ω) ∩ L∞(Ω). Moreover, arguing as in Remark 2.6, it is clear
that both un (for every n ∈ N) and u are continuous in Ω.

Step 3. Estimate on the lower order term. Choosing Tε(un)
ε as test function

in (3.9) and taking limit as ε tends to zero, we deduce, for some C1 > 0, that∫
Ω

gn(x, un)|∇un|2 ≤
∫

Ω

|f |+ C1.

Step 4. Uniform bound from below for un in compact sets. Observe that
un are supersolutions of the equation

−div(M(x)∇u) + P (x) · ∇u+ h(u)|∇u|2 = f in Ω. (3.10)

If, for H(s) defined in (2.5) and φ ∈ C∞c (Ω), we take e−
H(u)
α φ as test function

in (3.10), we see that vn = ψ(un) are subsolutions of

−div(M(x)∇v) + P (x) · ∇v + b(v)f(x) = 0 in Ω, (3.11)

where b(s) has been defined in (2.9) and we recall that it satisfies the Keller-
Osserman condition (see (2.10)). Hence, by Theorem A.1 in the Appendix, we
conclude that for every ω ⊂⊂ Ω, there exists Cω such that vn = ψ(un) ≤ Cω in
ω. Therefore, un ≥ cω > 0 in ω, with cω = ψ−1(Cω).
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Step 5. Compactness of {un} in H1
loc(Ω). For ϕλ(s) defined in (1.19) and

φ ∈ C∞c (Ω), we choose ϕλ(un − u)φ as test function in the weak formulation
of (3.12) and we note that the ideas of Theorem 1.1 works since the new term
that appears in the equation does not lead to any further difficulty because it
is linear with respect to ∇u. Thus we conclude that, up to a subsequence,

un → u in H1
loc(Ω) .

Step 6. Passing to the limit. By Step 5, we pass to the limit in the weak
formulation of (3.9) to deduce that u is a solution for{

−div(M(x)∇u) + P (x) · ∇u+ g(x, u)|∇u|2 = f in Ω,
u = 0 on ∂Ω.

(3.12)

Since the coefficients aij are Lipschitz continuous on Ω, we see that u solves
(1.11). Finally, by Step 3 we conclude that g(x, u)|∇u|2 ∈ L1(Ω).

4. Nonexistence results

This section is devoted to study nonexistence of solutions for (1.1). We begin
by observing that if the function g(x, s) satisfies condition (1.13) with h such
that (1.14) and (1.15) hold, then we can change h by a smaller function h which,
in addition to (1.14) and (1.15), also satisfies h(s) = 0 for every s > 1. Indeed,
if s0 is the point where h attains its minimum value in [ 1

2 , 1], then it suffices to
define

h(s) =
{

(h(s)− h(s0))+ if s ∈ (0, s0],
0 if s > s0.

Consequently, without loss of generality, we will assume in the following that
condition (1.13) holds with h satisfying (1.14), (1.15), and

h(s) = 0, ∀s ≥ 1. (4.1)

Let us consider the function G : (0,+∞)→ (0,+∞) given by

G(s) = e

∫ s

1

h(t)
β
dt

for every s > 0,

where β is given by (1.2). Observe that, by (1.14), the function G can be
continuously extended to [0,+∞) setting G(0) = 0. Moreover, we also define
the function σ : [0,+∞)→ [0,+∞) by setting σ(0) = 0 and

σ(s) = e

∫ s

1

√
h(t)dt

for every s > 0.

Observe that, thanks to (1.14) and (1.15), we have that σ ∈ C1([0,+∞)),
σ′(0) = h0 and σ(s) = 0 if and only if s = 0. As a consequence of (4.1), σ(s) = 1
for every s > 1 and σ(s) ≤ 1 for every s ≥ 0. The next lemma is the key for the
proof of Theorem 1.4.
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Lemma 4.1. Assume (1.14) and (1.15). Then the function

ϕ(s) =



∫ s

0

G(t)[σ′(t)]2dt

G(s)
if s > 0,

0 if s = 0,

(4.2)

is a continuously differentiable function on [0,+∞) that satisfies the ordinary
differential equation ϕ′(s) +

h(s)
β

ϕ(s) = [σ′(s)]2, on [0,+∞),

ϕ(0) = 0.
(4.3)

Moreover, the following inequality holds:

ϕ(s) ≤ β[σ(s)]2, ∀s > 0. (4.4)

Proof. The first part of the proof is straightforward except for checking that ϕ
is differentiable at zero and ϕ′ is continuous at zero. In order to do it, we note
firstly that ϕ is continuous at zero. Indeed, since G is nondecreasing and [σ′]2

is continuous in [0,+∞) we have

0 ≤ lim
s→0+

ϕ(s) = lim
s→0+

∫ s

0

G(t)[σ′(t)]2dt

G(s)
≤ lim
s→0+

∫ s

0

[σ′(t)]2dt = 0.

Now we observe that, using the L’Hôpital Rule, (1.14) and (1.15),

ϕ′(0) = h2
0 − lim

s→0+

h(s)
∫ s

0

G(t) [σ′(t)]2 dt

βG(s)

= h2
0 − h2

0 lim
s→0+

G(s)[σ′(s)]2

2βσ(s)σ′(s)G(s) + h(s)[σ(s)]2G(s)

= h2
0 − h2

0 lim
s→0+

1
2β 1√

h(s)
+ 1

= h2
0 − h2

0 = 0.

Hence ϕ is differentiable at zero and ϕ′ is continuous at zero.
In order to prove inequality (4.4), we observe that since [σ′(s)]2 = [σ(s)]2 h(s),
then

ϕ(s) =
β

G(s)

∫ s

0

G(t)
h(t)
β

[σ(t)]2 dt.

Since

G(t)
h(t)
β

=
d

dt
G(t),
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we can integrate by parts to find (recall that G(0) = σ(0) = 0)

ϕ(s) =
β

G(s)
[
G(t) [σ(t)]2

]t=s
t=0
− 2β
G(s)

∫ s

0

G(t)σ(t)σ′(t) dt

= β [σ(s)]2 − 2β
G(s)

∫ s

0

G(t) [σ(t)]2
√
h(t) dt

≤ β [σ(s)]2,

since all the functions in the last integral are nonnegative.

Proof of Theorem 1.4. Let u ∈ H1
0 (Ω) be a positive solution for (1.1) and ϕ ∈

C1([0,+∞)) be given by (4.2). Observing that ϕ(0) = 0, that ϕ′ is bounded
and that, by (4.4) and since σ(s) ≤ 1, we have ϕ(s) ≤ β, we derive that
ϕ(u) ∈ H1

0 (Ω) ∩ L∞(Ω). Therefore, we can take v = ϕ(u) as test function in
(2.1) to obtain, by using (1.13), that∫

Ω

M(x, u)∇u · ∇uϕ′(u) +
∫

Ω

h(u)|∇u|2ϕ(u) ≤
∫

Ω

f ϕ(u) .

Thus, adding and subtracting
1
β

∫
Ω

M(x, u)∇u · ∇uh(u)ϕ(u) , we derive from

(1.2) and (4.3) that∫
Ω

M(x, u)∇u · ∇u[σ′(u)]2 ≤
∫

Ω

M(x, u)∇u · ∇u
[
ϕ′(u) +

h(u)
β

ϕ(u)
]

+
∫

Ω

[
I − M (x, u)

β

]
∇u · ∇uh(u)ϕ(u)

≤
∫

Ω

f ϕ(u) .

Using now (1.2), (4.4) and the fact that f ≥ 0, we have

α

∫
Ω

|∇σ(u)|2 = α

∫
Ω

|∇u|2[σ′(u)]2 ≤
∫

Ω

f ϕ(u) ≤ β
∫

Ω

f [σ(u)]2 . (4.5)

Hence, recalling (see [18]) that, since f belongs to Lq(Ω) with q > N
2 , and

f+ 6≡ 0, the first positive eigenvalue λ1(f) of the eigenvalue boundary value
problem {

−∆u = λ f u in Ω,
u = 0 on ∂Ω,

is such that
λ1(f)

∫
Ω

f v2 ≤
∫

Ω

|∇v|2, ∀v ∈ H1
0 (Ω),

we deduce from (4.5) that

α

∫
Ω

|∇σ(u)|2 ≤ β

λ1(f)

∫
Ω

|∇σ(u)|2.
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Recalling the assumption
β

α
< λ1(f), this implies that∫

Ω

|∇σ(u)|2 = 0,

which yields
σ(u) = 0 for a.e. x ∈ Ω.

Therefore, recalling that σ(s) = 0 if and only if s = 0, we have u ≡ 0, contra-
dicting u > 0 in Ω: therefore, there are no positive solutions of (1.1).

Remark 4.2. Theorem 1.4 can be extended to more general operators. Specif-
ically, if a(x, s, ς) is a Carathéodory function such that

∃α > 0 : a(x, s, ς) · ς ≥ α|ς|2 for a.e. x ∈ Ω, ∀s ∈ R, ∀ς ∈ RN ,

∃β > 0 : |a(x, s, ς)| ≤ β|ς| for a.e. x ∈ Ω, ∀s ∈ R, ∀ς ∈ RN ,
and 0 ≤ f ∈ Lq(Ω) with q > N

2 and f 6≡ 0, then problem{
−div (a(x, u,∇u)) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,

has no finite energy solutions provided λ1(f) >
β

α
and conditions (1.13), (1.14)

and (1.15) hold.

Remark 4.3. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Assume (1.2) and

that g(s) satisfies (1.13). Observe that if u ∈ H1
0 (Ω) is a solution of (1.1), and

R > 0, then v = Ru is a solution of−div
(
M
(
x,
v

R

)
∇v
)

+
1
R
g
(
x,
v

R

)
|∇v|2 = Rf in Ω,

v = 0 on ∂Ω,

with
g
(
x,
s

R

)
R

≥hR(s) def=
1
R
h
( s
R

)
.

Therefore, by Theorem 1.4, and since λ1(Rf) = λ1(f)/R, if hR(s) satisfies
conditions (1.14) and (1.15), then a necessary condition for the existence of
finite energy solutions of (1.1) is that λ1(f) ≤ Rβ/α.

In the following result, as a consequence of Theorem 1.4 (and Remark 4.3),
we give conditions to assure the nonexistence of solutions of (1.1) for every
datum f .

Corollary 4.4. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Assume (1.2)

and that g(s) satisfies (1.13). If there exists R0 > 0 such that the function

hR(s) =
1
R
h
( s
R

)
satisfies (1.14) and (1.15) for every R ∈ (0, R0), then (1.1)

does not have any finite energy solution.
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As a consequence of the above results we also have the following.

Corollary 4.5. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Suppose that (1.2)

holds and that for some constants s0,Λ > 0 and γ ≥ 2 we have

Λ
sγ
≤ g(x, s), for a.e. x ∈ Ω, ∀s ∈ (0, s0].

If either

(i) γ > 2,

or

(ii) γ = 2 and λ1(f) > β
Λα ,

then (1.1) does not have any finite energy solution.

Proof. Consider a continuous function h(s) such that

h(s) =


Λ
sγ

if 0 < s ≤ s0

2
,

≤ Λ
sγ

if
s0

2
< s < s0,

0 if s0 ≤ s.

Observing that hR(s) =
ΛRγ−1

sγ
for every s ∈ (0, s02 ), and using that γ ≥ 2, we

have that hR(s) is not integrable in (0, s02 ), i.e., it satisfies (1.14).
In addition, if γ > 2, then hR(s) satisfies (1.15) for every R > 0, so that

Corollary 4.4 concludes the proof in this case.
On the other hand, if we assume that γ = 2, then

√
hR(s) e

∫ s

1

√
hR(t)dt

=
√

ΛR
s

e

∫ s

s0/2

√
ΛR
s

dt+
∫ s0/2

1

√
hR(t)dt

= Cs
√

ΛR−1,

for some C > 0. Thus, hR(s) satisfies (1.15) if and only if

lim
s→0+

s
√

ΛR−1 ≥ 0,

i.e., R ≥ 1
Λ . Therefore, Remark 4.3 implies the nonexistence of solutions pro-

vided that λ1(f) > β
Λα .

As a consequence of this result, we have that the first part of Theorem 1.5
is proved. We are now going to prove the second part of it.

Proof of Theorem 1.5. We first note that if γ < 2, then Theorem 1.2 guarantees
the existence of a solution. Conversely, if γ > 2 or if γ = 2 and ‖f‖L∞(Ω) is
large enough, Theorem 1.4 applies and no solutions exist for (1.5).
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On the other hand, if f ∈ L∞(Ω) and (1.16) holds, we recall that existence
and uniqueness of a solution un in H1

0 (Ω) ∩ C(Ω) for−∆un +
|∇un|2(
un + 1

n

)γ = f in Ω,

un = 0 on ∂Ω,
(4.6)

(with γ ≥ 2) follows by the results of [16] (existence) and [4] (uniqueness).
Taking un, Gk(un), and Tε(un)/ε as test functions and working as in Lemma 2.2
(1.), it is easy to see that un is bounded in H1

0 (Ω) and in L∞(Ω), and that there
exists C > 0 (independent on n) satisfying∫

Ω

|∇un|2(
un + 1

n

)γ ≤ C.
Therefore, up to subsequences, there exists a nonnegative bounded Radon mea-
sure ν such that

|∇un|2(
un + 1

n

)γ converges to ν in the weak-∗ topology of measures.

Since un is bounded in H1
0 (Ω) then it converges, up to subsequences, to some

function u weakly in H1
0 (Ω), strongly in L2(Ω), and almost everywhere in Ω.

Moreover, since f − |∇un|2

(un+ 1
n )γ is bounded in L1(Ω), the result of [14] yields that

(up again to subsequences) ∇un converges to ∇u almost everywhere in Ω. Then
we have, by Fatou lemma, that |∇u|

2

uγ χ{u>0} belongs to L1(Ω), and that

ν =
|∇u|2

uγ
χ{u>0} + ν0,

where ν0 is a nonnegative bounded Radon measure on Ω. Therefore, u ∈ H1
0 (Ω)

is a finite energy solution of−∆u+
|∇u|2

uγ
χ{u>0} = f − ν0 in Ω,

u = 0 on ∂Ω.

Note also that since un+1 is a subsolution for (4.6), we can apply the comparison
principle of [4] so that, for every x ∈ Ω, we have

un(x) ≥ un+1(x) ≥ . . . ≥ u(x),

and thus we can assume that un(x) is converging to u(x) for every x ∈ Ω. We
claim that u ≡ 0, so that un converges to zero in L2(Ω). Indeed, we divide the
proof of this assertion in two steps:

Step 1. The case in which Ω is a ball of radius R > 0, Ω = BR, and
f = T > 0 is a constant.
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Step 2. The general case.
Step 1. Assume that Ω = BR and f = T > 0 is a constant. In this case, (1.16)
means that, if γ = 2, then the first eigenvalue λBR1 (T ) of the Laplacian operator
with weight T in BR is greater than one, i.e., λBR1 (T ) > 1. We first observe that
u is radially symmetric (and thus continuous for |x| 6= 0). Indeed, if we define

ψn(s) =
∫ s

0

e−Hn(t)dt, where Hn(t) =
nγ−1

γ − 1
[
1− (1 + nt)1−γ]

and we set vn = ψn(un), it is easy to check that vn is the unique solution of{
−∆vn = T e−Hn(ψ−1

n (vn)) in BR

vn = 0 on ∂BR .

Since the nonlinearity 0 ≤ e−Hn(ψ−1
n (s)) is C1, we can apply the result of Gidas,

Ni and Nirenberg (see [22]) in order to deduce that vn is radially symmet-
ric (hence vn = vn(r)), monotone decreasing with respect to r and such that
v′n(0) = 0. Since ψn and Hn are smooth and increasing, the functions un have
the same properties as vn. Passing to the limit with respect to n we deduce
that u is radially symmetric and monotone nonincreasing.

We argue by contradiction assuming that u is not identically zero. In this
case, using that u(r) is nonincreasing in (0, R),

r1 = inf{0 < r ≤ R : u(r) = 0} > 0,

and then
u ≥ cε := u(r1 − ε) in Br1−ε .

Therefore, repeating the proof of Theorem 1.1, we prove that

lim
n→+∞

|∇un|2(
un + 1

n

)γ =
|∇u|2

uγ
strongly in L1

loc(Br1),

so that ν0 is zero on Br1 and, by the continuity of u for r 6= 0, u is a solution of−∆u+
|∇u|2

uγ
= T in Br1 ,

u = 0 on ∂Br1 ,

and this contradicts the result of Theorem 1.4 (note that, if γ = 2, we have
λ
Br1
1 (T ) > λBR1 (T ) > 1). Therefore u ≡ 0.

Step 2. Ω is an open set and f is nonnegative and belongs to L∞(Ω).
By (1.16), we can fix R > diam Ω with λ1 > ‖f‖L∞(Ω)R

2 provided that
γ = 2. Let vn be also the solution of−∆vn +

|∇vn|2(
vn + 1

n

)γ = ‖f‖L∞(Ω) in BR

vn = 0 on ∂BR.
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By definition of diam Ω, we have Ω ⊂ BR. Our aim is to prove that vn is
a supersolution for (4.6). Indeed, let 0 ≤ ψ ∈ C∞0 (Ω) and we use it as test
function in the formulation of vn. Thus∫

BR

∇vn · ∇ψ +
∫
BR

|∇vn|2

( 1
n + un)γ

ψ =
∫
BR

‖f‖L∞(BR)ψ ,

and since the support of ψ is contained in Ω we deduce∫
Ω

∇vn · ∇ψ +
∫

Ω

|∇vn|2

( 1
n + un)γ

ψ =
∫

Ω

‖f‖L∞(BR)ψ ≥
∫

Ω

fψ

for every nonnegative ψ in H1
0 (Ω)∩L∞(Ω) (by an easy density argument). Using

again the comparison principle of [4], un ≤ vn in Ω. Now, observing that by the
choice of R, if γ = 2, we have

λBR1 (‖f‖L∞(Ω)) =
λ1

R2‖f‖L∞(Ω)
> 1, (4.7)

we are able to apply the previous Step 1, so that vn tends to 0 strongly in
L2(BR), which implies that un tends to zero in L2(Ω) and the claim has been
proved.

Finally, we conclude the proof by taking un as test function in (4.6) and
dropping the nonnegative quadratic term to deduce that the convergence to
zero is strong in H1

0 (Ω); using this fact in the weak formulation of (4.6) then
yields that ν = f , as desired.

Remark 4.6. Let us emphasize that the condition ‖f‖L∞(Ω) ≤ λ1

(diam Ω)2
im-

posed in assumption (1.16) for the case γ = 2 is not optimal. We use it for the
sake of simplicity. However, as shown in the proof of Theorem 1.5 (see (4.7)), a
sharper condition can be used in this case.

More precisely, if we consider the Chebyshev radius R(Ω) of Ω, i.e. the
greatest lower bound of the radii of all balls containing Ω, then the the result
of Theorem 1.5 with γ = 2 holds provided that

‖f‖L∞(Ω) <
λ1

R(Ω)2
.

A. Local a priori estimates and large solutions

We devote this appendix to recall some results concerning the following
equation

−div(a(x, u,∇u)) +B(x, u) = F (x,∇u), x ∈ Ω, (A.1)

where F (x, ς) and a(x, s, ς), B(x, s) are Carathéodory functions. Suppose that
there exist constants β ≥ α > 0 such that

a(x, s, ς) · ς ≥ α|ς|2, (A.2)
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|a(x, s, ς)| ≤ β|ς|, (A.3)

(a(x, s, ς)− a(x, s, η)) · (ς − η) > 0, (A.4)

for a.e. x ∈ Ω, for every s ∈ R and for every ς, η ∈ RN , ς 6= η.
We suppose that F (x, ς) satisfies

|F (x, ς)| ≤ F0(x) + p0|ς|, a.e. x ∈ Ω, ∀ς ∈ RN , (A.5)

where F0 belongs to Lqloc(Ω) with q > N
2 and p0 > 0. We also suppose that

there exists a continuous nonnegative function b : [0,+∞)→ [0,+∞) such that

b(s) is increasing and satisfies the Keller-Osserman condition (2.10),
b(s)/s is nondecreasing for large s,
and for every ω ⊂⊂ Ω there exists mω > 0 such that
B(x, s) ≥ mωb(s) ≥ 0, for a.e. x ∈ ω, for every s ∈ R+.

(A.6)

Then the subsolutions of equation (A.1) are uniformly bounded from above in
ω ⊂⊂ Ω. This result is essentially contained in [27].

Theorem A.1. Suppose that a(x, s, ς) satisfies (A.2)–(A.4), B(x, s) satisfies
(A.6) and assume that F0 ∈ Lqloc(Ω), q > N

2 . Then, for every ω ⊂⊂ Ω there
exists Cω > 0 such that any distributional subsolution u ∈ H1

loc(Ω) of (A.1) such
that u+ ∈ L∞loc(Ω) and B(x, u+) ∈ L1

loc(Ω) satisfies

u(x) ≤ Cω, ∀x ∈ ω .

In order to prove this theorem, we need the following two lemmas.

Lemma A.2 (Lemma 3.3 of [28]). Let b : [0,+∞)→ [0,+∞) be a continuous

function, satisfying the Keller-Osserman condition (2.10), such that b(s)
s is non-

decreasing for large s. Then, for any C > 0 and γ ≥ 0, there exist a positive
constant Γ and a smooth function ϕ : [0, 1] −→ [0, 1] (Γ and ϕ depending only
on b, C and γ), with ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1 and ϕ(s) > 0 for every s > 0,
satisfying

tγ+1 ϕ
′(τ)2

ϕ(τ)
≤ 1

C
tγ b(t)ϕ(τ) + Γ, ∀τ ∈ (0, 1], ∀t ≥ 0.

Remarks A.3. 1. In Lemma 3.3 of [28] it is imposed that b(s) is increasing,
b(0) = 0, and the function b(s)

s is nondecreasing in R+. However, it is easy
to see that the proof (see also [27]) works by using the weaker assumptions
of Lemma A.2.

2. In addition, also in [27], the Keller-Osserman condition is replaced by the
following one: ∫ +∞ ds√

sb(s)
< +∞.

Note that, as a consequence of the monotonicity of b(s) for large s, the
above assumption is equivalent to (2.10).
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Let us recall a local version of a classical result by Stampacchia we will use
in the following.

Lemma A.4 ([36]). Let τ(j, ρ) : [0,+∞) × [0, R0) −→ R be a function such
that τ(·, ρ) is nonincreasing and τ(j, ·) is nondecreasing. Moreover, suppose that
there exist K0 > 0, µ > 1, and C, ν, γ > 0 satisfying

τ(j, ρ) ≤ C τ(k,R)µ

(j − k)ν(R− ρ)γ
, ∀j > k > K0, ∀ 0 < ρ < R < R0.

Then for every δ ∈ (0, 1), there exists d > 0 such that:

τ(K0 + d, (1− δ)R0) = 0 ,

where dν = 2(ν+γ) µ
µ−1C (τ(K0,R0))µ−1

δγRγ0
.

Idea of the Proof of Theorem A.1. The proof of this result is essentially con-
tained in [27], but for the convenience of the reader, we include here the proof
of the exact result that we have used in the proof of Proposition 2.3 and in the
proof of Theorem 1.3.

Actually we deal with equation

−div(M̃(x, u)∇u) + P (x) · ∇u+ f(x)b(u) = 0, in Ω ,

where M̃(x, s) satisfies (1.2), P (x) is a bounded vector field, b(s) is increasing
and satisfies the Keller-Osserman condition (2.10), b(s)

s is nondecreasing for s
large, and f satisfies (1.4). Consequently all the assumptions of the theorem are
satisfied. We remind that the above assumptions are satisfied by the functions
M̃(x, s), b(s) and f(x), appearing in Proposition 2.3 as well as by the functions
M(x), P (x), b(s) and f(x) appearing in Theorem 1.3.

Suppose now that u+ ∈ L∞loc(Ω) and b(u+) ∈ L1
loc(Ω). We set ω ⊂⊂ ω′ ⊂⊂ Ω

and a cut-off function η(x) such that 0 ≤ η ≤ 1 and

η(x) =
{

1, x ∈ ω,
0, x ∈ Ω\ω′. (A.7)

We denote p0 = ‖P (x)‖(L∞(Ω))N and we fix σ > 2p0
α and the constants C, k0

such that

‖∇η‖2L∞(Ω)

8σ2

[
β2

α
+
(
α− p0

σ

)] 1
C

+
p0

4σb(k0)
≤ mω′(f)

2σ
,

and we also consider the function ϕ given by Lemma A.2 with γ = 1 and this
constant C. Note that if ξ =

√
ϕ(η), then uξ2 = uϕ(η) ∈ H1

0 (Ω) and

∇(uξ2) =
{
ξ2∇u+ 2ξu∇ξ, if ξ(x) > 0,

0, if ξ(x) = 0, (A.8)
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a.e. in Ω. Moreover f(x)(e2σGk(u+) − 1)b(u+) ∈ L1
loc(Ω) and consequently

v = 1
2σ (e2σGk(u+) − 1)ξ2, σ > 2p0

α is an admissible test function. Using this test
function as well as (1.2), (1.4) and Young’s inequality we deduce that

α

∫
ω′
|∇Gk(u+)|2e2σGk(u+)ξ2 +

mω′(f)
2σ

∫
ω′
b(u+)(e2σGk(u+) − 1)ξ2

≤ β

σ

∫
ω′
|∇ξ||∇Gk(u+)|(e2σGk(u+) − 1)ξ + p0

∫
ω′
|∇Gk(u+)|v

≤ α

2

∫
ω′
|∇Gk(u+)|2e2σGk(u+)ξ2 +

β2

2ασ2

∫
ω′

|∇ξ|2(e2σGk(u+) − 1)2

e2σGk(u+)

+
p0

2σ

∫
ω′
|∇Gk(u+)|2(e2σGk(u+) − 1)ξ2 +

p0

4σ

∫
ω′

(e2σGk(u+) − 1)ξ2

≤ σα+ p0

2σ

∫
ω′
|∇Gk(u+)|2e2σGk(u+)ξ2 +

β2

2ασ2

∫
ω′
|∇ξ|2(e2σGk(u+) − 1)2

+
p0

4σ

∫
ω′

(e2σGk(u+) − 1)ξ2 .

In other words,

1
4σ2

(
α− p0

σ

)∫
ω′
|∇[(eσGk(u+) − 1)ξ]|2 +

mω′(f)
2σ

∫
ω′
b(u+)(e2σGk(u+) − 1)ξ2

≤
[
β2

2ασ2
+

1
2σ2

(
α− p0

σ

)]∫
ω′
|∇ξ|2(e2σGk(u+) − 1)2 +

p0

2

∫
ω′
v.

Applying Lemma A.2 with γ = 1, together with the monotonicity of b(s) we
get

1
4σ2

(
α− p0

σ

)∫
ω′
|∇[(eσGk(u+) − 1)ξ]|2

≤ Γ
‖∇η‖2L∞(Ω)

8σ2

[
β2

α
+
(
α− p0

σ

)]
meas {x ∈ ω′ : u(x) ≥ k} ,

for every k > k0(mω′(f), p0). We deduce by Sobolev’s inequality that(∫
ω

|(eσGk(u+) − 1)ξ|2∗
) 2

2∗

≤ C0 meas {x ∈ ω′ : u(x) ≥ k},

where C0 = S2Γ
‖∇η‖2L∞(Ω)

8σ2

[
β2

α +
(
α− p0

σ

)]
. Hence, using that et − 1 ≥ t, for

every t ≥ 0, and that Gk(s) ≥ j − k for s ≥ j > k we derive that

(j − k)2 meas {x ∈ ω : u(x) ≥ j} 2
2∗ ≤ C0

σ
meas {x ∈ ω′ : u(x) ≥ k} . (A.9)

Now, if ω ⊂⊂ Ω is fixed, we consider R = dist (ω, ∂Ω)/2, the set

ωr = {x ∈ Ω : dist (x, ω) < r} ⊂⊂ Ω
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and the function
τ(k, r) = meas {x ∈ ωr : u(x) ≥ k},

for every r ∈ (0, R] and k > 0. Taking ω = ωr and ω′ = ωR in (A.9) and
choosing η such that ‖∇η‖L∞(Ω) ≤ c

R−r , we obtain

(j − k)2τ(j, r)2/2∗ ≤ c1
τ(k,R)

(R− r)2

for some c1 > 0 and the proof is concluded by applying Lemma A.4.

Remarks A.5. 1. We remark explicitly that in the above proof the constant
Γ obtained by applying Lemma A.2 depends on mω′(f). In particular,
since mω′(f) ≤ mω(f) for ω ⊂⊂ ω′, if mω(f) tends to zero, then this
constant Γ and hence the a priori estimate Cω given by Theorem A.1
diverge to +∞.

2. By adding a condition on the function b(s) for negative s and using similar
ideas to these ones in the above proof, it is possible to give also a priori
estimates of the whole L∞ norm of the solution in every compact subset
ω of Ω. More precisely, if, in addition to the hypotheses of Theorem A.1,
we strengthen (A.6) by imposing that

b(s) is increasing and satisfies (2.10), b(s)/s is nondecreasing,
for large s and for every ω ⊂⊂ Ω there exists mω > 0 such that:
∀s ∈ R, B(x, s) sign s ≥ mωb(|s|) ≥ 0 for a.e. x ∈ ω,

(A.10)
then for every ω ⊂⊂ Ω there exists Cω > 0 such that

|u(x)| ≤ Cω, ∀x ∈ ω .

Theorem A.1 is an extension to quasilinear equations of the well-known local
a priori estimate of Keller [24] and Osserman [33] (see also [5], [31], [32], [37],
[38] and the references cited therein) for semilinear operators. This semilinear
a priori estimate was the crucial tool in order to prove the existence of a large
solution, i.e., a solution u of the semilinear equation satisfying u = +∞ at ∂Ω
in the sense that

lim
dist(x,∂Ω)→0

u(x) = +∞.

Thus, it is natural to ask whether it is also possible to prove the existence of a
large solution for (A.1). Clearly, in this nonlinear framework we have to specify
the meaning we give to “infinity”at ∂Ω, since it has no sense pointwise. Actually
we will assume such a condition in a weak sense, through a condition on the
trace on the boundary of the truncation of the solution. Specifically we consider
the following equation

−div(a(x, u,∇u)) +B(x, u) = F (x), x ∈ Ω. (A.11)
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Definition A.6. An a.e. finite function u(x) such that Tk(u) ∈ H1(Ω) ∀k > 0
is a distributional large solution for (A.11) with F ∈ L1

loc(Ω), if:
i) |a(x, u,∇u)| ∈ L1

loc(Ω), B(x, u) ∈ L1
loc(Ω);

ii) ∫
Ω

a(x, u,∇u) · ∇ϕ +
∫

Ω

B(x, u)ϕ =
∫

Ω

F ϕ , ∀ϕ ∈ C∞c (Ω) ;

iii) ∀k > 0, k − Tk(u) ∈ H1
0 (Ω).

Remark A.7. In the above definition, iii) has the meaning of “infinity at ∂Ω”.
We mention that this definition of explosive boundary condition has already
been introduced in [29], for a different class of nonlinear elliptic equations in-
volving nonlinear “coercive” gradient terms.

We conclude by observing that even if not explicitly written in [27], all the
estimates that we need in order to prove the existence of large solutions for
(A.11) have been proved and thus we have the following result.

Theorem A.8. Suppose that a(x, s, ς) and B(x, s) satisfy (A.2), (A.3), (A.4),
(A.10) and

sup
|s|≤k

|B(x, s)| ∈ L1(Ω), ∀k > 0. (A.12)

Assume also that F ∈ L1
loc(Ω) with F− ∈ L1(Ω). Then there exists a distribu-

tional large solution for (A.11).

Proof. We consider the following sequence of problems{
−div a(x, un,∇un) +B(x, un) = Fn in Ω,

un − n ∈ H1
0 (Ω),

where Fn = Tn(F ). Since B(x, s + n)s ≥ 0 for large |s|, the existence of a
weak solution un ∈ H1(Ω) ∩ L∞(Ω) is a consequence of [6] (Theorem 6.1), i.e.
un − n ∈ H1

0 (Ω) and it satisfies∫
Ω

a(x, un,∇un) · ∇v +
∫

Ω

B(x, un)v =
∫

Ω

Fnv , ∀v ∈ H1
0 (Ω) ∩ L∞(Ω).

(A.13)
Observing that for any n ≥ k, k − Tk(un) ∈ H1

0 (Ω) ∩ L∞(Ω), we can choose
v = k − Tk(un) as test function in (A.13) and we obtain,

−
∫

Ω

a(x, un,∇un) · ∇Tk(un) +
∫

Ω

B(x, un)[k − Tk(un)] =
∫

Ω

Fn[k − Tk(un)] .

Using (A.2), and (A.6) and (A.12) we have:

α

∫
Ω

|∇Tk(un)|2 ≤ 2k
∫

Ω

sup
|s|≤k

|B(x, s)| + 2k‖F−n ‖L1(Ω).
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Thus, for every k ∈ N, we can now extract a subsequence (not relabeled) of
{Tk(un)}n∈N that weakly converges in H1(Ω) and, by Rellich theorem, strongly
in L2(Ω).

Now, consider any sets ω ⊂⊂ ω′ ⊂⊂ Ω, a cut-off function η(x) chosen as in
(A.7) and ξ =

√
ϕ(η). Arguing as in (A.8), we deduce that v = Tk(unξ2) is an

admissible test function for (A.13). Thus we have∫
Ak

a(x, un,∇un) · ∇[unξ2] +
∫

Ω

B(x, un)Tk(unξ2) ≤ k‖F‖L1(ω′) ,

where Ak =
{
x ∈ Ω : |un|ξ2 ≤ k and ξ(x) > 0

}
, and so, using (A.2) and (A.10),

we get

α

∫
Ak

|∇un|2ξ2 +mω′

∫
Ak

|b(un)|Tk(unξ2)

≤ k‖F‖L1(ω′) + 2β
∫
Ak

|∇un||∇ξ|unξ .

By applying Young inequality, (A.3) and Lemma A.2 (with γ = 1 and for
any fixed C > α2+4β2

8αmω′
‖∇η‖L∞(ω′) and taking into account Remarks A.5-2) we

deduce that there exists c > 0 such that∫
Ω

|∇Tk(unξ2)|2 ≤ c(k + 1).

Then, using that ξ = 1 in ω, by Lemmas 4.1 and 4.2 of [6] it follows that un and
|∇un| are bounded respectively in M

N
N−2 (ω) and M

N
N−1 (ω), for any ω ⊂⊂ Ω.

Combining this information with the strong convergence of Tk(un) in L2(Ω) we
deduce that un is a Cauchy sequence in measure and so, up to subsequences
(not relabeled), it converges for a.e. x ∈ Ω to a function u ∈W 1,q

loc (Ω). This, in
particular, implies that

lim
n→+∞

k − Tk(un) = k − Tk(u) weakly in H1
0 (Ω) ,

i.e. u satisfies the boundary condition.
On the other hand, we prove that the lower order term is bounded in L1

loc(Ω);
indeed, if, for ε > 0, we take v = 1

εTε(un)ξ as test function in (A.13) (as before,
such a function it is admissible). Thus, by (A.2), (A.3), and dropping positive
terms, we get∫

Ω

B(x, un)
Tε(un)
ε

ξ ≤ ‖F‖L1(ω′) + β‖∇ξ‖L∞(ω′)

∫
ω′
|∇un| .

Since the right hand side is bounded being {|∇un|} bounded in M
N
N−1
loc (Ω) and

F ∈ L1
loc(Ω), letting ε→ 0, we deduce by Fatou lemma that there exists cω > 0

such that ∫
ω

|B(x, un)| ≤ cω.
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On the other hand, choosing v = T1(Gh(unξ2)) as test function, where ξ2 = ϕ(η)
we have, by using (A.2), (A.3), (A.10) and (A.12),

α

2

∫
h≤|unξ2|≤h+1

|∇un|2ξ2 +
1
2

∫
Ω

B(x, un)T1(Gh(unξ2))

≤
∫
ω′∩{unξ2≥h}

|Fn|+
2β2

α
‖∇η‖2L∞(Ω) meas{x ∈ ω′ : ξ2|un| ≥ h}.

By the strong compactness of {Fn} in L1(ω′) and the local uniform estimate of

{un}n∈N in M
N
N−2
loc (Ω), we derive then that

lim
h→+∞

sup
n∈N

∫
{x∈ω: |un|≥h}

|B(x, un)| = 0.

As a consequence of Vitali theorem we deduce that {|B(x, un)|}n∈N is strongly
compact in L1(ω′), where ω′ ⊂⊂ Ω is arbitrary. Moreover, since the lower order
term is bounded in L1

loc(Ω), we can apply Lemma 1 in [10] in order to prove
that ∇un converges to ∇u a.e. in Ω. This, and the weak convergence of un in
W 1,q(ω′), ∀ω′ ⊂⊂ Ω, imply

un −→ u in W 1,q(ω), ∀1 ≤ q < N

N − 1
, ∀ω ⊂⊂ Ω,

and, thanks to (A.3), we also have that

a(x, un,∇un) −→ a(x, u,∇u) in L1(ω)N , ∀ω ⊂⊂ Ω. (A.14)

Now we can pass to the limit in the distributional formulation: indeed choos-
ing any φ ∈ C∞c (Ω) in (A.13) we have∫

Ω

a(x, un,∇un) · ∇φ +
∫

Ω

B(x, un)φ =
∫

Ω

Fnφ .

Using (A.14) we deduce that

lim
n→+∞

∫
supp φ

a(x, un,∇un) · ∇φ =
∫

supp φ

a(x, u,∇u) · ∇φ .

Moreover, by the strong convergence of {B(x, un)} and {Fn} in L1
loc(Ω), we

deduce that
lim

n→+∞

∫
supp φ

Fn φ =
∫

supp φ

F φ

and
lim

n→+∞

∫
supp φ

B(x, un)φ =
∫

supp φ

B(x, u)φ

and this concludes the proof.
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