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An Introduction to the DA-T Gibbs Sampler for
the Two-Parameter Logistic (2PL) Model and

Beyond

Gunter Maris & Timo M. Bechger
Cito (The Netherlands)

The DA-T Gibbs sampler is proposed by Maris and Maris (2002) as a
Bayesian estimation method for a wide variety ofItem Response Theory
(IRT) models. The present paper provides an expository account of the DA-
T Gibbs sampler for the 2PL model. However, the scope is not limited to
the 2PL model. It is demonstrated how the DA-T Gibbs sampler for the 2PL
may be used to build, quite easily, Gibbs samplers for other IRT models.
Furthermore, the paper contains a novel, intuitive derivation of the Gibbs
sampler and could be read for a graduate course on sampling.

Introduction

Let Ypi = 1 denote the event that personp gives the correct answer to

item i, andθp his ability. Assume that there exists alatent response variable,

Xpi, such that personp solves itemi if Xpi is larger than a thresholdδi. That

is,

P (Ypi = 1|θp) = P (Xpi > δi|θp) .

It is seen that the probability of a correct response depends on the threshold of

the item as well as the ability of the respondent. The probability of a correct

response as a function of ability is called theItem Response Function (IRF).

Address correspondence to: Gunter Maris, Cito, P.O. Box 1034, NL-6801 MG, Arnhem,
The Netherlands. E-mail: gunter.maris[at]citogroep.nl; Tel:+31-026-3521162.
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Figure 1. IRFs for two 2PL items with different parameters.

Under theTwo-Parameter Logistic (2PL) model(Birnbaum, 1968),Xpi

is assumed to follow a logistic distribution with meanαiθp and scale parame-

terβ = 1 so that

P (Xpi > δi|θp, αi, δi) =
Z ∞

−∞
(xpi > δi)f(xpi|θp, αi)dxpi

=
Z ∞

−∞
(xpi > δi)

exp(xpi − αiθp)

[1 + exp (xpi − αiθp)]
2dxpi

=
exp(αiθp − δi)

1 + exp(αiθp − δi)
,

where(xpi > δi) denotes an indicator variable that is one ifxpi > δi, and zero

otherwise. TheTwo-parameter Normal Ogive (2NO) model(Birnbaum, 1968)

is obtained when the distribution of the latent response variables is normal.

Thediscrimination parameterαi determines how fast the IRF changes

with ability. If αi is positive (negative), the probability of answering correctly

is an increasing (decreasing) function of ability. TheRasch model(Rasch,

1980) is a special case of the 2PL where all items have a discrimination pa-

rameter equal to one.
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As it stands, the 2PL isunidentifiable. Specifically,

P (Ypi = 1|θp, αi, δi) =
exp(α∗i θ

∗
p − δ∗i )

1 + exp(α∗i θ
∗
p − δ∗i )

where

α∗i = αid, δ∗i = δi − αic, θ∗p =
θp − c

d
,

andc andd are arbitrary constants. To deal with this indeterminacy we arbi-

trarily setα1 = 1, andδ1 = 0. This means that the item parameters must be

interpreted relative to the first item.

The purpose of this paper is to provide an expository account of

Bayesian estimation of the 2PL focussing on the DA-T Gibbs sampler devel-

oped by Maris and Maris (2002). In addition, we offer an intuitive derivation

of the Gibbs sampler and demonstrate that the DA-T Gibbs sampler for the

2PL can be used to build Gibbs samplers for many otherItem Response The-

ory (IRT)models. Among others, we considerthe Linear Logistic Test Model

(LLTM) (Fischer, 1995), the 3PL (Birnbaum, 1968), andthe Nedelsky model

for multiple choice items (Bechger, Maris, Verstralen & Verhelst, 2005).

Gibbs Sampling

Let Λ = (Λ1, . . . , Λm), m ≥ 2, denote a vector of parameters.1 In

Bayesian statistics, the unknown parameters are considered random variables.

Bayes theorem states that theposterior density(the posterior, for short) ofΛ

given the observed datay is given by

f(λ|y) =
f(y|λ)f(λ)

f(y)
,

wheref(y|λ) denotes the likelihood function, andf(y) the marginal likeli-

hood function. Theprior densityf(λ) (prior, for short) expresses substantive

knowledge concerning the parameters prior to data collection. In Bayesian

statistics all inferences about the parameters are based upon the posterior.

1We use subscripts to distinguish parameter vectors from scalars.



330 G. Maris and T.M. Bechger

First
parameter

Second
parameter

First
parameter

Second
parameter

Figure 2. Schematic representation of two iterations of the Gibbs sampler with two
parameters. The plot must be read from upper left to lower right.

The Gibbs sampler is an iterative procedure to generate parameter val-

uesλ(0), λ(1), . . . from the posterior. The firstn generated values are discarded

and the rest is considered to be adependent and identically distributed (did)

sample from the posterior. This means that

1. The distribution ofΛ(n+j) given the data is the posterior for allj > 0.

2. Conditional upon the data,Λ(n+j) is not independent ofΛ(n+i).

In this section we discusshow the Gibbs sampler works,why it works,

andwhen it works. Alternative explanations can be found, for instance, in

Casella and George (1992), Tanner (1996), or Ross (2003). The reader is

referred to Tierney (1994) for a more rigorous treatment.
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How

The procedure starts by choosing an initial valueλ(0). Then, in each

successive iteration, individual parameters are sampled independently from

their so-called full conditional distributions. The order in which the parame-

ters are sampled is arbitrary.

The full conditional density(the full conditional, for short) is the den-

sity given the observed data and the current value of all other parameters. In

the sequel, we will often use the shorthand notationf(λk| . . . ) for the full

conditional of parameterλk. To determine, up to a constant, the full condi-

tional of a parameterλk we write down the densityf(λ,y) and remove all

factors that are unrelated toλk. Specific examples will be given below.

Figure 2 represents two iterations of a fictitious Gibbs sampler, with two

parameters being sampled at each iteration. The closed curve represent the

supportof a two-dimensional posterior. The solid lines indicate the support

of the full conditionals and the crosses denote arbitrary values simulated from

the different full conditional distributions. Observe that the Gibbs sampler

“travels” through the support of the posterior along horizontal and vertical

paths. Note that the support of the posterior must be such that every region

can be reached by the Gibbs sampler, irrespective of the point of departure.

With a did sample from the posterior we may use theMonte Carlo

method to calculate an unbiased estimate of the posterior expectation of any

functiong(λ,y): Z
g(λ,y)f(λ|y)dλ ≈ 1

ns

X
j

g(λ(j),y) ,

wherens denotes the number of sampled valuesλ(j). That is, we approxi-

mate the expectation by the sample mean. The posterior probability that a

parameter is smaller or equal to a constantt, for example, is estimated by

1

ns

X
j

�
λ

(j)
k ≤ t

�
.

The variance of the estimator of the posterior expectation can be estimated by

the variance over independent replications of the Gibbs sampler.
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Figure 3. Plot of sampled values against iterations.

Unfortunately, there is no established way to determine an appropriate

value forn. One option is to look at plots ofλ(1), λ(2), . . . against iterations

for a number of independent replications. An illustration with four indepen-

dent replications is given in Figure 3. If, aftern iterations, the values appear to

fluctuate around a common stationary value, this may be taken as circumstan-

tial evidence thatn is large enough. In Figure 3, the plots appear to stabilize

after about1200 iterations. However, there is no way to be sure since we do

not know what will happen after5000 iterations. Otherad hocmethods to

assess the required number of iterations are surveyed by Gelman and Rubin

(1992) or Gill (2002, chapter 11).
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Why

Let
¦
Λ(n), n ≥ 0

©
denote a Markov chain. AMarkov chainis a stochas-

tic process such that each value depends only on its immediate predecessor;

that is, forn > 0,

f(λ(n)|λ(n−1), . . . , λ(0)) = f(λ(n)|λ(n−1)) .

The Gibbs sampler is a procedure to simulate a Markov chain such that

the marginal distribution ofΛ(n) converges to the posterior ifn increases.

Convergence to the posterior is guaranteed if the following conditions are

satisfied:

1. The posterior is the invariant distribution.

2. The chain is irreducible.

Invariancemeans that ifλ(0) is drawn from the posterior, then all sub-

sequent values are also draws from the posterior. Suppose, for ease of presen-

tation, that there are two parameters.2 Their posterior density is

f(λ1, λ2|y) = f(λ1|λ2,y)f(λ2|y) .

To sample from this posterior, we drawλ(1)
2 from the marginal posterior dis-

tribution and thenλ(1)
1 from the distribution conditional uponλ(1)

2 . Note that

the latter is a full conditional as defined in the previous paragraph.

Suppose we set up a Markov chain to drawλ
(1)
2 from the marginal poste-

rior distribution. Convergence is faster if the dependence between subsequent

values is weaker. Thus we aim for a weak degree of dependence. Specifi-

cally, we ensure thatΛ(1)
2 andΛ

(0)
2 are independent and identically distributed

conditional uponΛ(0)
1 . That is,

f(λ
(0)
2 , λ

(1)
2 |y) =

Z
f(λ

(0)
2 |λ(0)

1 ,y)f(λ
(1)
2 |λ(0)

1 ,y)f(λ
(0)
1 |y)dλ

(0)
1 .

If we integratef(λ
(0)
2 , λ

(1)
2 |y) with respect toλ(0)

2 (or λ
(1)
2 ), we see thatΛ(0)

2

andΛ
(1)
2 have the same marginal distribution. This distribution is the marginal

2The argument for the general case follows by mathematical induction.
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posterior. It follows that

f(λ
(1)
2 |λ(0)

2 ,y) =
f(λ

(0)
2 , λ

(1)
2 |y)

f(λ
(0)
2 |y)

=
Z

f(λ
(1)
2 |λ(0)

1 ,y)
f(λ

(0)
2 |λ(0)

1 ,y)f(λ
(0)
1 |y)

f(λ
(0)
2 |y)

dλ
(0)
1

=
Z

f(λ
(1)
2 |λ(0)

1 ,y)f(λ
(0)
1 |λ(0)

2 ,y)dλ
(0)
1 .

To produce a valueλ(1)
2 from the posterior distribution we may use themethod

of composition(Tanner, 1996, section 3.3.2) as follows:

1. Drawλ
(0)
2 from the posterior.

2. Drawλ
(0)
1 from the full conditionalf(λ1|λ(0)

2 ,y).

3. Drawλ
(1)
2 from the full conditionalf(λ2|λ(0)

1 ,y).

This procedure is a Gibbs sampler starting with a draw from the posterior.

λ(0)
2

 

λ(1)
2

 

λ(2)
2

 

λ(1)
1

 

λ(2)
1

 

λ(0)
1

 

λ(1)
1

 

etc. 

Figure 4. Schematic picture of the sampling procedure. Within the rectangle is the
Gibbs sampler.
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With λ
(1)
2 drawn from the marginal posterior, we then drawλ

(0)
1 from the

full conditionalf(λ1|λ(1)
2 ,y) and repeat the process withλ(1)

2 replacingλ
(0)
2 ,

etc. Schematically, the sampling procedure may be depicted as in Figure 4

where the values generated by the Gibbs sampler are drawn inside a rectangle.

It can be shown that these values are the realization of a Markov chain whose

invariant distribution is, by construction, the posterior. The values outside the

rectangle need not be generated in which case we obtain the Gibbs sampler as

described in the previous section.

Irreducibility refers to the fact that it must be possible to reach each

region in the support of the posterior (see e.g., Figure 2). This is true for the

majority of applications.

When

Gibbs sampling is useful when the full conditionals aretractable. If

so, it provides an estimation procedure that can be implemented relatively

quickly. We call a distributiontractable if there is a simple and efficient

method to generate a sample from it. Methods for stochastic simulation can

be found, for instance, in Devroye (1986), Ripley (1997), or Ross (2001).

There are many situations where the full conditionals are not tractable.

This is, in fact, the case of the 2PL (Maris & Maris, 2002). In the next section,

we will demonstrate that the DA-T Gibbs sampler is a variant of the Gibbs

sampler designed to give tractable full conditionals.

The DA-T Gibbs Sampler for the 2PL

The Prior

We conveniently assume that the parameters area priori independent.

That is,

f(θ, δ, α) =
Y
p

f(θp)
Y
i

f(δi)f(αi) . (1)

We also assume that all prior distributions are tractable. Note that the priors

must be chosen relative to the item whose parameters are arbitrarily fixed to

identify the model.
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The Full Conditionals

DA stands forData Augmentationwhich entails adding latent data as

(auxiliary) parameters (Tanner & Wong, 1987). The principle of DA may be

stated as follows:

Augment the observed data with latent data so that the augmented

posterior distribution is “simple”. (e.g., Tanner, 1996, p. 38)

Here, the continuous latent responses are added as parameters. Our hope is

that DA will result in tractable full conditionals. Let’s see !

The DA posterior of the 2PL is proportional to

f(θ, δ, α,x,y) = f(y|x, θ, δ, α)f(x|θ, δ, α)f(θ, δ, α)

= f(y|x, δ)f(x|θ, α)f(θ, δ, α) .

Persons are assumed to be independent of one another, so that

f(y|x, δ) =
Y
p

Y
i

f(ypi|xpi, δi)

�
=

8><>:
1 if xpi > δi andypi = 1

1 if xpi ≤ δi andypi = 0

0 otherwise

�

=
Y
p

Y
i

(xpi > δi)
ypi(xpi ≤ δi)

1−ypi ,

and

f(x|θ, α) =
Y
p

Y
i

f(xpi|θp, αi)

=
Y
p

Y
i

exp(xpi − αiθp)

[1 + exp(xpi − αiθp)]
2 .

Thusf(θ, δ, α,x,y) equalsY
p

Y
i

(xpi > δi)
ypi(xpi ≤ δi)

1−ypi
exp(xpi − αiθp)

[1 + exp(xpi − αiθp)]
2f(θ, δ, α) . (2)

The next step is to derive the full conditionals, including those for the

latent responses. Let us first consider the full conditional distribution ofδi,
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y
pi

 = 1 

( δ
i
 < x

pi
 ) =1

. 

y
pi

 = 0 

( δ
i
 ≥ x

pi
 ) =1

intersection =  

min
y

pi
=1

{x
pi

} 

max
y

pi
=0

{x
pi

} 

Figure 5. Illustration of the steps taken to arrive at Equation 4. It is illustrated that
each factor in (3) represents a half open interval, extending either to+∞ or−∞, and
their intersection is a closed interval.

wherei > 1 since the first item location parameter was fixed. If we remove

from (2) all terms that are unrelated toδi, we find that

f(δi| . . . ) ∝ f(δi)

"Y
p

(xpi > δi)
ypi(xpi ≤ δi)

1−ypi

#
. (3)

In Equation 3, the term within brackets represents a closed interval. It

is illustrated in Figure 5 thatY
p

(xpi > δi)
ypi(xpi ≤ δi)

1−ypi =
Y

p:ypi=1

(δi < xpi)
Y

p:ypi=0

(xpi ≤ δi)

=
�
δi < min

p:ypi=1
{xpi}

��
max

p:ypi=0
{xpi} ≤ δi

�
=
�

max
p:ypi=0

{xpi} ≤ δi < min
p:ypi=1

{xpi}
�

. (4)

Thus,f(δi| . . . ) is the truncated prior ofδi which is tractable.
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In a similar way, we find that the full conditionals ofαi and θp are

proportional to the product of logistic with prior densities. For instance, the

full conditional of anyθp is

f(θp| . . . ) ∝ f(θp)
Y
i

exp(xpi − αiθp)

[1 + exp(xpi − αiθp)]
2 . (5)

Unfortunately, the product of logistic densities is not tractable. We conclude

that DA has not simplify the task of sampling from the full conditional distri-

butions.3

As seen in Equation 5, the problem is due to the fact that the distribution

of the latent responses depends on the item and person parameters. The DA-T

Gibbs sampler is obtained if we transform the continuous latent responses to

remove all parameters from their distribution. Hence, the T stands forTrans-

formation. For the 2PL we apply the transformationzpi = xpi − αiθp. The

resulting “DA-T posterior”,f(θ, δ, α, z|y), is proportional tof(θ, δ, α, z,y).

From (2) it is easily found thatf(θ, δ, α, z,y) equalsY
p

Y
i

(zpi + αiθp > δi)
ypi(zpi + αiθp ≤ δi)

1−ypi
exp(zpi)

[1 + exp(zpi)]
2f(θ, δ, α) (6)

Removing unrelated factors from Equation 6 shows that each of the full con-

ditionals is now a tractable truncated distribution:

1. The full conditional ofzpi is a logistic distribution with support

(zpi > δi − αiθp)
ypi (zpi ≤ δi − αiθp)

1−ypi

2. The full conditional ofδi (i > 1):

f(δi| . . . ) ∝ f(δi)

"Y
p

(δi < zpi + αiθp)
ypi (δi ≥ zpi + αiθp)

1−ypi

#
3. The full conditional ofαi (i > 1):

f(αi| . . . ) ∝ f(αi)

"Y
p

(αiθp > δi − zpi)
ypi (αiθp ≤ δi − zpi)

1−ypi

#
3In contrast, a product of normal densities is again a normal density. Thus, DA is effective

for the 2NO modelwith normal priors(Albert, 1992; Albert & Chib, 1993). Here, we will
not consider a method that works only for a particular prior distribution.
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4. The full conditional ofθp:

f(θp| . . . ) ∝ f(θp)

"Y
i

(θpαi > δi − zpi)
ypi (θpαi ≤ δi − zpi)

1−ypi

#
In the following paragraph we demonstrate how the support of each full

conditional is determined.

Calculating the Truncation Constants

The support of each of the full conditionals is seen to be a product of

indicator functions of the following form:Y
j

(lj < λi ≤ hj) =
�
max

j
{lj} < λi ≤ min

j
{hj}

�
, (7)

where eitherlj = −∞ or hj = ∞. Hence, each term(lj < λi < hj) restricts

the range ofλi to a half open interval extending to either plus or minus in-

finity. As illustrated in the previous section, their product is the intersection

of these intervals, ranging frommaxj {lj} to minj {hj} (see Figure 5). Thus,

maxj {lj} andminj {hj} are the truncation constants for the full conditional.

The support for δi: The support forδi is a product of indicator functions

over persons. We see that

lp =

8<:−∞ if ypi = 1

zpi + αiθp if ypi = 0

and

hp =

8<:zpi + αiθp if ypi = 1

∞ if ypi = 0

The support of αi: Note that

(αiθp > δi − zpi)
ypi (αiθp ≤ δi − zpi)

1−ypi (8)

=

8<: (tpi < αi < ∞)ypi (−∞ < αi ≤ tpi)
1−ypi if θp > 0

(−∞ < αi < tpi)
ypi (tpi ≤ αi < ∞)1−ypi if θp < 0
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where

tpi ≡
δi − zpi

θp

. (9)

The indicator functions depend on the sign ofθp because we divide byθp on

both sides of the inequality sign in (8). The support forαi is a product over

persons. Ifθp > 0,

lp =

8<:tpi if ypi = 1

−∞ if ypi = 0
and hp =

8<:∞ if ypi = 1

tpi if ypi = 0
.

If θp < 0, then

lp =

8<:−∞ if ypi = 1

tpi if ypi = 0
and hp =

8<:tpi if ypi = 1

∞ if ypi = 0
.

The support of θp: Calculating the support forθp is very similar to calcu-

lating the support ofαi. The difference is that here we have a product over

items. Let

tpi ≡
δi − zpi

αi

. (10)

If αi > 0, then

li =

8<:tpi if ypi = 1

−∞ if ypi = 0
and hi =

8<:∞ if ypi = 1

tpi if ypi = 0
.

If αi < 0,

li =

8<:−∞ if ypi = 1

tpi if ypi = 0
and hi =

8<:tpi if ypi = 1

∞ if ypi = 0
.

In practice, we consider each interval in (7) separately and increase

(decrease) the lower bound (upper bound) of the intersection, each time we

encounter an interval with a higher lower bound (lower upper bound). This

is illustrated with the followingpseudo-codedescription of an algorithm to

determine the truncation constants for the full conditional ofθp:
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l = −∞
h = ∞
FORi = 1 to the number of items

tpi = δi−zpi

αi

IF ypi = 0

IF tpi < h andαi > 0 thenh = tpi

IF tpi > l andαi < 0 thenl = tpi

IF ypi = 1

IF tpi > l andαi > 0 thenl = tpi

IF tpi < h andαi < 0 thenh = tpi

END

It is clear that the DA-T Gibbs sampler stops if any of the intersections

is empty. In the next paragraph it is shown that this will never happen.

Could any of the Intersections be Empty?

For any parameter values at thejth iteration, we generate latent data

such thatY
i

Y
p

h
(z

(j+1)
pi > δ

(j)
i − α

(j)
i θ(j)

p )ypi(z
(j+1)
pi ≤ δ

(j)
i − α

(j)
i θ(j)

p )1−ypi

i
= 1 .

This means that, at this point, we are inside the support of the posterior. Then,

we draw, say,δi from

f(δi| . . . ) ∝
"Y

p

(z
(j+1)
pi + α

(j)
i θ(j)

p > δi)
ypi(z

(j+1)
pi + α

(j)
i θ(j)

p ≤ δi)
1−ypi

#
f(δi) .

Since the term within square brackets is one forδi = δ
(j)
i , it follows that the

support of the full conditional is not empty. The same is true for the other

parameters. It follows that none of the intersections can be empty.

Sampling from a Truncated Distribution

Let X denote a random variable with distribution functionF . We wish

to generate a realization ofX under the condition thatX takes values in the
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0

1

F(h) 

F(l) 

u* = u ( F(h) − F(l) ) + F(l) 

l h 

Figure 6. Simulating from a truncated distribution

interval (l < X < h). Figure 6 illustrates how this may be done. First, we

drawu from the uniform distribution. We then transformu to

u∗ = {u [F (h)− F (l)] + F (l)}

which lies in the interval fromF (l) to F (h). The valueF−1(u∗) is a realiza-

tion of the truncated variable.

Estimating Under Restrictions

Researchers often hold prior ideas about the parameters that take the

form of order restrictions on the parameters. They may, for instance, believe

item 1 to be easier than item 2. Thus, the prior density becomes

f(θ, δ, α)(δ1 < δ2) .

Each such restriction is added to the range restrictions of the full conditionals.
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Handling Incomplete Designs

In applications, the design of the study is oftenincomplete. This means

that only a subset of the available items is administered to each person, and

no responses are observed for items that were not administered. To adapt the

Gibbs sampler to handle data collected in an incomplete design we need only

ignore, for each person, the items that were not administered.

Linear Logistic Test Models

In this section we demonstrate how the DA-T Gibbs sampler for the

2PL is adapted to estimate the parameters of theLinear Logistic Test Model

(LLTM) (Fischer, 1995 and references therein).

Assume that the Rasch model is valid. That is, all discrimination param-

eters are unit constants. The LLTM specifies each item difficulty parameter

as a linear combination of so-called basic parameters:

δi(η) = qi1η1 + qi2η2 + · · ·+ qikηk . (11)

For ease of presentation, we assume thatηj refers to the difficulty of a mental

operation, andqij to the number of times this operation is required for thei-th

item. Thus, the weightsqij are non-negative integers.

The DA-T Gibbs sampler for the LLTM differs very little from that of

the Rasch model. Instead of sampling the item difficulties we now sample the

basic parameter. If we replace, in the DA-T posterior of the Rasch model (6),

δi by δi(η), it is easy to derive that

f(ηj| . . . ) ∝ f(ηj)

24Y
p

Y
i:qij 6=0

(ηj < tpi)
ypi (ηj ≥ tpi)

1−ypi

35 ,

where
Q

i:qij 6=0 denotes the product over all items that require thej-th mental

operation, and

tpi ≡
zpi + θp −

P
h 6=j qihηh

qij

.

The further specification of the DA-T Gibbs sampler is only marginally dif-

ferent from the DA-T Gibbs sampler for the 2PL.
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For illustration, we analyse a small data set that was published by Rost

(1996, pp. 99-100).4 The data set consists of the responses of300 persons to

five geometrical analogy items. Rost (1996, section 3.4) considers the follow-

ing weights appropriate for these five items:

Q =

0BBBBBBBB@
1 0

2 0

1 1

2 1

2 2

1CCCCCCCCA
Thus,q21 = 2, q32 = 1, etc. In this case, the weights are such that the basic

parameters are uniquely determined (see Fischer, 1995).

We assume that the persons are a simple random sample from a nor-

mal population with meanµ and varianceσ2. The population parameters are

estimated with the other parameters. The full conditional ofµ is

f(µ| . . . ) ∝ f(µ)

"Y
p

Y
i

(µ > tpi)
ypi(µ ≤ tpi)

1−ypi

#
,

wheretpi ≡
P

j qijηj − zpi − ηpσ, andηp = (θp − µ)/σ. The full conditional

of σ is

f(σ| . . . ) ∝ f(σ)

"
(σ > 0)

Y
p

Y
i

(ηpσ > δi − zpi)
ypi(ηpσ ≤ δi − zpi)

1−ypi

#
.

The other full conditionals are unchanged, butθp is replaced byηpσ + µ. The

details are in Maris and Maris (2002, section 2.3.4).

We do not presume to know very much about the parameters and use

zero-mean logistic priors with a large variance. After aburn-in periodof

200, 000 iterations we had the program run for a few days to do several million

iterations. The posterior means and standard deviations are in the following

4Previous (non-Bayesian) analyses on the same data are reported by Rost (1996), and
Bechger, Verstralen, and Verhelst (2002, section 6).
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Figure 7. Summary of sampled values of the first basic parameter following a burn-
in period. The first plot shows the running mean over iterations. The second plot
shows sampled values. The line running through the sampled values is again the
running mean.

table:
η1 η2 µ σ

posterior mean 0.463 0.969 1.361 1.993

posterior stand. dev.0.149 0.103 0.270 0.157

The first mental operation was more difficult than the second in over99% of

the sampled values.

Figure 7 shows two plots of the running mean of the sampled values

of η1. The upper drawing suggests that the chain has not converged after the

burn-in period. After an initial phase of erratic behaviour, the running mean

is seen to move downwards stabilizing after about3, 500, 000 iterations. In

the lower plot, however, it is seen that the variation in the running mean is

negligible on the scale of the sampled values.
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2PL Mixture IRT Models

A 2PL Mixture Model(2PLMM) is an IRT model that can be written

as:

P (Ypi = j|θ, λ) =
X
s

P (Ypi = j|S = s, λy|s)P (S = s|θ, λs) ,

where:

1. S = (S1, . . . , Sk) denotes a vector of discrete latent item responses.

2. Ypi|S = s follows a multinomial distribution.

3. P (S = s|θ, λs) is the likelihood ofk locally independent 2PL items.

4. θ may be multi-dimensional.

2PLMMs are defined by restrictions on the distribution ofYpi given

S = s. Consider, for example, the 3PL. In the 3PL,k = 1, and

S =

8<: 1 if a person knows the correct answer

0 if he doesn’t know the correct answer
.

Consequently,

P (Yip = 1|S = 1, λy|s) = 1 and P (Yip = 1|S = 0, λy|s) = λy|s .

In latent response models(Maris, 1995),θ is multi-dimensional but the prob-

abilitiesP (Ypi = j|S = s) are known and equal to zero or one. An example

is the conjunctive Rasch model (see Maris & Maris, 2002, section 2.3.2).

The DA-T Gibbs sampler for the 2PL can be used to build a Gibbs

sampler for any 2PLMM. Specifically, at each iteration we draw a sample

from the posterior

f(θ, λ, s|y) ∝ f(θ, λ, s,y) .

in threesteps:

1. Generate latent discrete item responses fromf(s|θ, λ,y).

2. Generateθ andλs from f(θ, λs|s).
3. Generateλy|s from f(λy|s|s,y).
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Due to LI, step1 entails generating independent responses to each ofk

2PL items for each of the persons. Step 2 can be done using the DA-T Gibbs

sampler for the 2PL. Step3 is the most complicated step. It is relatively simple

if the prior ofλy|s is taken to be a truncated Dirichlet distribution because this

implies that the corresponding full conditional is also a truncated Dirichlet

distribution. In the 3PL, for instance, the full conditional of the guessing

parameter would then be a truncatedβ-distribution. In latent response models,

step 3 is unnecessary becauseλy|s is known. As an illustration, we construct

a Gibbs sampler for the Nedelsky model.

The Nedelsky Model for Multiple-Choice Items

Consider a multiple-choice (MC) itemi with Ji + 1 options arbitrarily

indexed0, 1, . . . , Ji. For convenience,0 indexes the only correct alternative.

The Nedelsky Model(NM) is based upon the idea that a person responds to

a MC question by first eliminating the incorrect answers (ordistractors) he

recognizes as wrong and then guessesat randomfrom the remaining answers.

The probability that wrong answerj is recognized aswrong by a re-

spondent with abilityθp is modelled as a 2PL. That is, forj = 1, . . . , Ji,

P (Sij = 1|θp) =
exp(αiθp − δij)

1 + exp(αiθp − δij)
,

whereSij denotes a random variable that indicates whether alternativej is

recognized to be wrong. Thus we may think of each distractor as a 2PL item.

A “correct” answer is produced if the distractor is seen to be wrong. We will

now assume that the discrimination parameter is positive.

Define alatent subsetSi by the vector(0, Si1, . . . , SiJi
). Assuming

independence among the options givenθ, the probability that a subject with

ability θp chooses any latent subsetsi is given by

P (Si = si|θp) =
JiY

j=1

exp(αiθp − δij)
sij

1 + exp(αiθp − δij)

=
exp

�
αiθps

+
i −

PJi
j=1 sijδij

�QJi
j=1 [1 + exp(αiθp − δij)]

,
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wheres+
i ≡

PJi
j=1 sij denotes the number of distractors that are recognized as

wrong.

Once a latent subset is chosen, a respondent guessesat randomfrom

the remaining answers. Thus, the conditional probability of responding with

optionj to itemi, given latent subsetsi, is given by:

P (Yi = j|Si = si) =
1− sijPJi

h=0(1− sih)
,

where
PJi

h=0(1− sih) denotes the number of alternatives to choose from.
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Figure 8. The item response functionP (Yi = j|θ) (with αi > 0) againstθ for a
Nedelsky item with five categories.

Combining the two stages of the response process, we find that the con-

ditional probability of choosing optionj with item i is equal to

P (Yi = j|θp) =
X
si

1− sijPJi
h=0(1− sih)

P (Si = si|θp) .

Figure 8 shows a plot of these probabilities for an item with five categories.

Note that

lim
θ→−∞

P (Yi = j|θ) =
1

Ji + 1
(for j = 0, . . . , Ji).
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In fact, if an item has only two answer categories (wrong and correct), the

NM equals the 3PL with the parameterλy|s in the latter model fixed at1
2
.

We will now derive a DA-T Gibbs sampler for the NM. Lets denote the

latent subsets, andsip the latent subset of respondentp on answering theith

item. The vectorθ contains the abilities, and the vectorδ the parameters of

the items. The parameters of itemi are denoted byδi = (αi, δi1, . . . , δiJi
).

We proceed by drawing a sample fromf(θ, δ, s|y) and then ignore the

latent subsets. To this aim, we consider two full conditionals:f(θ, δ|y, s) =

f(θ, δ|s) andf(s|θ, δ,y), and repeat the following steps:

1. Draw latent subsets fromf(s|θ, δ,y).

2. Drawθ andδ from f(θ, δ|s) using the Gibbs sampler for the 2PL.

Using LI and Bayes theorem it is seen that,

f(s|θ, δ,y) =
Y
p

Y
i

P (ypi|sip)P (sip|θp, δi)P
si

P (ypi|si)P (si|θp, δi)

=
Y
p

Y
i

P (sip|θp, δi, ypi) .

Hence, sampling fromf(s|θ, δ,y) entails independently drawingNpNI latent

subsets. To this aim, we make a list of all2Ji subsets and calculate for each

subset on the list the probability

P (sj|θp, δi, ypi) =
P (ypi|sj)P (sj|θp, δi)P
si

P (ypi|si)P (si|θp, δi)
,

wherej = 1, . . . , 2Ji and

P (ypi|sj)P (sj|θp, δi) ∝
1− sj(ypi)PJi
h=0(1− sih)

exp

�
αiθs

+
j −

JiX
k=1

sjkδik

�
.

With these probabilities we then choose a random subset from the list (see

e.g., Ross, 2003, section 11.4).

Note that the NM has many parameters and hence a large number of

persons is required to estimate the item parameters with reasonable precision.

As an illustration we provide, in Figure 9, recovery plots of true values against
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Figure 9. A typical recovery plot for an analysis with20 items and200 persons.
Generating parameter values are on the horizontal axes. Estimated posterior means
are on the vertical axes.

estimated posterior means, for a (small) data set with20 trichotomous items

and200 persons. That is, we have simulated data under the NM, estimated the

parameters, and plotted the parameter values used to generate the data against

the posterior means. It is seen that recovery is not particularly good.

Discussion

In this article we have given an expository account of the DA-T Gibbs

sampler for the 2PL. In addition, we have illustrated how the DA-T Gibbs

sampler for the 2PL is extended to estimate models that are a special case of

the 2PL (LLTM), or used as a building block to construct samplers for more
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complex models (2PLMMs). Further applications can be found in Maris and

Maris (2002).

The DA-T Gibbs sampler is simple to implement but may be slow to

converge. Especially with large, returning applications, the algorithm may

need to run longer than we can afford to wait so that it makes sense to invest

time in developing and programming a more efficient (sampling) algorithm

(e.g., Chib & Greenberg, 1995).

Our focus has been on Gibbs sampling. As a consequence, a number of

important issues where ignored or have only been mentioned in passing. For

more information on Bayesian theory and methods, we refer to general text-

books, such as Bernardo and Smith (1994), Chen, Shao, and Ibrahim (2000),

Gelman, Carlin, Stern, and Rubin (1995), Gill (2002), or Tanner, (1996).
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