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Test-retest studies for assessing stability and change are widely used in 
different domains and allow improved or additional individual estimates of 
interest to be obtained. However, if these estimates are to be validly 
interpreted the responses given at Time-2 must be free of retest effects, and 
the fulfilment of this assumption must be empirically checked. This article 
proposes a comprehensive item response theory-based approach for 
assessing retest effects at the individual level and test the assumption of 
local independence under repetition. The approach can be used with a wide 
array of unidimensional and multidimensional models, and is based on 
correlation-type and mean-square-type indices. Procedures for (a) 
establishing critical values for detection purposes and (b) interpreting the 
magnitude of the retest effects for the detected respondents are also 
proposed. Furthermore, the article discusses the consequences of not 
addressing retest effects in stability and change studies. The procedures 
were assessed with simulation and used in three empirical studies. In all 
cases they worked well and provided meaningful information. 

 

 

Test-retest (T-R) designs with a short-term retest interval are quite 
common in personality and attitude measurement. They are widely used in: 
(a) reliability assessment (APA/AERA/NCME, 1999, Morrison, 1981), (b) 
the clinical assessment of trait changes due to the effects of treatments 
(Finkelman, Weiss, & Kim-Kang, 2010, Reise & Haviland, 2005), (c) the 
measurement of attitude change (Sherif, Sherif & Nebergall, 1981), and (d) 
personnel selection for gauging the effects of test-coaching and practice 
(Hausknecht, Trevor & Farr, 2002).  
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In the applications mentioned above, the most common T-R design is 
a multiple-indicator design in which a test made up of multiple items is 
administered with an interval shorter than two months (Cattell, 1986). In a 
stability-based application (e.g. a reliability analysis) no treatment is given 
during the retest interval and the conditions of administration are the same 
at both points in time. So, the trait level of each respondent is assumed to be 
the same at Time-1 and Time-2 (Goldberg, 1963). In a change-based 
application, the trait level is assumed to be different at Time-1 and Time-2, 
because a treatment is given between Time-1 and Time-2 or because the 
conditions of administration at the two points in time are different.  

As discussed below, in both stability and change applications, the 
information gained from the repeated administration of the test can be used 
to obtain improved or additional individual estimates of interest. These 
estimates, however, can only be validly interpreted if the assumptions on 
which the analysis is based are met. In particular, the item response theory 
(IRT) modelling of most T-R designs assumes (implicitly or explicitly) that 
the local independence principle holds for the repeated measurements. More 
specifically, for a fixed trait level, the conditional distributions of the 
responses to the same item in two repeated administrations are assumed to 
be independent of each other (Nowakowska, 1983). This assumption is 
denoted here as local independence under repetition (LIR).  

In a short-term design the LIR assumption will not be met if retest 
effects (REs) are operating. In this article “retest effects” are defined as the 
tendency for individuals to duplicate their former item responses, either 
because they recall them or because of incidental item features which tend 
to elicit the same response on each occasion (APA/AERA/NCME, 1999, 
Morrison, 1981). REs defined in this way are a case of “positive surface 
local dependence” (Chen & Thissen, 1997, Houts & Edwards, 2013). More 
complex types of REs might be envisaged (e.g. Arendasy & Sommer, 
2013). For example, memory effects in a change study might lead, in some 
cases, to more differentiated responses. These scenarios, however, will not 
be considered here.  

So far, assessment of REs has been addressed either at the test-score 
level by using a descriptive approach, or at the item level by using a 
structural equation modelling approach in which REs are modelled via 
correlated residuals (e.g. Ferrando, 2001). This article, however, will take a 
different approach. First, REs will be addressed from an IRT framework 
and treated as a particular case of local dependence. Second, they will be 
assessed not at the test or the item level, but at the level of each individual 
respondent (see Ferrando, 2010, 2014).  Overall, the aim is to propose a 
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comprehensive IRT-based approach for addressing REs at the individual 
level that can be used with a variety of response formats and under a wide 
range of IRT models.  

The rest of the article is organized as follows. First, a background of 
concepts and preliminary results is provided. Second, the proposed procedures 
are presented. Third, the impact of REs at the individual level is discussed, 
thus justifying the interest of the present proposal. Finally, the functioning of 
the procedures is assessed and illustrated by means of empirical studies.  

 
General Background  
Consider a test of n items that is administered to the same respondents 

at two points in time with a given retest interval. Let Xij be the response of 
individual i to item j at Time 1, and X’ij the corresponding response at Time 
2. The responses can be binary (scored as 0 and 1), graded (scored by 
successive integers) or continuous, and the response patterns at both points 
of time are assumed to be well fitted by the same unidimensional or 
multidimensional IRT model. The item parameter estimates are assumed to be 
fixed and known (see e.g. Zimowski, et al., 2003) so, in the scoring stage, 
individual trait estimates are obtained on the basis of the fixed item 
parameters.  

The information that is gained from the repeated administration of the 
items can be used in the scoring stage to obtain more accurate trait estimates 
(in stability studies) or additional individual estimates (in change studies). 
In a stability study, a common trait estimate can be obtained by treating the 
test-retest pattern as if it were a single response pattern made up of 2n 
responses. Because the estimate is now obtained from a pattern that is twice 
as long, it is expected to have less measurement error than that obtained on 
the sole basis of the Time-1 data (see Ferrando, 2014). In a change study, 
two individual trait estimates are obtained from the separate response 
patterns, and their difference serves as a basis for assessing individual 
change (e.g. Finkelman, Weiss, & Kim-Kang, 2010, Reise & Haviland, 
2005). 

 
Preliminary Results 
This proposal is based on two conditional expectations for which I shall 

provide general results. The first expectation, denoted by E(Xj|θ) is the 
expected item score for fixed θ. The second, denoted by σ2(Xj|θ) is the 
conditional variance for fixed θ. In general  θ will be vector-valued, and will 
reduce to a scalar in the case of a unidimensional model.  
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In the binary case the conditional expectations are  
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where Pj(θ) is the conditional probability of scoring 1 on item j. 

In the graded response case, they are given by (Chang & Mazzeo, 
1994). 
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where Pjr(θ) is the conditional probability of scoring in category r (r=1,2..) in 
item j. 

Finally, continuous responses are usually fitted with the linear factor-
analytic model (FA). If this is the case, the conditional expectations are 
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where µj is the item intercept,  λjk is the loading of item j on factor k, and σ2
εj is 

the residual variance of item j. 
 
Assessing REs at the Individual Level: The Present Proposal 
The basic indices proposed in this section are of two types – 

correlation-based and mean-square-based – and can be used with all the 
item formats and types of IRT model discussed above.  

 
Correlation-based indices: rti Q3 
Yen (1984) proposed Q3 as an index for quantifying local dependence 

between a pair of binary items. Q3 was defined as the product-moment 
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correlation between the residuals of item j and item k computed over the 
sample of respondents. Ferrando (2014) proposed using the Q3 rationale at 
the individual level instead of the item level, and defined an index that 
measures the degree of local dependence under repetition for a given 
respondent. This article proposes a more general formulation of the index so 
that it can be used with the family of IRT models discussed in the sections 
above. 

Define first the residual scores as 
 

)'|'('';)|( ijijijijijij XEXXEX θθ −=−= δδ , (4) 
 
Consider now the n×1 vector δ i containing the residual scores of 

respondent i for the n items at Time-1, and let δ’i be the corresponding 
vector at Time-2.  The index rti Q3 (where rti is used to refer to retest 
effects at the individual level) is defined as the product-moment correlation 
between δ i and δ’i : rti Q3i=ρ(δ i ,δ’i). 

If the IRT model is correct, and LIR holds for all the responses of 
individual i, then δij and δ’ij are all random error scores and the expected 
value of rti Q3 for this individual is zero. On the other hand, if REs are 
operating, the terms δij and δ’ij are positively correlated. So, the expected 
value of rti Q3 is positive, and increases with the strength of the REs. 
Finally, it should be noted that the index has been defined by using the 
‘true’ trait values of the individual which are unknown. Therefore, rti Q3 is 
always computed using trait estimates.  

    
Mean-square residual-based indices: rti MSR and rti MSRW 
Let Dij=Xij-X’ij  be the difference between the score of respondent i to 

item j at Time-1 and his/her score to the same item at Time-2. The 
conditional expectation and variance of Dij are given by: 
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If LIR holds, then the covariance term in (6) vanishes. If it does, the 
scaled statistic 
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is conditionally distributed as a standard variable with zero expectation and 
unit variance.  

The rti MSR index is now defined as 
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So, rti MSR is a mean square statistic which can range from 0 to 

infinity and which has an expectation of 1 if LIR holds. Assume now, 
however, that REs are operating. If they are, the covariance term in (6) does 
not vanish but has a positive value. So, the ‘true’ variance term in (6) is 
smaller than that assumed in the denominator of (7) and, therefore, the 
expected value of rti MSR is smaller than 1. So, low values of rti MSR are 
indicative of REs. Finally, as with rti Q3, the index is defined by using the 
‘true’ trait levels but in practice is always computed using trait estimates.  

Mathematically, expression (8) has the same form as the mean-square 
outfit statistics which are used for assessing fit in Rasch analysis (e.g. 
Smith, Schumacker & Bush, 1998). This similarity allows some well known 
problems to be anticipated for rti MSR. In particular, the statistic is expected 
to be very sensitive to outliers when the conditional variances in the 
denominator of (7) are small. In order to diminish the potential effect of 
outliers, a weighted version of rti MSR, which is termed rti MSRW, is now 
proposed. Mathematically, rti MSRW has the same form as the infit 
statistics used in Rasch analysis (e.g. Smith et al., 1998). 
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Like its unweighted counterpart, rti MSRW ranges from 0 to infinity, 

has an expectation of 1 if LIR holds, and the expectation goes towards 0 as 
the impact of REs increases. The main difference with (8) is that now each 
squared standardized residual is weighted by the conditional variance so 
that the influence of the less informative responses, which are the potential 
outliers, can be reduced.  

 
Assessing index accuracy, determining critical values, and 

interpreting the indices 
If the indices proposed above are to be used for detection purposes, 

then reference distributions must be determined under the null hypothesis 
for establishing cutpoints or critical values. In principle, theoretical 
distributions could be considered for both types of index. On the one hand, 
rti Q3 is a product-moment correlation, so a Fisher-r-to-z transform is 
expected to bring its values close to the normal distribution. On the other 
hand, rti MSR and rti MSRW are expected to approach a scaled chi-square 
distribution as the number of responses increases. Experience with related 
indices at the item level, however, suggests that in both cases these 
approximations do not closely adhere to the reference distribution (Chen & 
Thissen, 1997, Houts & Edwards, 2013). So, the approach proposed here is 
to obtain the reference distributions and associated cutpoints by simulating 
the distribution of the index of interest for each θ value (see e.g. van 
Krimpen-Stoop & Meijer, 2002). In more detail, the proposal proceeds in 
three steps: (a) for fixed item parameters and the trait estimate/s of the 
individual, simulate a large number of item response patterns under the LIR 
assumption (i.e. the null hypothesis), (b) compute the index from each 
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pattern and obtain its empirical distribution, and (c) determine the critical 
value by computing the desired percentile of the empirical distribution.   

Once it has been detected that a response pattern has potentially been 
impacted by REs, the values of the indices can also serve to assess the 
magnitude of these effects. For this purpose, rti Q3 is possibly the clearest 
index. It is a standard product-moment correlation expected to provide 
positive values when REs are operating, and so its range of values of 
interest is between 0 and 1. For their part, rti MSR and rti MSRW are 
discrepancy measures that do not have an upper bound. However, their 
range of interest is between 1 and 0 (i.e. the lower tail). Values lower than 1 
mean that the discrepancies between the scores at Time 1 and the 
corresponding scores at Time 2 are smaller than those expected given the 
stochastic nature of the IRT model. This tendency to repeat the responses 
beyond what the model is able to predict is what is interpreted as REs. 

Interpretation of both types of index would be enhanced if a 
confidence interval were also provided in addition to the point estimate, and 
the approach proposed here is to determine these intervals by using 
nonparametric Bootstrap. The standard percentile-method seems to be quite 
appropriate here because it is very simple, tends to produce stable interval 
lengths, and is suitable for small samples. For mean-squared statistics and 
for product-moment correlations, however, it typically produces poor 
coverage accuracy with respect to the nominal level (Schenker, 1985, 
Sievers, 1996). So, the proposed approach is to obtain confidence intervals 
by using the double percentile Bootstrap (e.g. Hall & Martin, 1988). 

 
Relevance of the Proposal: The Impact of REs on the Individual 

Estimates 
Consider first the common trait estimate obtained under the stability 

assumption in the unidimensional case. If the item parameters are fixed and 
known, then the presence of REs is not expected to produce biases in this 
estimate. However, it is expected to reduce its accuracy. Conceptually, both 
results are clear. The tendency to repeat the responses is not expected to 
change in any systematic way the trait estimate that would be obtained if 
only the responses given at Time-1 are considered. At the same time, 
however, the responses at Time-2 are redundant to a greater or lesser extent, 
and so they are expected to provide less information than could be obtained 
if additional new items were used. To see the second result more formally, 
consider that, if the repeated responses are locally dependent, then the test 
information estimated by the sum of item informations will overstate the 
‘true’ amount of information. So, when REs are operating (a) the point 
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estimate of the trait level will be less accurate, and (b) the standard error of 
this estimate will be incorrect. Result (b) implies that both the confidence 
intervals around the trait estimates and the test statistics for assessing trait 
differences are likely to be misleading. These distortions, in turn, might 
have consequences in both individual assessment and validity studies.  

I turn now to the change scenario in which I shall consider the Z-test 
proposed by Finkelman, Weiss and Kim-Kang (2010) as the basic procedure 
for estimating individual change. Define first the change point estimate δ as  

iii θθδ ˆ'ˆ −= . If the item parameters are assumed to be the same at Time-1 and 
Time-2, then the Z-test can be written as 
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where poolθ̂  is the pooled trait estimate based on the full 2n pattern. In other 
words, it is the common trait estimate proposed here under the stability 
assumption (i.e. the best estimate under the null hypothesis of no change). 

The standard error in the denominator of (10) is based on the amount of 
information corresponding to the common trait estimate, so the results are 
those discussed above: If REs are operating, the test information estimate is 
upwardly biased, so the standard error estimate in (10) is incorrect and 
downwardly biased.  

If LIR holds, then each expected score at Time-2 depends solely on θ’. 
However, if REs are operating, then the expected score also depends on the 
response which was given at Time-1, and, in the limiting case of perfect local 
dependence, the expected score at Time-2 depends only on (and is the same 
as) the score at Time-1. Overall, then, the presence of REs brings the Time-2 
scores closer to the Time-1 scores than the model predicts. So, the expected 
trait estimate at Time-2 is biased towards the estimate at Time-1, and, 
therefore, |δ| is biased towards zero (i.e. attenuated). To sum up, the presence 
of REs is expected to (a) decrease the point estimate of the amount of 
individual change, and (b) make the corresponding standard error incorrect.  

As in the stability case, results (a) and (b) above might have a negative 
impact on both individual assessment and validity assessment. However, the 
impact is expected to be more serious here: results (a) and (b) imply that 
change is not expected to be well detected in those respondents for whom REs 
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are strong. This distortion, in turn, might have important consequences for 
individual decisions taken in settings such as clinical treatment or attitude-
change assessment.  

EMPIRICAL STUDIES 
The functioning of the indices and procedures proposed in this paper 

was assessed with two initial simulations and three real-data studies in the 
personality domain. In all the studies only the main results are provided. 
Further details can be obtained from the author.  

 
Two Initial Simulation Studies 
Given the preliminary nature of the studies, most basic conditions were 

kept as simple as possible. First, the simulations were based on the stability 
scenario. Second, only the least parameterized models were considered. So, 
the first simulation was based on binary responses that behaved according 
to the two-parameter model (2PM) while the second was based on 
continuous responses that behaved according to the unidimensional linear 
FA model. In both studies the fixed conditions were as follows: two ‘pseudo 
samples’ of 600 cases each were generated from the corresponding model 
by using item discriminations normally distributed between 0.2 and 0.8, and 
thresholds/intercepts normally distributed between -2.0 and 2.0. As for the 
scoring, the distribution of θ was standard normal, and the trait estimates were 
Bartlett factor scores (continuous case) and Bayes EAP scores (binary case). 
EAP estimates were chosen in the second simulation in order to avoid 
potential problems of non-covergence or implausible estimates, especially in 
the short-test conditions. Finally, in the first pseudo sample (null hypothesis 
conditions) no REs were operating in any of the simulees. In the second 
(alternative hypothesis conditions), REs were operating for all simulees.  

The common independent variables were test length and magnitude of 
the REs. Test lengths were n=20 (short test), n=40 (medium test) and n=60 
(long test). The levels in the REs variable (alternative hypothesis conditions) 
were determined by the value of the correlation between the measurement 
errors, and were r=0.20 (weak REs), r=0.40 (medium REs), and r=0.60 
(strong REs). In all cases, the critical values for determining significance were 
based on 500 simulated response patterns, and the values which are reported in 
each cell are the average obtained across 30 replications.  

In the null-hypothesis simulations the dependent variables were: (a) 
mean value, and (b) empirical type-I error using a unilateral contrast (i.e. 
upper tail for rti Q3 and lower tail for rti MSR and rti MSRW ) for nominal 



Assessing retest effects at the individual level 153 

levels of 0.10 and 0.05. In the second case, they were: (a) mean value and 
(b) proportion of hits (individual with REs detected as such) when the 0.10 
and 0.05 type-I nominal levels were used. The results are shown in tables 1 
(binary responses) and 2 (continuous responses).  

 
 
 

Table 1. Results of Simulation Study 1: Binary Variables.  
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Table 2. Results of Simulation Study 2: Continuous Variables. 
 

 
 
 
 
Summary of results 
In all cases it was found that rti MSRW systematically outperformed 

rti MSR. So only the rti MSRW results are presented here. 
Overall, the results behaved as expected. Under the null-hypothesis 

conditions the mean values were generally close to the expectations and the 
empirical type-I values agreed with the nominal levels. Under the 
alternative-hypothesis conditions, the means of rti Q3 and rti MSRW 
departed from the null expected values in the predicted direction, and the 
departures were more pronounced as the REs increased. As for detection 
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power, in all cases the proportion of hits increased with test length and 
magnitude of REs, as it should.  

Regarding comparisons, two results are worth discussing. First, both 
indices tended to work better in the case of continuous responses, which is 
to be expected given that product-moment correlations and mean squares 
perform generally better with continuous variables. Second, in the 
continuous case rti Q3 tended to perform better than rti MSRW under the 
alternative-hypothesis conditions. However, in the binary case, rti MSRW 
showed more power than rti Q3 when the test was short and the REs were 
small. Finally, the differences between both indices gradually decreased as 
test length and amount of REs increased. 

As a summary, the general results suggest that both rti Q3 and rti 
MSRW, would be good at detecting individuals with strong REs in tests of 
40 or more items.  However, this result must be qualified mainly for two 
reasons. First, the simulation assumes that the chosen IRT model exactly 
holds in the population of simulees. Second, the item parameters are 
assumed to be known. These conditions, indeed, are never met in practice 
but are expected to be well approximated if the item parameters have been 
calibrated in a large and independent sample and model-data fit is good. In 
less favorable conditions, such as when minor factors not accounted for by 
the model are impacting the responses or when the item estimates have 
large sampling variability, a loss of power of the proposed statistics can be 
expected (at the very least). So, it is safe to say that further simulation based 
on more realistic scenarios is strongly needed. 

 
Real-Data Example 1. A Test-Retest Study Based on  Binary 

Responses 
The first example is based on a data set used in Ferrando, Lorenzo-Seva 

and Molina (2001). A 60-item questionnaire for measuring Neuroticism (N) 
was administered on two occasions to a sample of university students under 
the same conditions and with a 4-week retest interval. The responses were 
binary and the items were calibrated by fitting the 2PM to the Time-1 sample 
data (N=625). As detailed in the original study, the model-data fit was 
acceptable. 

In the present analysis, EAP scores were estimated for the 432 
respondents who were present at both administrations. Because the study was 
based on stability assumptions, the scores were obtained by treating the 120 
responses as if they formed a single pattern. Finally, the rti Q3 and rti 
MSRW estimates were obtained based on the calibrated item parameters and 
the EAP scores. The means were: 0.47 (rti Q3) and 0.53 (rti MSRW). The 
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product-moment correlation between rti Q3 and rti MSRW was r=-0.91, 
which suggests strong agreement between both indices. 

 In both cases the means discussed above suggest that strong REs 
were operating for most of the respondents. To provide more support for 
this result, simulated data based on the calibrated item parameters but in 
which the LIR assumption was met was generated for 500 simulees. In 
agreement with the expectations, the means of the simulated data were: 0.00 
(rti Q3) and 1.00 (rti MSRW). Figure 1 shows the distribution of the 
simulated rti MSRW values (dashed line) together with the distribution of 
the real values (solid line). Note that the distribution of the simulated rti 
MSRW values is centered at 1 and clearly shifted to the right. 
 

 
Figure 1. Distribution of real (solid line) and simulated (dashed line)  
rti-MSRW values. Illustrative example 1. 

 
 
In the last step, cutpoint values were determined by using 500 

replications per individual, and a 90% confidence level. According to the rti 
Q3 results, 92% of the respondents would be flagged as potentially 
impacted by REs. According to rti MSRW the corresponding percentage 
would be 88%.  
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As a final illustration, table 3 summarises the results of two 
respondents with similar trait estimates but possibly affected very 
differently by REs. For each index, the reported results are the point 
estimate and the Double Bootstrap 90% confidence interval obtained by 
using 2000 replications at the first level and 44 at the second level.  
 
 
Table 3. Summary of results for respondents 55 and 201. Illustrative 
example 1. 

 
 
 
 
 
It was detected that participant 201 was impacted by REs, and 

inspection of the estimates and confidence intervals suggests that this 
impact was rather strong. In contrast, the results suggest that the scores of 
participant 55 were not affected by REs in the slightest. Even though the 
trait estimates of both respondents are quite similar, the estimate of 
respondent 55 is expected to be far more accurate than that of respondent 
201 because the ‘true’ information is based on a response pattern made up 
of 120 responses which are locally independent.  In contrast, there is much 
less information for respondent 201, and it is probably largely the same as 
that would be obtained by using solely the Time-1 data (i.e. 60 items).  

 
Real-Data Example 2. A Study Based on  Binary Responses and 

Change Assumptions 
The second example uses a subtest made up of 21 items taken from 

the 60-item scale discussed in the previous example, and was administered 
on two occasions with a retest interval of 6 weeks in a group of university 
students. Of these, 332 completed the questionnaire at Time 1, and 277 
participated in both administrations. At Time-1 the participants were asked to 
respond under standard instructions. At Time-2 they were given faking-
inducing instructions that were expected to produce a substantial decrease in 
the N scores. So, unlike the first example, a pretest-treatment-post-test design 
was used in which a temporal change in the trait levels was assumed. 
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As in the previous example, the 21 items were calibrated according to 
the 2PM by using the Time-1 data. The fit was considered to be acceptable: 
the goodness of fit index estimate was GFI=0.93 and the standardized root 
mean squared residual was 0.06. So, EAP individual scores were next 
obtained. In this example, however, the EAP estimates were computed 
separately at Time-1 and Time-2 based on the common item parameters. 
The mean trait estimates together with the 90% confidence intervals were: 
0.00 (-0.07; 0.07) at Time-1 and -1.37 (-1.46:-1.28) at Time-2. Finally, the 
means of rti Q3 and rti MSRW values were: 0.20 (rti Q3) and 1.01 (rti 
MSRW). The product-moment correlation between both indices was r=-
0.87. 

Taken together, the results just discussed clearly suggest that (a) at the 
group level there is a marked general decrease in the N levels at Time-2 (as 
expected), and (b) unlike the previous example, the impact of REs in this 
case is small or negligible for most of the respondents. These results, 
however, are still compatible with non-informative or non-valid estimates 
of faking-induced change for certain individuals. 

  Figure 2 shows the |δ| individual estimates of change (see equation 
10) plotted against the corresponding rti Q3 values. The scatterplot is 
markedly heteroscedastic, and is a clear example of Fisher’s (1959) “twisted 
pear” effect, in which the change estimates become increasingly variable as 
the impact of REs (measured by rti Q3 ) decreases. When REs are not 
present (rti Q3 values around 0) the change estimate is not restricted in any 
way. However, as discussed above, when REs are strong (rti Q3 values 
approaching 1) the change estimates are necessarily small. So, for the 
individuals in the bottom right-hand square of the graph, the estimates of 
change cannot be validly interpreted because they are likely to be grossly 
attenuated. 

 
Real-Data Example 3. A Study Based on the Multiple FA model 

and Stability Assumptions 
The Overall Personality Assessment Scale (OPERAS; Vigil_Colet et 

al., 2013) is a multidimensional questionnaire intended to measure the Big-
Five personality dimensions. It consists of 5 short scales of 7 items each 
that measure the content dimensions, plus a 4-item control scale intended to 
measure social desirability, and the response format for all of the items is 5-
point Likert. The OPERAS is particularly suitable for illustrating the use of 
the multidimensional versions of the indices proposed here. If the 
unidimensional indices had been used on a separate scale by scale basis, the 
response patterns would have been too short for achieving accurate and 



Assessing retest effects at the individual level 159 

powerful detection of REs. However, the use of the multidimensional 
versions obtains the indices on the basis of a 39-response pattern, which 
should be enough for them to function appropriately provided that the 
sources of REs generalize across subtests. On the other hand, if the sources 
were (at least in part) scale specific, the multidimensional versions might be 
insensitive to overall patterns that show REs on few specific subscales.  

 

 
Figure 2. Scatterplot of trait change estimates against rti-Q3 values. 
Illustrative example 2.  
 
 
 

The present example is based on a sample of 128 respondents that was 
collected to assess test-retest reliability by using a retest interval of 3 weeks. 
Because this sample is relatively small, the item parameter estimates that 
were used were those obtained from the normative sample of 3,838 
respondents (Vigil-Colet et al., 2013). The model used in the calibration 
was unrestricted linear FA in five orthogonal dimensions and the solution 
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was a clear independent-clusters basis which matched the a priori allocation 
of the items.  

In the scoring stage, Bartlett’s factor scores were obtained in each of 
the five dimensions for the 128 respondents and, given that the study used 
stability assumptions, the scores were pooled estimates obtained by treating 
the 78 responses as if they formed a single pattern. Finally, the 
multidimensional continuous versions of rti Q3 and rti MSRW were 
computed for each respondent. The means were 0.72 (rti Q3) and 0.63 (rti 
MSRW), and suggest that strong REs were operating for most of the 
respondents. The percentages of potentially impacted respondents were 
88% (rti Q3) and 70% (rti MSRW). So, the results in this case suggest that 
the sources of REs at the individual level generalize across subtests. Finally, 
the product-moment correlation between rti Q3 and rti MSRW was r=-0.87 
which, again, indicates close agreement between both indices. 

DISCUSSION 
REs can adversely affect the individual estimates obtained in T-R 

studies thus making valid interpretations of these estimates questionable. 
Therefore, it would be advisable in a study of this type to systematically use 
the procedures proposed here with each participant before his/her estimates 
are interpreted or used for purposes of assessment or in further validity 
studies. 

The procedures proposed in this article can be used in both stability and 
change studies under a variety of response formats and IRT models. So, 
overall, this is a wide-ranging proposal that cannot be considered as totally 
finished, and some issues clearly must be developed further. I discuss below 
two of these issues. 

First, the indices and approaches proposed here are expected to work 
well in the favorable conditions discussed above: a large and independent 
calibration sample, a long test, and good model-data-fit results. However, as 
also discussed above, how they are expected to work under less favorable 
conditions is still largely unknown. This point requires further intensive 
research under a variety of potentially relevant conditions to be fully 
explored. 

Second, the replication-based approaches proposed here for making 
inferences about the indices seem to work well but are computationally very 
intensive, particularly the double Bootstrap for obtaining confidence 
intervals. Although, as discussed above, strict adherence to normal and chi-
square distributions cannot be expected, these approximations might be 
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enough for most practical purposes and, if so, the inference processes would 
be greatly simplified. Whether this is or not the case requires again 
intensive simulations under realistic conditions as well as further studies 
based on real data.   

In spite of the acknowledged limitations, however, the preliminary 
results obtained are clearly encouraging. The simulation results suggest that 
the indices behave as expected and that, under favorable conditions,  REs can 
be detected with tests of moderate length especially if these effects are 
moderate to strong (the most relevant condition in practice). As for the 
empirical examples, they provided meaningful results in all cases, and these 
results should be taken into account in applied research. The results of 
studies 1 and 3 suggest that in stability designs, relatively short retest 
intervals of 3 or 4 weeks still give rise to strong REs for most of the 
respondents. In contrast, study 2 was based on a change design with a 
longer retest interval, and in this case the REs were far weaker. However, 
the scatterplot in figure 2 suggests that valid change estimates cannot be 
obtained for the individuals who were impacted by REs.  

In closing, I would like to discuss a practical and clearly needed further 
development. The procedures proposed here are relatively simple and can be 
easily programmed but if the present proposal is to be put to widespread use a 
free user-friendly program must be available. This is a clear aim for the future.  

RESUMEN 
Evaluación de los efectos retest a nivel individual: Un enfoque global 
basado en la TRI. Los estudios test-retest para evaluar estabilidad y cambio 
se utilizan ampliamente en diferentes dominios y permiten obtener 
estimaciones individuales más precisas o información adicional sobre el 
individuo. Sin embargo, para interpretar de forma válida las estimaciones 
derivadas de un estudio de este tipo, las respuestas obtenidas en la segunda 
ocasión deben estar libres de efectos retest, y el cumplimiento de este 
requisito debe evaluarse empíricamente. El presente artículo presenta un 
enfoque general basado en la teoría de respuesta al ítem para evaluar los 
efectos retest a nivel del individuo y evaluar el supuesto de independencia 
local bajo repetición. El enfoque propuesto puede utilizarse con una amplia 
variedad de modelos unidimensionales y mutidimensionales, y está basado 
en índices correlacionales e índices mínimo-cuadráticos. Se proponen 
procedimientos para (a) establecer valores críticos con fines de detección y 
(b) interpretar la magnitud de los efectos retest para los individuos 
detectados. Se discuten además las consecuencias de ignorar los efectos 
retest cuando están actuando. Los procedimientos propuestos se evaluaron 
mediante simulación y se aplicaron en tres estudios empíricos. En todos los 
casos funcionaron bien y proporcionaron información de interés.  
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