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The standard two-wave multiple-indicator model (2WMIM) commonly used 
to analyze test-retest data provides information at both the group and item 
level. Furthermore, when applied to binary and graded item responses, it is 
related to well-known item response theory (IRT) models. In this article the 
IRT-2WMIM relations are used to obtain additional information for each 
individual respondent. Procedures are proposed for (a) obtaining individual 
estimates of trait levels and amount of change, and (b) assessing whether the 
main assumptions on which these estimates are based are met. The 
procedures are organized in a comprehensive approach that can be used with 
binary, graded, and continuous responses. The relevance of the proposal is 
discussed and guidelines are given on how to use the approach in applied 
research. Finally, the approach is illustrated with an empirical data set. It 
worked well and provided meaningful information. 

 

 

Test-retest (T-R) studies in which a test made up of multiple items is 
administered twice to the same respondents at an interval of less than two 
months are very common in psychological measurement and, particularly, 
in personality and attitude measurement (e.g. Cattell, 1986). Studies of this 
type are used, for example, in the assessment of (a) trait changes due to the 
effects of clinical treatments (Finkelman, Weiss, & Kim-Kang, 2010, Reise 
& Haviland, 2005, Weiss & Von Minden, 2011), (b) attitude change (Aish 
& Jöreskog, 1990), and (c) effects of test-coaching and practice in personnel 
selection (Hausknecht, Trevor & Farr, 2002). At the methodological level, 
the two main existing approaches for analyzing the common type of T-R 
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design used in these studies are: (a) Item Response Theory (IRT)-based 
analysis (e.g. Fischer, 2003, Grimm, Kuhl & Zhang, 2013, Reise & 
Haviland, 2005, Wang & Wu, 2004,Weiss & Kinsbury, 1984), and (b) 
analysis based on a structural equation model (SEM) with latent variables 
(e.g. Aish & Jöreskog, 1990, Ferrando, 2002, Kenny & Campbell, 1989).  

The standard SEM for analyzing the T-R design considered here is the 
simple and well known two-wave multiple-indicator model (2WMIM; 
Jöreskog, 1979), which: (a) is intended for continuous indicators, and (b) 
provides information which focuses exclusively on the item and group 
level. The model, however, can be extended in directions that have been 
much less exploited. First, when applied to discrete item responses by using 
categorical-variable methodology, the 2WMIM becomes a longitudinal 
extension of well-known IRT models, Second, the model can be extended 
so that it can also be used for individual assessment. Regarding this latter 
point, it is noted that in many applications, particularly when posttest 
change is to be assessed, information at the individual level can be as 
relevant as that obtained at the group level (Kruyen, Emons & Sijtsma, 2013, 
Weiss & Von Minden, 2011).  

The present article exploits the IRT-2WMIM relations and proposes 
procedures that allow the researcher to make a detailed assessment at the 
individual level on the basis of the results provided by the 2WMIM. More 
specifically, this article develops a comprehensive approach for (a) testing 
whether the main assumptions on which the model is based are fulfilled at 
the level of each individual respondent, and, if so, (b) using the item and 
group information provided by the 2WMIM for obtaining more accurate 
trait levels and change estimates for a given individual.  

SEM-based proposals have already been made about the individual 
assessment of both change and appropriateness, but appear to be only 
indirectly related to those made in this article. As for change, longitudinal 
SEMs at the individual level have been proposed in the context of growth 
modeling (e.g. Andrade & Tavares, 2005, Embretson, 1991, Grimm, Kuhl 
& Zhang, 2013). However, growth models assess a trajectory of changes as 
a function of time and are based on multiple measurement occasions. SEM-
based procedures have also been proposed for assessing individual model 
appropriateness, but generally with the aim of improving overall model-data 
fit (e.g. Bollen & Arminger, 1991, Raykov & Penev, 2002). On the other 
hand, the proposals that are more directly concerned with individual 
assessment (Ferrando, 2007, Reise & Widaman, 1999) do not consider T-R-
based models. 
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Review of the 2WMIM and Results 
Consider a test of n items that is administered to the same N 

respondents at two points in time with a short retest interval. Let X(1)
ij be the 

score of individual i to item j at Time 1, and X(2)
ij the corresponding score at 

Time 2. I shall describe the application of the 2WMIM to three types of 
item formats: (a) binary (scored as 0 and 1), (b) graded in c points (scored 
by successive integers and treated as ordered categorical variables) and (c) 
graded or more continuous treated as continuous-unlimited variables. The 
common framework I use is Muthén’s (1984) underlying variables 
approach, and can be summarized as follows. In cases (a) and (b) the 
observed scores are assumed to arise as a result of a discretization of a 
latent response variable (Yj) governed by a single threshold τj in the binary 
case, and by c-1 thresholds in the graded case. Thus, at Time m (m=1 or 2) 
the relation in the binary case is 
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Finally, in the continuous case Yj is assumed to be identical to the 
observed score (i.e. Y(m)

ij= X(m)
ij). In cases (1) and (2) the Y’s cannot be 

observed and so identification constraints are needed. The initial constraints 
considered here are that the Y’s in (1) and (2) are normally distributed and 
that their means and variances at Time-1 are zero and one, respectively. 

The 2WMIM is intended for the Yj indicators, and so the model is the 
same in the three cases above. It consists of: (a) two measurement submodels 
(one at Time 1 and one at Time 2) and (b) a latent variable submodel relating 
the trait measured at Time-1 to the trait measured at Time-2.  The main 
practical differences due to the different types of score are that in cases (a) 
and (b) the model is fitted to the item threshold and the inter-item 
tetrachoric/polychoric matrices, whereas in the continuous case it is fitted to 
the mean vector and the inter-item covariance matrix. Overall then, the 
structural modeling considered here is two-stage: the mean/threshold 
vectors and covariance/correlation matrices are obtained from the data 
observed in the first stage, and then the 2WMIM is fitted to these vectors 
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and matrices in the second stage. With regards to the first stage, in the 
categorical cases the tetrachoric/polychoric correlations are assumed that 
are estimated by using a two-step procedure in which thresholds are 
estimated in the first step without any equality restrictions, and correlations 
are then estimated in the second step for given thresholds. As for the second 
stage, given that the latent submodel described below is saturated, the 
measurement submodels and the latent variable submodel are assumed to be 
fitted simultaneously in this stage.  

The measurement submodel at Time m is Spearman’s single-factor 
model 

)()()()( m
ijim
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m
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where µj is the intercept, λj is the factor loading, and the residuals εij’s have 
zero means and are uncorrelated with θ and among themselves. For fixed θ, Yj 

is normally distributed with zero mean and residual variance σεj
2 (m) . 

With appropriate reparameterization, when submodel (3) is applied to 
case (1) it becomes the IRT two-parameter normal-ogive model. Applied to 
case (2), it becomes Samejima’s (1969) normal-ogive graded response 
model (see, e.g., Ferrando, 2002). For the sake of simplicity, however, I 
shall only use the FA parameterization here.  

The latent variable submodel relating the trait at Time-1 to the trait at 
Time-2 is 

iii ζβθαθ ++= 12 . (4) 

And states that the trait at Time-2 is a linear additive function of the trait 
at Time-1 with intercept α, slope β, and a random disturbance ζ, which is 
assumed to be uncorrelated with θ1 (Kenny & Campbell, 1989). θm can be 
identified in different ways (see Little, Slegers & Card, 2006). The one 
proposed here is to set the mean and variance of θ1 to 0 and 1, respectively, 
and, relative to this scaling, freely estimate the mean and variance of θ2. These 
constraints, together with the measurement invariance constraints discussed 
below, are sufficient to identify the model. 

According to the latent identification constraints discussed above, the 
mean and variance of θ2 are estimated as 
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The coefficient of stability is then defined as the correlation between the 
trait levels at Time-1 and the trait levels at Time-2 (Jöreskog, 1979). It is given 
by  
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It is of special relevance in studies on individual change. A low value of 
ρθ1,θ2 essentially means that the rank order of the individuals as far as their trait 
levels is concerned has changed substantially between Time-1 and Time-2. 
This result, in turns, means that change is not (approximately) constant for all 
individuals, but affects individuals differently.   

I shall now discuss two basic points that must be considered when 
specifying the complete 2WMIM. First, when the same items are measured at 
two points in time, the literature consistently recommends that the errors 
corresponding to the same indicators should be correlated (e.g. Jöreskog, 
1979, Kenny & Campbell, 1989, Pitts, West & Tein, 1996). This is because 
part of the measurement error in this case may not be random, but systematic, 
thus making the responses locally dependent under repetition (e.g. Ferrando, 
2015). This lack of local independence may be due to memory effects, 
incidental item features which tend to elicit the same response on each 
occasion, or even external influences, among others (Ferrando, 2015, Pitts, 
West & Tein, 1996). In this article I shall (a) refer generically to local 
dependence under repetition as “retest effects” (REs; Ferrando, 2014, 2015), 
(b) assume that the dependence is positive (a point that can be empirically 
assessed), and (c) not try to differentiate further sub-components or sources 
of local dependence. So, overall, the residuals between the responses to the 
same item on both occasions (ε(1)

j and ε(2)
j ) are allowed to covary and this 

covariance is expected to be positive.  
As for the second point, (a) the clarity in the interpretation of the 

stability/change processes and (b) the accuracy and stability of the model’s 
parameter estimates increase as the degree of measurement invariance in the 
measurement submodels increases (Little, 2013, Millsap & Meredith, 2007, 
Grimm, Kuhl & Zhang, 2013). The ideal condition, then, would be that of 
strict invariance (Millsap & Meredith, 2007), in which the item 
thresholds/intercepts, loadings and residual variances are the same at Time-1 
and Time-2. Experience, however, suggests that this condition is generally 
unrealistic in practice, and so unnecessarily restrictive (see Ferrando, 2002, 
and Little, 2013, for a discussion). On the other hand, the strong invariance 
condition in which the thresholds/intercepts and loadings are constrained but 
the residual variances are not can be reasonably attained in many T-R studies, 
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and allows for a clear interpretation of stability and change both at the group 
and the individual level. Finally, it should be stressed that strong invariance 
together with the identification constraints discussed above are more than 
enough to identify the 2WMIM. In fact, the model could be identified with 
only one threshold and one loading constrained to be invariant over time. So, 
to sum up, the model with strong invariance is clear, parsimonious, over-
identified and likely to lead to accurate and stable estimates. However, the 
present proposal can also be applied to less constrained solutions in which 
some of the items are not invariant over time. 

When the 2WMIM is fitted to a given dataset, the results provide three 
main pieces of information: (a) model appropriateness, (b) item properties, 
and (c) structural group-level results. Model appropriateness is a basic 
requisite for interpreting results (b) and (c), and is assessed at the entire group 
level by conducting a standard model-data fit investigation for the full model 
and/or for the component submodels (e.g. Aish & Jöreskog, 1990).  

Item-level information has three parts. First, there is the information 
regarding the quality of the items as measures of θ, which is obtained via 
intercepts/thresholds, loadings, and residual variances. Second, there is the 
information about the degree of invariance over time as discussed below. 
Finally, information about the magnitude of the REs is obtained by inspecting 
the item residual covariances or correlations discussed above. 

At the group level the 2WMIM provides two main pieces of 
information. The first is the degree of trait stability between the first and 
second administration, which is estimated from the coefficient of stability. The 
second is the information about the group mean trait levels and group 
variances at Time-1 (fixed to 0 and 1) and at Time-2 (freely estimated), which 
allow the amount of change at the group level to be assessed. By noting that 
(a) the trait mean at Time-2 is directly a measure of mean group change, and 
(b) the standard error of the mean at Time-2 is also provided, the significance 
of group change can be assessed by using a confidence interval with the form 

)( 22 θθ sezc±  (7) 

where zc is the value in the standard normal distribution that cuts off the 
desired percent of cases in the middle of the distribution.  If group change is 
found to be significant, a Cohen’s-d-type effect-size measure (Cohen, 1988) 
for assessing the practical magnitude of the change can be obtained as 
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)(),(2)(1)( 221221 θθθρθθθ VarVarVar −+=− . (9) 

The rest of this section will discuss the results that are needed to 
develop the procedures proposed. I shall first use the generic expression 
P(Xj|θ) to denote the conditional probability (discrete case) or conditional 
density (continuous case) assigned to a specific item score for fixed θ.  For 
the models considered in this article, this general expression leads to the 
following results: 

 
(a) binary case 
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where φ(u) is the density function of a standard normal variable.  
 

(b) graded-response case 
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For r=1,…c, and 
 
(c) continuous case 
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Next, I shall use the general terms E(Xj|θ) and σ2(Xj|θ) to denote the 

expected item score and its conditional variance fixed θ. Again, the general 
expressions give rise to the following results:  

 
(a) binary case 
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(b) graded-response case  
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(c) continuous case 
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Estimation of Change at the Individual Level 
Let us assume that the 2WMIM has been fitted and that the model-data 

fit is acceptable. The measurement and structural estimates provided by the 
model will next be taken as fixed and known and used to obtain estimates of 
change for (a) each individual in the group, or (b) new individuals belonging 
to the population in which the SEM holds. 

Let xi be the full vector of responses given by individual i at Time-1 
and Time-2 and θ i =[θi1, θi2] the ‘true’ trait levels of this individual. The 
likelihood of xi for any of the three types of responses considered in the 
article can be written generically as 
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Specific expressions of (16) for the three response formats considered 
here are provided in the appendix.  

Maximum likelihood (ML) estimates of θ i are the pair of values that 
maximize (16). Now, ML estimation uses only the information provided by 
the measurement sub-models but ignores the information provided by the 
structural part of the model. In order to make full use of the SEM-based 
information I propose to use Bayes expected a posteriori (EAP; Bock & 
Mislevy 1982) estimation. The EAP estimate of θ i, is the mean of the 
posterior distribution of θ i given xi  

∫= θ
θθθxθθ i dgLEAP i )()|()( . (17) 



Individual-level assessment in test-retest studies 399 

The term g(θ) in (17) is the joint bivariate density of θ and contains the 
information provided by the structural part of the 2WMIM. I propose to set 
g(θ) as bivariate normal (but other specifications are possible), with the mean 
and variance of θ1  equal to 0 and 1, the mean and variance of θ2 as the 
corresponding structural estimates, and ρ(θ1,θ2) as the coefficient of stability 
in (6). Estimation of (17) is standard, and, in practice, the integral is 
approximated as accurately as required using numerical quadrature.  

The posterior covariance matrix is 
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As the number of items increases, the distribution of the EAP estimates 

in (17) approaches normality (Chang & Stout, 1993), and the posterior 
standard deviations (PSDs) in (18) become equivalent to asymptotic standard 
errors (Bock & Mislevy, 1982).  

Conceptually, the EAP individual estimates proposed so far are IRT trait 
estimates. However, unlike the IRT estimates in common use, those proposed 
here do make full use of the SEM-based information discussed above, and 
so they are expected to be more accurate.  

Let 1îθ and 2îθ be the EAP point estimates corresponding to individual i. 
The model-based estimate of change for this individual is now defined as 

12
ˆˆˆ
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with (posterior) standard error (see equation 18) 
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Given the normality-approximation result discussed above, for a test of 

reasonable length it is proposed to assess iδ̂  statistically by using a normal-
based confidence interval approach (strictly speaking, a credibility interval). 
This interval, which is the individual-level counterpart to the group-level 
interval in (7), can be constructed as  
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Significance of change can be assessed by inspecting whether the zero 
value falls outside the interval. If the amount of change is considered to be 
significant, a relative, scaled measure for assessing the magnitude of this 
change can be obtained as 
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Index (22) can be regarded as the individual counterpart of the effect-
size measure (8). It assesses the magnitude of individual change in standard 
deviation units with respect to the distribution of the trait differences in the 
group.  

The point estimate of change (19) and the confidence-interval approach 
in (21) are IRT-based conditional measures of change that are population 
independent. Therefore, they avoid the unreliability problems associated with 
conventional gain scores (see Mellenbergh, 1999). Essentially, they can be 
regarded as a refinement of a series of proposals which were made in the 
context of IRT (e.g. Fischer, 2003, Kruyen, Emons & Sijtsma, 2013, Reise & 
Haviland, 2005, Weiss & Kinsbury, 1984). The present proposals, however, 
(a) are based on a full SEM whose appropriateness is rigorously tested, and (b) 
use most of the information that can be obtained from the 2WMIM estimates. 
In contrast, IRT-based procedures (a) generally use the calibration results 
obtained from a pretest sample or the results obtained solely from the Time-1 
data, (b) ignore the structural part of the model, and (c) do not test the different 
possible invariance conditions but generally assume directly strict item 
invariance of the item parameters (see e.g. Ferrando, 2014) or use approximate 
parameter-drift procedures (Wang & Wu, 2004). 

 
Assessing Person Fit and Retest Effects at the Individual Level 
The procedures proposed in the section above are based upon a number 

of assumptions, the fulfillment of which needs to be assessed if individual 
results are to be validly interpreted. This section discusses what are possibly 
the main assumptions as well as procedures for assessing whether they are 
met.  

 
Assessing person fit 
The procedures described in equations (16) to (22) assume that the xi 

response vector behaves according to the 2WMIM solution that was fitted at 
the group level. It is indeed assumed that the fit at the group level was found 
to be appropriate. However, an acceptable overall model-data fit is still 
compatible with a certain proportion of individuals whose response patterns 
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cannot be adequately explained by the model and, therefore, whose trait 
estimates and change estimates cannot be validly interpreted. Given this result, 
it is recommended that person fit must be routinely checked before individual 
results are interpreted (e.g. International Test Commission, 2014). This 
recommendation, however, is still far from being standard practice in IRT 
applications, and is virtually inexistent in SEM-based studies.  

Ferrando (2014) proposed an IRT approach for assessing person fit 
based on test-retest data and discrete item scores. It can be readily adapted 
to the present scenario, and then further extended to the continuous case. 
Define first the log-likelihood index l0-rts as the logarithm of the likelihood 
function in (16) evaluated using the 1îθ and 2îθ EAP point estimates instead 
of the unknown ‘true’ trait levels.  
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The index proposed by Ferrando (2014) for the binary and graded-
response cases is a standardized likelihood-based index with the general 
form:  
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The conditional expectations and variances are given in the appendix. If 
the ‘true’ trait levels were known and used in equation (23), then the 
standardized index in (24) would be expected to asymptotically follow a 
standard normal distribution under the null hypothesis of consistency 
(Ferrando, 2014).  

In the case of continuous responses, the log-likelihood index proposed 
by Ferrando (2007) can be extended and used with the 2WMIM. In this 
case, it takes the form:  

∑∑ +=−

n

j
ij

n

j
ijirtsco zzl )2(2)1(2)ˆ(θ  (25) 

where 

j
m

imj
m

j
m

ij
m

ij
m Xz

εσ
θλµ

)(

)()()(
)(

ˆ−−
=  (26) 

By extending the results in Ferrando (2007) it follows that under the 
null hypothesis of consistency, the expected distribution of lco-rts is χ2 with 
2(n-1) degrees of freedom. So, a normal approximation can be obtained as 
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.54)ˆ(2)ˆ( −−= −− nll irtscoirtszco θθ  (27) 

Indices of the type (24) and (27) are practical indices that assess the null 
hypothesis that the pattern is consistent against no specific alternative and 
are intended to be used as broad-screening tools for flagging potentially 
inconsistent patterns.  As far as their interpretation and critical values are 
concerned, both (24) and (27) are interpreted (approximately) as standard 
normal z scores. In the case of (24) a large negative value is an indicator of 
inconsistency. As for lzc, it functions in the opposite direction. So, large 
positive values are indicators of misfit. For practical use, a standard cut-off 
value of -2 for index (24) and of +2 for (27) are expected to work well in 
principle for a test of reasonable length. 

 
Assessing retest effects at the individual level. 
In many T-R studies of the type considered here, REs are expected to 

exist and affect different individuals differently. At the overall level, 
addressing REs via correlated residuals is expected to lead to correct 
measurement and structural parameter estimates (Pitts, West & Tein, 1996). 
However, this modeling does not solve the potential problems that REs can 
cause in individual estimation. 

Consider again the likelihood function (16). It is obtained by 
assuming that item responses are locally independent for fixed θ i, and this 
local independence is assumed for: (a) responses to different items within a 
single measurement occasion; (b) repeated responses to the same items at 
Time-1 and Time-2; and (c) responses to different items on different 
occasions. If REs operate, part (b) of the assumption is violated, and this 
violation might lead to both incorrect trait estimates and incorrect standard 
errors. This issue is discussed in detail in Ferrando (2002, 2014) and will 
only be summarized here. Regarding the trait estimates, 1îθ is expected to be 
correct. However, 

2îθ is expected to be biased towards 1îθ and, therefore, the | iδ̂

| change estimate in (19) biased towards zero (i.e. attenuated). As for the 
standard error, it is expected to be downwardly biased.  

REs are expected to affect not only the individual estimates, but also the 
person fit measures (24) and (27), which are expected to be outwardly biased 
for the following reasons. If the individual responds consistently at Time-1 
and tends to duplicate responses at Time-2, then both (24) and (27) would 
tend to flag this individual as more consistent than he/she really is. 
Conversely, inconsistent responding at Time-1 and retest effects would lead 
to the individual being flagged as more inconsistent than he/she really is.  
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The procedure proposed for assessing REs at the individual level is a 
refinement and extension of a previous proposal by Ferrando (2014), which, in 
turn is based on Yen’s (1993) Q3 rationale. Consider the following residual 
scores 
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which are based on the conditional expectations (13) to (15) but evaluated 
using the EAP estimates. Next, consider the n×1 vector s(1)

i containing the 
residual scores of respondent i for the n items at Time-1, and let s(2)

i be the 
corresponding vector at Time-2.  The index rtiQ3 is the product-moment 
correlation between s(1)

i and s(2)
i : rtiQ3i=r (s(1)

i, s(2)
i), and its rationale is as 

follows. If the model is correct and local independence for repeated 
responses holds, then the residuals in (28) are random error scores, and the 
expected value of rtiQ3 for the individual is zero. On the other hand, if REs 
are operating, rtiQ3 is expected to be positive and increase with the strength 
of the REs. From a practical point of view, a reasonable cutoff value for 
deciding whether REs impact the responses of the individual can be 
obtained by using the familiar Fisher’s z transform 
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ii , 
(29) 

and setting a one-tailed critical value for z of say +2.0. For a respondent 
who is detected to have been impacted by REs, the magnitude of the impact 
can then be ascertained by directly inspecting the rtiQ3 value.  

 
A Proposed Multi-Stage Approach  
This section, which is intended for the more practically-oriented readers, 

aims to provide guidelines on how the procedures proposed so far are intended 
to be used in a test-retest study based on the 2WMIM.  

- Stage 1: Fitting the 2WMIM. A solution for the 2WMIM is 
specified (e.g. a strongly invariant solution with correlated residuals) and 
fitted in an appropriate sample. If the fit is considered to be acceptable, and 
the parameter estimates are accurate, then the measurement parameters 
(thresholds/intercepts, loadings and residuals variances) and the structural 
parameters (group means and variances and coefficient of stability) are 
taken as fixed and known, and used for scoring and assessing respondents in 
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the subsequent stages. Group mean differences in change can also be 
assessed by using equations (7) and (8). 

- Stage 2: obtaining individual scores and assessing individual 
appropriateness. EAP scores and the corresponding standard errors as 
proposed in equations (16) to (20) are obtained for each respondent. Next, 
these scores are used together with the fixed estimates in stage 1 for 
computing the person fit index (24) or (26) and the rtiQ3 index in (28). If 
the person-fit results are acceptable and the REs are found to be negligible 
or weak, then the individual assessment procedures can be applied to this 
respondent. If this is not the case, further post-hoc assessments can be made 
to ascertain the causes of misfit. 

- Stage 3: individual estimation of change. For those individuals 
(hopefully the majority of the group) who respond consistently with the 
model and are not greatly affected by REs, valid and accurate estimates of 
change can be obtained by using the results in equations (21) (significance 
and accuracy of the change estimate) and (22) (individual effect size).  

ILLUSTRATIVE EXAMPLE 
The functioning of the present proposal is illustrated with a dataset 

from the experimental-faking study by Ferrando and Anguiano-Carrasco 
(2009). A group of 277 undergraduates was administered a Lie scale 
consisting of 20 binary items at two points of time with a retest interval of 6 
weeks. At Time-1 the participants were asked to respond under standard 
instructions. At Time-2 they were asked to imagine themselves as job 
applicants and try to give a good impression when answering regardless of 
the truthful answer. So, the design was: pretest-treatment-posttest. The Lie 
scale chosen was considered to be a measure of the impression management 
(IM) construct (Paulhus 1991), and the expected result was a strong mean 
shift at Time-2 toward more socially desirable responding (i.e. higher mean 
trait levels of IM at Time-2). 

Given the binary format of the items, the 2WMIM that was fitted used 
the link function in equation (1), which means that each measurement 
submodel in equation (3) was an IRT two-parameter normal-ogive model. 
The solution that was specified was strongly invariant with correlated over-
time residuals, and was fitted using WLSM estimation as implemented in the 
Mplus program version 5.1 (Muthén, & Muthén, 2007). A reduced example of 
the program code can be found in the appendix. The goodness-of-fit results 
are shown in table 1 and indicate that the overall model-data fit is quite 
acceptable. 
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Table 1. Goodness of fit Results for the 2WMIM. 

 
Note. χ2: WLSM chi-square goodness-of-fit statistic; d.f.: degrees of freedom; RMSEA and 
90% C.I.: point and interval estimate of the root mean squared error of approximation; CFI: 
comparative fit index; GFI: goodness of fit index. 
 
 

Results on the measurement submodels in equation (3) can be 
summarized as follows: (a) the thresholds ranged from -0.6 to 1.5 with a mean 
of 0.18 (i.e. a good spread of item locations), and (b) the standardized loadings 
ranged from 0.3 to 0.7 with a mean of 0.52 (i.e. moderately discriminating 
items). Results on the structural submodel in (4) are in table 2, and can be 
summarized in two points. First, at the group level there is a clear change in 
the expected direction. This change is significant, can be assessed quite 
accurately (i.e. a relatively narrow confidence interval), and the effect size can 
be qualified as strong (Cohen, 1988). Second, the coefficient of stability is 
low, and the variance of the difference scores is high, which means that there 
are substantial individual differences in the magnitude of change. Given these 
results, it is clearly necessary to study changes at the individual level. 

 
 
 

Table 2. Parameter estimates of the structural submodel. 

 
Note. )(ˆ 2θµ : mean group trait level estimate at Time-2; )(ˆ 2

2 θσ : variance estimate at 

Time-2; 90% C.I.: confidence interval for the mean estimate; ),(ˆ 21 θθρ : coefficient of 
stability. 
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MATLAB (1999) routines were written to compute the procedures 
proposed in this article, and some of them are provided in the appendix. The 
general results will first be summarized, and then the approach will be 
illustrated by using the results from three participants. As for the summary, the 
group mean of lz-rts in (24) was -0.25, which is compatible with a small 
proportion of inconsistent respondents in this group: if the -2 cut-off value 
proposed above is used, then 30 (10.8%) respondents would be flagged as 
potentially inconsistent. As for REs, the mean of rtiQ3 was 0.08, thus 
suggesting that for most respondents they have little impact. Again, if the 
+2 cut-off value proposed here is used, only 24 (8.7%) respondents would 
be considered to be impacted by REs. Overall, the results suggest that 
estimates of change are valid and meaningful for most of the respondents in 
the group, but non-informative or non-valid for some (see below). 

The EAP estimated trait levels of respondent nº 92 were 10.0ˆ
1,92 =θ  and 

83.0ˆ
2,92 =θ . On the basis of these estimates, the lz-rts index was computed, and 

gave a value of lz-rts(92)= -4.10, which indicates a substantial degree of person 
misfit for this response pattern. To obtain more information, the basic lz index 
was next computed separately in the Time-1 and the Time-2 sub-patterns, and 
the values obtained were -2.63 (Time-1) and -3.14 (Time-2) which indicate 
inconsistent responding on both occasions. In addition, the value of the rtiQ3 
index was rtiQ3(92)=0.03, clearly nonsignificant, thus suggesting that the 
impact of REs was negligible for this respondent. So, REs cause no outward 
bias in lz-rts in this case. Given the clear inconsistency of his responses, the 
trait estimates of respondent nº 92 cannot be validly interpreted, and it 
seems meaningless to continue the analysis in order to assess change.  

The second illustration corresponds to respondent nº 213, whose trait 
estimates were 32.0ˆ

1,213 =θ and 38.0ˆ
2,213 =θ . The value of lz-rts in this case was  

lz-rts(213)= 0.92, which indicates responding which is quite consistent with the 
model. The value of rtiQ3, however, was rtiQ3(213)=0.82, very significant 
(zrtiQ3(213)=4.77) and very high, which indicates that the responses of this 
participant were strongly impacted by REs. The most likely interpretation 
for these results can be summarized in two points. First, the respondent is 
consistent, but the strong REs cause an outward bias in lz-rts that makes her 
appear more consistent than she really is. Second, the trait estimate at Time-1 
is probably correct and can be validly interpreted. However, the trait estimate 
at Time-2 is probably biased towards 1,213θ̂  so the small change estimate for 
this respondent ( 06.02̂13 =δ ) is probably attenuated and cannot be validly 
interpreted. 
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The final illustration corresponds to respondent nº 5, with trait estimates 
63.0ˆ

1,5 −=θ  and 18.2ˆ
2,5 =θ . The appropriateness values were lz-rts(5)= 0.01, and 

rtiQ3(5)=0.01, both clearly nonsignificant. So, the responses of nº 5 can be 
considered to be appropriate and free from REs, and so, they can be validly 
interpreted.  

The individual amount of change estimate for this respondent was 
81.25̂ =δ . The corresponding 90% confidence (credibility) interval obtained 

according to (21) was: (1.74; 3.88), and the individual effect size measure in 
(22) was 2.31. The interpretation of these results is that there is a strong and 
statistically significant change between the Time-1 and the Time-2 trait levels 
that goes in the expected direction. As expected, this change cannot be 
measured as accurately as the group-level mean change in table 2 (the 
confidence interval is far wider here). Even so, the change estimated for this 
individual is substantially larger than the average change estimated for the 
entire group (see table 2).  

DISCUSSION 
The main purpose of this article is to extend a simple and well known 

SEM in order to obtain additional information that might be useful when 
individual assessment is of interest in a T-R study. So, the present proposal is 
a potentially relevant contribution at the substantive level. Furthermore, as one 
reviewer pointed out, the methods proposed here could also be used in 
developmental studies based on far longer retest intervals. 

The procedures proposed in this article require a moderately large set of 
items to work properly, and this is possibly their main limitation as far as 
applicability is concerned. On the one hand, individual estimation of change is 
very imprecise in short tests (Kruyen, Emons & Sijtsma, 2013). On the other, 
the longer the response pattern is, the better person-fit measures and individual 
retest indices work (Ferrando, 2014). These principles are generally clear in 
IRT, but are not so clear in SEM. Possibly because of technical limitations, 
most 2WMIM applications of the type considered here that were made during 
the 1980s and 1990s were based on small sets of 3 to 8 items (e.g. Aish & 
Jöreskog, 1990, Muthén, 1984). This makes the present proposal unfeasible in 
practice. In recent decades, however, the procedures for estimating and testing 
SEMs have made considerable progress, specially in the analysis of 
categorical variables (e.g. Muthén & Muthén, 2007), and it is now possible to 
fit solutions based on a moderate-to-large number of items (say between 20 
and 60). So, solutions based on reasonably long tests are expected to be more 
and more common in the future, and, if they are, the methods proposed here 
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are expected to become more and more relevant. The appropriateness of the 
present procedure needs to be assessed with tests of different lengths and 
further intensive research, mostly based on simulation, needs to be carried out. 
More generally, simulation studies will be needed to assess how the 
procedures work under different conditions. This is a clear aim for further 
studies.      

The present proposal can be further extended in other directions and 
many aspects improved. To start with, the proposal has only considered the 
unidimensional case. Technically, extending all the procedures proposed here 
to the multidimensional case does not present any particular problems. 
However, the resulting models then become more complex, and are 
potentially more unstable. Overall, whether it is practically feasible to apply 
the present proposal to multidimensional questionnaires requires further 
research based on both simulation and real data. 

A second clear extension is multiple-group analysis because, for 
example, most pretest-posttest studies also use a control group (e.g. Ferrando 
& Anguiano-Carrasco, 2009). As occurs with multidimensional extensions, 
multiple-group extensions do not pose special problems other than that they 
increased model complexity, so they must be considered in the future. 

I shall now discuss two of the many points that can be improved and 
developed further. First, the present proposal can be viewed as three-stage. 
Mean/threshold vectors and correlation/covariance matrices are obtained in 
the first stage. Measurement and structural estimates from the SEM are then 
obtained in the second stage. And, finally, the SEM estimates are taken as 
fixed and known so that individuals can be assessed in the third stage. So, 
overall, uncertainty in the estimates in each stage is ignored and can propagate 
to subsequent stages. Thus, the second-stage SEM estimates cannot be stable 
and accurate if the correlations which serve as the input (first stage) are not 
(Lorenzo-Seva & Ferrando, 2015).  And the uncertainty that has accumulated 
is ignored when scoring individuals and assessing score appropriateness. In 
strong, clearly structured solutions fitted in large samples this point has 
probably little practical relevance. In other scenarios, however, procedures that 
take into account parameter uncertainty might be considered (e.g. Yang, 
Hansen & Cai, 2012).  

With regards to the second point, the procedures proposed here to 
determine cut-off values in person-fit and RE assessments rely on 
approximations to known distributions. For tests of reasonable length these 
approximations are expected to suffice in practice. However, they can be 
clearly improved (see Ferrando, 2014).  
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In spite of the limitations acknowledged above, the results obtained in 
the illustrative study are clearly encouraging. The procedures worked well, 
and made it possible to detect problematical patterns that could have led to 
misleading interpretations. Conversely, the fact that most of the patterns 
behaved in accordance with the normative model provided support for a valid 
interpretation of the estimates. Finally, for the reasons discussed above, the 
individual estimates of trait levels and change can be regarded as more 
accurate and correct than the standard procedures used in this type of design.  

Some of the procedures proposed in this article cannot be carried out by 
using standard SEM programs and require specific software to be developed. 
More in detail, if the present proposal is to be put to widespread use, a free 
user-friendly program for (a) obtaining individual estimates of change, (b) 
computing person fit indices, and (c) assessing REs at the individual level 
must be available.  This is also a clear aim for future developments. 

RESUMEN 
Un enfoque combinado TRI-MEE para la evaluación individual en 
estudios test-retest. El modelo longitudinal de medida con múltiples 
indicadores evaluados en dos ocasiones (MI2O) se utiliza habitualmente en 
estudios test-retest y proporciona información al nivel de grupo y al nivel de 
ítems. Además, cuando se aplica a respuestas binarias o graduadas dicho 
modelo se convierte en una extensión de algunos modelos básicos de teoría 
de respuesta al ítem (TRI). En este artículo se explotan las relaciones TRI-
MI2O para obtener información adicional al nivel de cada individuo. Se 
proponen procedimientos para (a) obtener estimaciones individuales de 
niveles en el rasgo y magnitud del cambio, y (b) evaluar si se cumplen o no 
los supuesto básicos en que dichas estimaciones se fundamentan. Los 
procedimientos propuestos se organizan en un marco general que puede 
utilizarse con respuestas binarias, graduadas o continuas. Se discute la 
relevancia de la propuesta y se proponen recomendaciones para utilizarla en 
investigación aplicada. Finalmente, la propuesta se ilustra con un ejemplo 
empírico donde funcionó bien y proporcionó información útil.  
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APPENDIX 
Expected Values and Variances for the Log-Likelihood Person Fit 

Indices 
For the three types of item responses considered in the article, the 

likelihood function (16) evaluated with the 1îθ and 2îθ EAP point estimates 
is.  
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where uijr=1 if respondent i chooses category r for item j, and uijr=0 
otherwise.  
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Next, by using the results in equations (10) to (15), the conditional 
means and variances of the likelihood-based person fit indices for the binary 
and the graded response cases are found to be 

 
Binary: 
 

[ ]

[ ]}))ˆ|(1ln()ˆ|(1()ˆ|(ln)ˆ|({

}))ˆ|(1ln()ˆ|(1()ˆ|(ln)ˆ|({

))ˆ((

2
)2(

2
)2(

2
)2(

1
2

)2(

1
)1(

1
)1(

1
)1(

1
1

)1(

0

iijiijiij

n

j
iij

iijiijiij

n

j
iij

irts

1XP1XP1XP1XP

1XP1XP1XP1XP

lE

θθθθ

θθθθ

=−=−+==+

=−=−+==

=

∑

∑

=

=

− θ

 

(33) 

 
and 

 

}
)ˆ|(1
)ˆ|(ln)ˆ|(1)(ˆ|({

}
)ˆ|(1
)ˆ|(ln)ˆ|(1)(ˆ|({))ˆ((

2

1
)1(

1
)1(

1
1

)1(
1

)1(

2

1
)1(

1
)1(

1
1

)1(
1

)1(
0

⎥
⎦

⎤
⎢
⎣

⎡

=−

=
=−=+

⎥
⎦

⎤
⎢
⎣

⎡

=−

=
=−==

∑

∑

=

=
−

iij

iij
n

j
iijiij

iij

iij
n

j
iijiijirts

1XP
1XP1XP1XP

1XP
1XP1XP1XPlVar

θ

θ
θθ

θ

θ
θθθ

 
(34) 

 
Graded: 
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Example of Mplus code for fitting the T-R model with strong 
invariance and correlated residuals (with output details). 

 
TITLE:  two-wave model for dichotomous responses. Example with 5 items 
DATA: FILE IS c:lietr5.dat; 
      FORMAT IS  10F2.0; 
VARIABLE: NAMES ARE t1-t5 r1-r5; 
        CATEGORICAL = t1-t5 r1-r5; 
ANALYSIS:  TYPE = MEANSTRUCTURE; 
           ESTIMATOR = WLSM; 
MODEL: 
        f1 BY t1* t2-t5; 
        f2 BY r1* r2-r5; 
        f2 ON f1; 
        f1@1; 
        [f1@0]; 
        [f2*]; 
        f1 BY t1(1); 
        f2 BY r1(1); 
        f1 BY t2(2); 
        f2 BY r2(2); 
        f1 BY t3(3); 
        f2 BY r3(3); 
        f1 BY t4(4); 
        f2 BY r4(4); 
        f1 BY t5(5); 
        f2 BY r5(5); 
        [t1$1](6); 
        [r1$1](6); 
        [t2$1](7); 
        [r2$1](7); 
        [t3$1](8); 
        [r3$1](8); 
        [t4$1](9); 
        [r4$1](9); 
        [t5$1](10); 
        [r5$1](10); 
        t1-t5 PWITH r1-r5; 
OUTPUT: standardized residual; 
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Output details (latent variable sub-model) 
 
Means 
    F1                 0.000      0.000     (mean at Time-1 fixed to zero) 
 
 Intercepts 
    F2                 1.239      0.151      8.195      0.000 (intercept equals mean at Time-2, see 
                                                                                 (equation 5). 
 Variances 
    F1                 1.000      0.000     (variance at Time-1 fixed to one). 
 Residual Variances 
    F2                1.692      0.312      5.416      0.000 (residual variance at Time-2, equation 5). 
F2       ON 
    F1               0.389     0.149      2.604      0.009 (slope of the latent-variable sub-model, see 
equation 4). 
 

 
 
 

Example of Matlab code for computing the global person fit index  

% lzret computes the standardized likelihood statistic for retest 
% data and binary responses when strong invariance is assumed. 
% 
function [l, lz] = lzret(filat,filart,tt,tr, LAM,thres, sige1,sige2) 
 
% INPUT 
% 
%   filat ->  row vector of responses at Time-1 
%   filart -> row vector of responses at Time-2  
%   tt ->  trait estimate at Time-1 
%   tr -> trait estimate at Time-2 
%   LAM -> pattern matrix (dimension items x factors). 
%  thres -> vector of item thresholds 
%  sige1 -> residual standard deviations at Time-1 
%  sige2 -> residual standard deviations at Time-2 
% 
% OUTPUT 
% 
% l-> raw likelihood index 
% lz -> standardized likelihood index 
[n,m]= size (LAM); 
  l=0.0; 
  med=0.0; 
  var=0.0; 
  pt=0.0; 
  prt=0.0; 
  for i=1:n, 
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% Computes the conditional probabilities 
 
      pt = pconmul(tt,LAM(i,:),thres(i),sige1(i)); 
      prt = pconmul(tr,LAM(i,:),thres(i),sige2(i)); 
 
% Computes the log-likelihood and its expectations 
 
      temp1=filat(i).*log(pt)+(1-filat(i)).*log(1-pt); 
      temp2=filart(i).*log(prt)+(1-filart(i)).*log(1-prt); 
      l = l+temp1+temp2; 
      temp3= (pt.*log(pt))+((1-pt).*log(1-pt)); 
      temp4= (prt.*log(prt))+((1-prt).*log(1-prt)); 
      med= med+temp3+temp4; 
      temp5= pt.*(1-pt).*log(pt/(1-pt)).*log(pt/(1-pt)); 
      temp6= prt.*(1-prt).*log(prt/(1-prt)).*log(prt/(1-prt)); 
      var=var+temp5+temp6; 
      pt=0.0; 
      prt=0.0; 
  end; 
 
% Computes the standardized index 
  
  sd=sqrt(var); 
  lz = (l-med)/sd; 
return; 
 
 
 
Example of Matlab code for computing the rtiQ3 index 

function [rtiQ3, zQ3] = q3bin(filat,filart, tt, tr, LAM,thres,sige1,sige2) 
% q3bin computes the rtiQ3 index and the corresponding standardized value 
% 
% INPUT 
%   filat ->  row vector of responses at Time-1 
%   filart -> row vector of responses at Time-2  
%   tt ->  trait estimate at Time-1 
%   tr -> trait estimate at Time-2 
%   LAM -> pattern matrix (dimension items x factors). 
%  thres -> vector of item thresholds 
%  sige1 -> residual standard deviations at Time-1 
%  sige2 -> residual standard deviations at Time-2 
%  
% OUTPUT 
% rtiQ3 -> index 
% zQ3 -> standardized value 
  
[n,m]= size (LAM); 
   



Individual-level assessment in test-retest studies 417 

  col1=zeros(n,1); 
  col2=zeros(n,1); 
  vt=zeros(n,1); 
  vrt=zeros(n,1); 
  siget=zeros(n,1); 
  sigert=zeros(n,1); 
   
for i=1:n, 
      
% Computes the standardized residual scores 
 
      pt(i) = pconmul(tt,LAM(i,:),thres(i),sige1(i)); 
      prt(i) = pconmul(tr,LAM(i,:),thres(i),sige2(i)); 
      vt(i)= pt(i)* (1-pt(i)); 
      vrt(i)= prt(i)* (1-prt(i)); 
      siget(i)=sqrt(vt(i)); 
      sigert(i)=sqrt(vrt(i)); 
      col1(i)=(filat(i)-pt(i))/siget(i); 
      col2(i)=(filart(i)-prt(i))/sigert(i);      
  end; 
   
% computes the correlation between the residuals (rtiQ3) and its standardized 
% value based on Fisher’s z transform. 
 
  totr= corrcoef(col1,col2); 
  tmp4= totr(1,2); 
  zf= 0.5*log((1+tmp4)/(1-tmp4)); 
  deno=1/sqrt(n-3); 
  tmp5=zf/deno;  
return; 
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