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Abstract

The Partial Credit Model (PCM) is sometimes interpreted as
a model for stepwise solution of polytomously scored items, where
the item parameters are interpreted as difficulties of the steps. It
is argued that this interpretation is not justified. A model for
stepwise solution is discussed. It is shown that the PCM is suited
to model sums of binary responses which are not supposed to be
stochastically independent. As a practical result, a statistical test
of stochastic independence in the Rasch model is derived.

1 Introduction

Masters (1982) introduced the partial credit model (PCM) as an IRT

model for polytomous items with ordered categories. The rationale he

used to introduce the model was based on a response process where

the subject responds sequentially to a number of subproblems in the

item. The partial credit given equals the number of steps completed

successfully, which of course in this rationale should be the first steps.

This rationale, together with the tempting conclusion that the location

∗Correspondence to: N. D. Verhelst, Cito, P.O. Box 1034, NL-6801 MG, Arnhem,
The Netherlands

229

Timo
Tekstvak
Psicologica (2008), 29, 229-254



230 N. D. Verhelst and H. H. F. M. Verstralen

parameters in the PCM could be interpreted as difficulty parameters of

the respective steps, was criticized by Molenaar (1983), who argued that

the steps interpretation in the PCM is not justified.

This leaves two important questions:

1. If the PCM is not suited as a formalization of the steps rationale,

does there exist other models which can be used for this purpose?

2. Does there exist a compelling rationale that justifies the use of the

PCM?

The first question will be addressed briefly in Section 2, where it is

explained in some detail why the steps interpretation is not justified in

the PCM and where another model, especially designed to allow for such

an interpretation is discussed.

The second question, however, is the central focus of the present

article: it investigates the relation between the Rasch model and the

PCM. This is done in a number of stages. In the first stage (Section 3) it

is shown that if a test complies to the Rasch model it also complies to the

PCM in the sense that subsets of the items, called testlets, are considered

as polytomous items with a score equal to the sum score on the items in

the testlet. The converse, however, does not hold: if response patterns

consisting of testlet scores comply to the PCM, it does not follow that the

Rasch model holds at the level of the individual items, or more generally:

the PCM is a much more general model than the Rasch model.

In the next stage (Section 4), a general model for binary items is

introduced, where it is possible to allow for a large number of interactions.

The Rasch model is a special case of this general family. In the Rasch

model all interactions vanish, and consequently it is the unique member

of this family where conditional independence between all item responses

exist. Two theoretical results are presented for the relation between this

model and the partial credit model, applied to testlet scores. The first

result (Section 4.1) is that each member of this family complies to the
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PCM and the second result (Section 4.2) says that every PCM applied

to testlet scores can be considered as a model for sums of binary item

scores and thus complies to the general dependence model. The scientific

relevance of this finding resides in the fact that the PCM is suitable model

for tests of binary items where the condition of local independence is not

met, without the necessity to explicitly model the precise form of the

interaction effects.

In Section 5, two practical implications of this approach are investi-

gated. The first gives an answer to the question whether in estimating

individual abilities of test takers, information is lost if the partial credit

model is used in case the Rasch model holds (Section 5.1). The second

implication relates to a general condition that has to be fulfilled for the

results of Section 4 to be valid. This condition is that testlet scores must

be locally independent. In Section 5.2 two methods are discussed to

create testlets where there is within testlet dependency but no between

testlet dependency.

The article is concluded by a discussion section.

2 The step interpretation of the Partial

Credit model

The definition of the PCM states that for an item with maximum score

m,

P (X = j|θ,X = j or X = j − 1) =
exp(θ + βj)

1 + exp(θ + βj)
, (1)

where θ is the latent variable, and X the item score with values j =

0, . . . ,m. The parameters βj denote the m parameters associated with

the item. Now suppose we construct the following two-step item

two step item:
1/2 + 0.25

0.03
=?

which of course will lead to a completely correct response only if the

first step (the addition) and the second step (the division) are computed
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correctly. We can embed this item into a three-step item, where the third

step can only be applied if the first two steps are completed. We can also

vary the difficulty of the third step, which we do as an example in the

following three versions of the three step item:

version A: 1/2+0.25
0.03

+ 1 =?

version B:
√

1/2+0.25
0.03

=?

version C: 1√
2π

∫ +∞
−∞ (x− 1/2+0.25

0.03
) exp(−x2/2)dx =?

For 15 year old students, we may safely say that step 3 in version A is

trivially simple, while the third step of version C will be extremely diffi-

cult, and will be solved only by a few mathematically gifted students. The

third step of Version B is probably not trivially easy in that age group,

but one can assume that a substantial proportion of the population mas-

ters the concept of the square root function. The step interpretation of

the PCM implies that the value of β1 and β2 will be equal for the three

versions of the three step item. But this is not consistent with (1) as will

be shown by the following example, where we concentrate on β2 and on

the item versions B and C.

Consider the population of all persons with θ = θ0. In view of the

interpretation given to the items, the response probabilities in Table 1

might hold. Note that the probabilities of obtaining a score of 0, 1 and

Table 1: Response probabilities at θ = θ0

score: 0 1 2 3
version B 0.1 0.45 0.15 0.3
version C 0.1 0.45 0.44999 0.00001

(2 or more) are the same for both versions; in version B, however, 2/3
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of the students having reached successfully step 2, can also solve step 3,

while in version C almost nobody is successful on step 3. For version C,

the probability of a score of 2, given that the score is 1 or 2 is very close

to one half, whence it follows from (1) that β2 will be very close to −θ0.

In version B, however, the conditional probability of obtaining a score

of 2, given that the score is 1 or 2 is 0.25, whence it follows, using (1),

that β2 = −(θ0 + ln 3). This shows that the value of β2 does not depend

uniquely on the difficulty of the second step but also on the difficulty

of the subsequent step(s), and consequently that any interpretation of

PCM parameters as difficulties of specific item steps is void.

The conclusion is that the PCM is not suitable to model sequential

solution strategies. An appropriate model was found independently at

two different places at about the same time. De Vries (1988) and Ver-

helst, Glas and De Vries (1997) developed a model by combining the

simple Rasch model with a subject controlled incomplete design: the

steps or subitems of a polytomously scored item are conceived as being

administered in a fixed sequence and the next subitem is presented if and

only if the previous one is correctly responded to. The answer to each

subitem is modeled by the simple Rasch model. The presentation of a

subitem thus depends on the behavior of the responding subject, hence

the qualification subject controlled. Tutz (1990, 1997) followed the same

rationale, but introduced the model formally and more generally as

pj ≡ P (X > j|θ,X ≥ j) = F (θ + βj), (j = 0, . . . ,m− 1), (2)

where F (.) is an arbitrary distribution function. It can readily be seen

that in both models, the category response functions are given by

P (X = j|θ) =


(1− pj)

∏j−1
g=0 pg if j < m,

∏m−1
g=0 pg if j = m,

(3)

whence it follows that both models are identical if F is the logistic dis-

tribution function with argument θ + βj
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3 The distribution of sums of Rasch item

scores

Suppose m(> 1) items can be described by the Rasch model, i.e. for any

value of the latent variable θ,

P (Yi = yi|θ) ∝ exp[yi(θ + βi)], (i = 1, . . . ,m), (4)

where yi ∈ {0, 1}.
Defining the variable S as S =

∑
i Yi, and assuming conditional in-

dependence as usual, it is readily seen that

P (S = s|θ) ∝ exp(sθ)
∑
Σy=s

∏
i

εyi

i , (5)

where εi = exp(βi). The combinatorial function represented by the sum

in the right-hand side of (5) is known as the basic or elementary symmet-

ric function (of order s) of the multivariate argument ε = (ε1, . . . , εm),

and will be denoted by γs(ε). It is defined formally as

γs ≡ γs(ε) =
∑
Σy=s

∏
i

εyi

i , (s = 0, . . . ,m). (6)

Note that γ0(ε) = 1. Defining

ηs = − ln γs(ε), (s = 0, . . . ,m), (7)

equation (5) can be rewritten as

P (S = s|θ) ∝ exp(sθ − ηs), (8)

which is nothing more than the category response function of the PCM in

a parameterization first used by Andersen (1977). Notice that η0 equals

zero.

Suppose that a test that consists of k Rasch items is partitioned into

T classes, consisting of m1, . . . ,mT items. These classes will be called
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testlets, and the sums of the item scores in each testlet will be called

testlet scores. The distributions of these testlet scores can be described

by the PCM because the original item responses are independent and the

classes are disjoint.

There are two important observations to be made in connection with

this result. First, if only testlet scores are observed instead of the original

item scores, then it is in principle possible - although not easy - to esti-

mate the original Rasch parameters from the sum scores. The problem

to be solved in case of Maximum Likelihood (ML) estimation is this: find

the values of the PCM parameters η that maximize the likelihood under

the restriction that for each testlet t there exist mt positive real numbers

εt1, . . . εtmt such that the non-linear restrictions given by (7) hold for each

testlet. It these η-values are found, the ε-parameter estimates may be

found from solving for each testlet the system of non-linear equations

given by (7). But, even when one succeeds in finding ML-estimates for

the ε-parameters, it is not possible to associate them with the original

items. If all mt ε-parameters are distinct in testlet t, then there are mt!

different associations possible, and there is no way of deciding between

them on the basis of the testlet scores alone.

The second observation is more important. Although it is true that

sums of Rasch item scores are distributed acording to the PCM, the

converse is not true: polytomous item scores whose distribution is given

by the PCM cannot always be interpreted as sums of Rasch item scores. If

they were, it would follow that for m arbitrary numbers η1, . . . , ηm, there

would exist m (positive) real numbers ε1, . . . , εm such that (7) is true,

and this would be equivalent to claiming that all m-th degree polynomials

with positive coefficients havem real-valued (negative) roots, which is not

true. This is why the ML estimation procedure loosely described in the

previous paragraph is difficult. We explain this in more detail.
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Consider the polynomial of the m-th degree

Pm(x) =
m∏
i=1

(x+ εi), (9)

with all εi real and positive. Obviously, the roots are real and all negative

(they equal −εi). Expanding (9) gives

Pm(x) = γ0x
m + γ1x

m−1 + γ2x
m−2 + · · ·+ γmx

0, (10)

where the coefficients γs, (s = 0, . . . ,m) denote the elementary symmetric

functions as defined by (6). Finding the values of ε from the coefficients

of the polynomial is equivalent to finding its roots. Determining from the

coefficients whether and how many real roots do exist is an unsolved (and

probably unsolvable) problem. A necessary condition for the existence

of m real roots has been derived by Isaac Newton (Hardy, Littlewood &

Pólya, 1952, theorem 51). It is rephrased here as

Theorem 1 (Newton) If a polynomial Pm as in (10) has real coefficients

γ0, γ1, . . . , γm, then, if there are m real roots, it holds that

(s+ 1)(m− s+ 1)

s(m− s)
γs−1γs+1 ≤ γ2

s , (s = 1, . . . ,m− 1),

with equality holding only if all roots are equal.

For m = 2, the condition of the theorem is also sufficient for the

existence of real roots, but for higher degrees it is not, as the following

example shows. Set γ0, . . . , γ3 to 1, 9, 25 and 17 respectively. It is easily

checked that the two inequalities following from the theorem are fulfilled,

but the roots of the cubic polynomial are −1, −4 + i and −4 − i, i.e.,

there are two complex roots. Nevertheless, as a necessary condition,

the theorem puts severe restrictions on the possibility to interpret PCM

item scores as sums of Rasch item scores, since in the PCM no restrictions

whatsoever are put on the parameter space; i.e., for a partial credit item
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with maximum score m, the parameter space is Rm. These restrictions

led Van Engelenburg (1997) to the conclusion that the PCM is not an

adequate model to describe the distribution of sums of binary item scores.

It will be shown in the next section that these restrictions are a direct

consequence of assuming local independence between the binary item

responses.

4 Models with dependent responses

To model dependencies between item responses, it is easier to model

whole response patterns than merely item responses, because dependence

means lack of local independence, and therefore impossibility of multi-

plying item response functions.

As before, we assume that the test consists of k binary items, and

is partitioned into T testlets, containing m1, . . . ,mT items respectively.

As most of the discussion to come will focus on a single testlet, explicit

reference to the testlet number will be dropped.

Consider a testlet consisting of m(> 1) items. The vector Y =

(Y1, . . . , Ym) with realizations y = (y1, . . . , ym) will be called the response

pattern. The random variable S, with realizations s, defined by

S ≡ S(Y) =
m∑
i=1

Yi, (11)

is called the testlet score. Define the m sets Ig, (g = 1, . . . ,m) as the

sets containing all ordered g-tuples of the numbers 1, . . . ,m. This means

I1 = {1, . . . ,m}, I2 = {(1, 2), . . . , (1,m), (2, 3), . . . , (m− 1,m)}, etc. The

cardinality of Ig is
(
m
g

)
. The general model that will be studied is given
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by

P (Y =y|θ) ∝

exp

sθ +
∑
i∈I1

yiβi +
∑

(i,j)∈I2

yiyjβij + · · ·+
∑
Im

yiyj · · · ymβij···m

 ,
(12)

and by the assumption of local independence between testlet response

patterns. Notice that the last sum in the right-hand side of (12) has only

one term; it is written as a sum to make the structure of the model clear.

The model is a generalization of the Rasch model: if all β-parameters

having two or more subscripts are set to zero, the Rasch model results.

The extra parameters catch possible interactions between items, and if

one of them is non-zero, local independence is lost.

Model (12) and several submodels resulting from setting interaction

parameters to zero have been studied by Kelderman (1984); see also

Verhelst & Glas (1995a). It should be stressed that this model and

various submodels are estimable if the item responses are observed. What

matters here, however, is to see what happens if only the testlet scores

St, t = 1, . . . , T, are observed.

4.1 Testlet scores modeled by the PCM

Since testlet scores are assumed to be independent given θ, it suffices to

consider a single testlet (without reference to its number t). Taking the

sum of (12) over all response patterns with testlet score s gives

P (S = s|θ) ∝ exp(sθ)×∑
Σz=s

exp

[∑
I1

ziβi +
∑
I2

zizjβij + · · ·+
∑
Im

zizj · · · zmβij···m

]
. (13)

Notice that in the preceding expression the vector z = (z1, · · · , zm) does

not refer to any observed response pattern: it is to be understood as the
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generic expression for a reponse pattern within the testlet. The outer

sum in (13) runs over all response patterns having a testlet sum score of

s.

To elucidate the structure of Expression 13 and its importance, we

write it with another parameterization. Define

εi = exp(βi); εij = exp(βij); . . . ; εij···m = exp(βij···m),

and the vector ε∗ as

ε∗ = (ε1, . . . , εm, ε12, . . . , εm−1,m, . . . , ε12...m).

Furthermore, define the combinatorial function Γs(ε
∗) as

Γs(ε
∗) =

∑
Σz=s

∏
Ii

εzi
i ×

∏
I2

ε
zizj

ij × · · · ×
∏
Im

ε
zizj ···zm

ij···m , (14)

so that (13) can be written as

P (S = s|θ) ∝ exp(sθ)× Γs(ε
∗). (15)

For m = 3 the sum in the right-hand side of (14) is displayed, term by

term, for the three possible patterns that have a score of 1 or 2 (see Table

2). For a score of zero, the sum has one term equal to 1, and for a score

of 3, the sum also consists of a single term equal to the product of all

ε-parameters.

Table 2: Illustration of (14)

score = 2 score = 1
pattern term pattern term
1 1 0 ε1ε2ε12 1 0 0 ε1

1 0 1 ε1ε3ε13 0 1 0 ε2

0 1 1 ε2ε3ε23 0 0 1 ε3



240 N. D. Verhelst and H. H. F. M. Verstralen

This makes clear that the value of the sum depends on the value of

the ε-parameters and on s, but not on any specific response pattern that

leads to the testlet score of s, whence it follows that the second factor

in the right-hand side of (15) is a function of the ε-parameters and the

score s. Since it is a sum of exponentials, it is positive, and therefore we

can write it as exp(−ηs(ε∗)) or exp(−ηs) for short. Moreover, it is clear

from (13) that η0 = 0.With this notation, (15) can be written as

P (S = s|θ) ∝ exp(sθ − ηs), (16)

which is formally equivalent to the PCM.

This result is summarized as

Theorem 2 For any value of the ε∗-parameters in the dependence model

(12), and for all testlets consisting of m binary items, there exists a set

of m functions η1, . . . , ηm such that the distribution of the testlet score S

in the dependence model is identical to its distribution under the PCM

with parameter values η1, . . . , ηm. These functions are given by

ηs = − ln Γs(ε
∗), (s = 1, . . . ,m),

where Γs(ε
∗) is defined by (14).

The number of elements in ε∗ is
∑m

g=1 |Ig| = 2m − 1, so that the pa-

rameter space of the dependence model (with the ε-parameterization) is

R2m−1
+ . What the theorem says is that the functions (η1, . . . , ηm) con-

sidered jointly define a vector-valued function from R2m−1
+ into Rm, the

parameter space of the PCM at the testlet level. In Figure 1, this result

is displayed graphically. The left-hand ellipse represents the parameter

space of the dependence model and a dot represents an ε∗-vector. For

each such vector there is a (unique) vector in the parameter space of

the PCM (right-hand ellipse) representing the equivalent model (at the

testlet score level) in the PCM-family.
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Figure 1: The relationship between the parameter space of the depen-
dence model and the PCM.

This is the main result of this paper: a fairly complicated model for

binary responses (the model defined by (12)) can be fitted by using the

PCM at the level of testlets. The number of parameters ηs to be esti-

mated is the same as in the Rasch model, but the assumptions are far

weaker: complicated patterns of item dependency within testlets are au-

tomatically absorbed in the PCM-parameters ηs. Moreover, the sufficient

statistic for the latent variable, the raw score, is the same as in the Rasch

model.

4.2 The PCM for testlets as a model for sums of
binary scores

There remains, however, a complementary problem, which can be seen

from Figure 1: in the right-hand ellipse (the parameter space of the PCM)

there are dots which are not at the end-point of an arrow, symbolizing

vectors in the parameter space of the PCM which cannot be written
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as the η-transformation of any ε∗-vector in the parameter space of the

dependence model. The question to be answered is whether such η-

vectors can exist. If they cannot, then we have the result that every

partial credit score in the PCM can be interpreted as a sum of m binary

item scores, where the distribution of these binary scores is given by the

dependence model (12). In the remaining part of this section, it is shown

that this is indeed the case.

Since the second factor in the right-hand side of (13) defies simplifi-

cation, a number of restrictions on the β-parameters will be introduced

which yield a more tractable expression, and yet result in a model which

covers the parameter space of the PCM. Specifically, we will assume all

interaction parameters of the same order to be equal, i.e.,

βh = λg for all h ∈ Ig, (g = 2, . . . ,m). (17)

Formally, by applying these restrictions we consider a subspace of the

orginal parameter space of the dependence model. Where the original

subspace has dimension 2m − 1, the restricted subspace has dimension

2m − 1, because there are m β-parameters with a single subscript and

m− 1 interaction parameters, λ2, . . . , λm.

Using the restrictions (17) and the fact that all g-fold products zi1 ×
· · · × zig vanish if g > s(y), and equal one in

(
s
g

)
cases if g ≤ s(y), (12)

can be rewritten as

P (Y = y|θ) ∝ exp

[
sθ +

∑
i∈I1

yiβi +
s∑

g=2

(
s

g

)
λg

]
, (18)

whence it follows that (13) simplifies to

P (S = s|θ) ∝ exp(sθ)× exp

[
s∑

g=2

(
s

g

)
λg

]
×
∑
Σz=s

∏
i

εzi
i

= exp(sθ)× exp

[
s∑

g=2

(
s

g

)
λg

]
× γs(ε). (19)
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Define

ηs = − ln γs(ε)−
s∑

g=2

(
s

g

)
λg, (s = 1, . . . ,m), (20)

where the sum in the right-hand side of (20) is defined to be zero if s < 2.

Now it is easy to show that for any ordered set of m η-values it is always

possible to find ε- and λ-values such that (20) is fulfilled. The values for

the ε-parameters can be taken arbitrarily from the positive reals, with

the only restriction that minus the logarithm of their sum equals η1. In

this way (20) is fulfilled for s = 1. The λ-values are given by sequentially

applying (from (20)):

λs = − ln γs(ε)− ηs −
s−1∑
g=2

(
s

g

)
λg, (s = 2, . . . ,m). (21)

We illustrate this by a simple example for m = 2. Suppose η1 = 0 and

η2 = 2. Consider the following two ε-vectors: ε(1) = (0.7, 0.3) and ε(2) =

(0.9, 0.1). It holds that γ1(ε(1)) = γ1(ε(2)) = 1, complying in both cases

to the restriction that η1 = − ln γ1(ε). The basic symmetric functions

of order 2, however are not equal in both cases as γ2(ε(1)) = 0.21 and

γ2(ε(2)) = 0.09. Applying (21) in both cases, we find

λ
(1)
2 = − ln(0.21)− 2 = −0.439 and λ

(2)
2 = − ln(0.09)− 2 = +0.408

and therefore, the two ε∗-vectors (0.7, 0.3, exp(−0.439)) and (0.9, 0.1, exp(0.408))

are transformed into the same η-vector (0, 2). This result is stated for-

mally as

Theorem 3 The m-valued function (η1, . . . , ηm) defined by (14) over a

subspace of the parameter space of the dependence model, defined by (17),

is a function from R2m−1
+ onto Rm.

The meaning of this theorem is graphically displayed in Figure 2.

The restricted subspace is symbolized by the area in the left-hand ellipse
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to the right of the waved line. From Theorem 2, we know that there

exist an arrow from all points in this subspace to a unique point in the

parameter space of the PCM. In Theorem 3, it is stated that all points

in the parameter space of the PCM are the endpoints of such an arrow.

Since 2m − 1 > m if m ≥ 2, this function cannot be one-one; therefore

more than one arrow ends in every point of the PCM space.

Figure 2: The relationship between the parameter space of the restricted
dependence model and the PCM.

In summary, it has been shown that every model in the family defined

by (12) is formally equivalent to the PCM when the distribution of the

testlet score is modeled (Theorem 2), and conversely, that every PCM

can be understood as a model for the testlet score, where the joint distri-

bution of the item responses within the testlet is given by (12) (Theorem

3). If the item responses are observed, then (12) is identified and the

parameters may be estimated; if only sums of item scores are observed,

however, model (13) results, and the model is no longer identifiable, be-

cause there are more parameters than different values of the score. Only
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functions of these parameters are estimable, for example, the functions

given by (14) and one-one transformations of these functions.

The practical implication of this result is discussed in the next section.

5 Practical implications

In applications of the Rasch model, one can focus on different aspects,

either paying attention to the structure of the model itself, or focusing on

its application, i.e. on the inferences one can make on the latent abilities

of concrete persons or groups of persons.

An example of the first is the research with the so-called Linear Lo-

gistic Test Model (LLTM) (see for example Fischer, 1995; Bechger, Ver-

stralen & Verhelst, 2002), where the item parameters are considered as

linear combinations of a (small) number of so-called basic parameters. In

these models local independence between item responses is an essential

part of the model, and estimates of the parameter values require that

data are availble at item level. Detecting that the assumption of local in-

dependence is violated in a concrete application of the LLTM invalidates

the model immediately, and the results obtained in the previous section

cannot be put at use.

There exist, however, other applications where the use of IRT serves

a more practical purpose. We take a survey, like national or international

assessment in education as a typical situation. There the focus is on the

distribution of the target latent variable (e.g., reading literacy) in popu-

lations and subpopulations, for example, the comparison of the literacy

distributions of boys and girls, in subpopulations that vary in socio-econic

status, across different countries and over time. The practical value of

using an IRT-approach is that it allows to include much more item ma-

terial than can be responded to by a single testee, and that it allows to

include new item material over time, and at the same time guarantee

invariance of the measured concept, although new and old material may

differ in difficulty. A large scale project where the Rasch model has been
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used as IRT model is the PISA project (Adams, 2002). The practical

advantage of the results reported in the preceding section is that it does

not matter whether the assumption of local independence holds or does

not hold, as long as such dependencies are correctly modelled. Applying

the PCM at the testlet level is an easy way to capture arbitrary depen-

dencies between items of a testlet, without the necessity of unraveling

and testing the precise nature and extent of such dependencies.

Two questions, however, remain to be answered. The first concerns

the possible loss in information when one models testlet scores instead

of item scores. The second has to do with the vagueness of the notion

of testlet in the preceding section. The results were shown to be valid

independently of the way the testlets were defined, as long as the testlets

were disjoint and the testlet scores locally independent, but it is not

not a trivial problem to form such a collection of testlets in a practical

application. These two problems will be discussed in turn.

5.1 Loss of information

One might be worried that, if the Rasch model holds, the use of the PCM

at the testlet level will lead to information loss, i.e., that the accuracy

of the latent variable estimates (or its distribution) will be weaker when

based on the PCM rather than on the (correct) Rasch model. There

is, however, no reason for such a worry. Both the Rasch model and

the PCM are an exponential family of models, and for such models it

holds that the Fisher information equals the variance of the sufficient

statistic (Barndorf-Nielsen, 1978). The commonly used estimate for the

standard error of the θ-estimate is the square root of one divided by the

information. In both models, the sufficient statistic for θ is the sum of

the testlet scores, and from a comparison of (5) and (8), we see that

the distribution of the sufficient statistic for any value of θ is the same

in both models, and therefore the variance is the same as well. In case

the Rasch model is valid, the PCM is just a reparameterization of the
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Rasch model, defined by (7), and the standard errors of the θ-estimates

are identical under both models.

But what if the Rasch model is not valid? If the dependence model

(14) is valid, but not the Rasch model, then the Fisher information can

be determined correctly from it. Of course, the parameters must be

estimated from a finite set of data, such that one will obtain only an

estimate of the Fisher information. This estimate, however is consistent.

If one estimates the variance of the scores using the incorrect Rasch

model, the result cannot be interpreted as the Fisher information since

the measurement model is not valid, so that comparisons with the Fisher

information under the PCM are meaningless.

A related, but quite different question is whether tests with dependent

items lead to more of less accuracy of the θ-estimates than tests that

comply to the Rasch-model. The answer to this question is not simple,

as is shown by the following illustration. Suppose m = k = 2 and the

parameters β1 and β2 are both equal to zero. Now consider three models

with these parameters fixed, and the interaction parameter β12 taking the

values 0, −0.5 and +0.5 respectively, as examples of the Rasch model, a

dependence model with negative and a dependence model with positive

first order interaction respectively. The information functions of these

three models are displayed graphically in Figure 3.

The information function for the Rasch model (the solid curve) shows

a well-known characteristic of all IRT-models: the accuracy with which

θ can be estimated depends on the value of θ itself. In Figure 3, we see

that most information is conveyed for θ = β1 = β2. For the dependence

models, two characteristics are important, and have shown to be stable

for a wide range of parameter values for which similar figures have been

scrutinized.

The first is the maximum information of the model. The maxima

are located at different places, and it appears that the lower value the

of the interaction parameter, the higher the location of maximum in-

formation.The maximal information itself, however, seems to correlate
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Figure 3: Information functions for a two item test with zero, positive
and negative interaction.

positively with the interaction parameter β12: the larger this parameter,

the larger the maximal information.

The second characteristic is that all pairs of curves in the figure do

intersect. This means that for no model the information is uniformly

higher of lower than that of another model. For example, the model

in Figure 3 with the lowest modal information (β12 = −0.5) has higher

information than the other two for θ > 1.

With more items in a testlet, with more than one testlet and more

complicated interactions, it might be far more difficult to describe in

general terms the effect of interactions on the information function.
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5.2 Detecting interactions

In practical applications, it may not always be easy to detect sets of

items where dependence is likely to occur. The most likely candidates

are items formulated as questions about the same stem, as is often the

case in reading tests. But other dependencies may occur as well, for

example in cases where the presence of an item, item i, say, in a linear

test contains clues for the solution of another item j. Two methods are

discussed to find out whether dependencies are present or not.

The first one departs from a Rasch analysis, where independence is

assumed. If conditional maximum likelihood (CML) is used as estimation

method, it is fairly simple to construct the matrix of predicted pairwise

frequencies of correct responses. The expression is

E(nij) =
k−1∑
s=2

ns
εiεjγ

(i,j)
s−2 (ε)

γs(ε)
, (22)

where ns is the frequency of score s in the sample, γs(ε) is the gamma

function of order s evaluated at the CML-estimates, and γ
(i,j)
s−2 (ε) is the

gamma function of order s− 2, evaluated on the vector of ε-parameters,

where εi and εj are excluded. Response patterns with a score of zero

or one are not counted because for these it is impossible to have both

items correct, and score k is excluded because the probability of having

items i and j correct trivially equals one. Simple or weighted comparison

between observed and expected pairwise frequencies may reveal pairs of

items where the covariation is too high or too low to be compatible with

the assumption of independence. A suitable weighted comparison is

zij = ±

√
n∗ [nij − E(nij)]

2

E(nij)[n∗ − E(nij)]
, (23)

where the sign is the same as the sign of the difference in the numerator

of (23), and n∗ =
∑k−1

s=2 ns. The quantity z2
ij is readily recognized as the

common chi-square statistic computed on a 2× 1 contingency table with
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observed frequencies nij and n∗−nij respectively. Its signed square root

is approximately standard normally distributed.

The second method starts from a PCM analysis and can help in de-

ciding whether the scores on a testlet with maximum score m can be

conceived as a sum of m Rasch items. One can proceed along the follow-

ing lines:

1. Using (7), the PCM parameter estimates can be converted to the

coefficients of the m-th degree polynomial Pm given by (10). Using

a solution finder, one can find all roots of Pm. If they are all real

(and negative by necessity), the Rasch estimates of the parameters

ε are given by minus the roots.

2. If not all roots are real, this may be caused by genuine depen-

dencies, but also by sampling error. So we might wish to have a

statistical test that enables us to reject the latter hypothesis. It

appears to be quite hard to construct such a test, and we did not

find a solution to this problem. We can, however, construct a more

conservative test, by using Theorem 1 and (7). The null hypothesis,

i.e., the Rasch model, can be written in the following two equivalent

forms

H0 :
(s+ 1) (m− s+ 1)

s(m− s)
×γs−1(ε)γs+1(ε)

γ2
s (ε)

≤ 1, (s = 1, . . . ,m−1),

or

H0 : ds ≡ 2ηs−ηs−1−ηs+1+ln
(s+ 1) (m− s+ 1)

s(m− s)
≤ 0, (s = 1, . . . ,m−1).

(24)

The Wald test statistics are

Ws =
d̂2
s

t′Σ̂st
, (s = 1, . . . ,m− 1). (25)

where d̂s equals ds evaluated at the ML-estimates, Σ̂s is the es-

timated variance-covariance matrix of η̂s−1, η̂s and η̂s+1 (in that
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order) and t′ = (−1, 2,−1). Ws is asymptotically chi-square dis-

tributed with one degree of freedom, and therefore its signed square

root is standard normally distributed. The sign of the square root

is the sign of d̂s. If s = 1, the first row and column of Σ̂s consist of

zeros, since η̂0 = η0 = 0. The null hypothesis is rejected at the 5%

level of significance if Ws > 1.962 and d̂s > 0.

6 Discussion

In this section, the results of the preceding sections are summarized and

some comments are added.

1. The partial credit model is not suited to describe difficulties of item

steps. In complex items, where steps can be distinguished, there is

no invariant relation between parameter values and the difficulty

of the steps. This means that the set of parameters associated

with a partial credit item should be considered as a joint formal

description of the item as a whole.

2. If the Rasch model holds for a set of k items, the PCM also holds for

every partition of the original k item scores in T sum scores defined

on T testlets (subsets of items) of arbitrary size. T is arbitrary

too. Moreover, there exists a well specified non-linear relationship

between the Rasch model parameters and the PCM parameters,

given by (7). Although the Rasch parameters can be recovered

uniquely from the PCM parameters, it is impossible to associate

these values to particular Rasch items, because any permutation of

the Rasch parameters of the testlets leads to the same likelihood.

3. One should be careful not to confuse the algebraic equivalence of

two models with relations between parameter estimates. We give

two comments in this respect.
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• Suppose the Rasch model holds, and m = 2 for some testlet.

Then it follows from Newton’s theorem that for the testlet it

holds that η2 ≥ 2η1 + ln 4. But if one estimates the param-

eters η1 and η2 from a finite data set, even if it is known to

comply with the Rasch model, as with artificially generated

data, there is nothing that guarantees that this inequality is

fulfilled with the estimates. The only thing that is known for

sure is that the probability that the inequality is violated goes

to zero as the sample size increases without bound. Therefore

the maximum of the likelihood function using the PCM at the

testlet level will never be smaller than the maximum using

the Rasch model. To decide whether the assumption of local

independence is credible, one will have to use a statistical test

procedure like the one proposed in Section 5.2.

• Although the results discussed are also valid (at the algebraical

level) in case T = 1, this case cannot be tested empirically,

because CML-estimates in the PCM do not exist if the test is

composed of one partial credit item.

4. In Section 4, a model for binary items is presented that allows for

complicated dependencies between item responses. If such depen-

dencies are restricted to subsets of m items, it is shown that such

a model is equivalent to the PCM if testlet scores are modelled

instead of binary reponses. Moreover it is shown that each PCM

model may be interpreted in this way. This does not imply, how-

ever, that such an interpretation also has substantive meaning. The

general model (12) is overparameterized if only testlet scores are

observed, and an interpretation in terms of these many parameters

is a possibility, but certainly not the only one.

5. The practical use of the results mainly resides in the possibility

to ignore complicated dependencies between item responses with-
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out loosing information about the underlying latent variable. Two

methods have been proposed to detect such dependencies, such that

the testlet definitions may be adequately chosen.

To conclude, we add a warning against overoptimism. Even if one

would succeed completely in identifying subsets of binary items such that

the resulting testlet scores are locally independent, this does not imply

that the PCM at the testlet score level is the correct model. More general

models like the generalized PCM, allowing for different discriminations of

testlets, or multidimensional models, or even totally different approaches

might point to weaknesses in the simple PCM. There is plenty of room

for sustained theoretical research.
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