- 1. Sea el punto P de coordenadas esféricas $r=2,\,\theta=\pi/3,\,\phi=\pi/6,$
 - (a) Escribir las coordenadas cartesianas de P.
 - (b) Escribir las componentes cartesianas de los vectores de la base local $\{\hat{u}_r, \hat{u}_\theta, \hat{u}_\phi\}$ en el punto P.
 - (c) Escribir el vector $\hat{i} + \sqrt{3}\hat{j}$ en la base local anterior del punto P.

Solución: (a)
$$P(x, y, z) = (3/2, \sqrt{3}/2, 1)$$
; (b) $\hat{u}_r = (3/4, \sqrt{3}/4, 1/2)$, $\hat{u}_\theta = (\sqrt{3}/4, 1/4, -\sqrt{3}/2)$, $\hat{u}_\phi = (-1/2, \sqrt{3}/2, 0)$; (c) $\hat{i} + \sqrt{3}\hat{j} = (3/2)\hat{u}_r + (\sqrt{3}/2)\hat{u}_\theta + \hat{u}_\phi$.

- 2. Sea el punto P de coordenadas esféricas $r=3,\,\theta=\pi/4,\,\phi=\pi/2,$
 - (a) Escribir las coordenadas cartesianas de P.
 - (b) Escribir las componentes cartesianas de los vectores de la base local $\{\hat{u}_r, \hat{u}_\theta, \hat{u}_\phi\}$ en el punto P.
 - (c) Escribir el vector \hat{j} en la base local anterior del punto P .

Solución: (a)
$$P(x, y, z) = (0, 3/\sqrt{2}, 3/\sqrt{2})$$
; (b) $\hat{u}_r = (0, 1/\sqrt{2}, 1/\sqrt{2}), \hat{u}_\theta = (0, 1/\sqrt{2}, -1/\sqrt{2}), \hat{u}_\theta = (-1, 0, 0)$; (c) $\hat{j} = (1/\sqrt{2})(\hat{u}_r + \hat{u}_\theta)$.

- 3. Sean los puntos P y Q respectivamente dados por las coordenadas esféricas $(r, \theta, \phi) = (\sqrt{2}, \pi/4, \pi)$ y $(r, \theta, \phi) = (1, \pi/2, \pi/3)$, obtener
 - (a) Las coordenadas cartesianas de P.
 - (b) Las coordenadas cartesianas de Q.
 - (c) El vector local \hat{u}_{ϕ} en P.
 - (d) El vector local \hat{u}_{θ} en Q.

Solución: (a)
$$P(x, y, z) = (-1, 0, 1)$$
; (b) $Q(x, y, z) = (1/2, \sqrt{3}/2, 0)$; (c) $\hat{u}_{\phi}|_{P} = (0, -1, 0)$; (d) $\hat{u}_{\theta}|_{Q} = (0, 0, -1)$.

- 4. Sea el punto P de coordenadas esféricas $(r, \theta, \phi) = (2, \pi/4, \pi/4)$ y la función potencial $\Phi(r, \theta, \phi) = r^2 \sin \theta$,
 - (a) Obtener las coordenadas cartesianas de P.
 - (b) Obtener el vector local \hat{u}_r en P.
 - (c) Obtener el gradiente de Φ en P.

Solución: (a)
$$P(x,y,z) = (1,1,\sqrt{2})$$
; (b) $\hat{u}_r|_P = (1/2,1/2,1/\sqrt{2})$; (c) $\vec{\nabla}\Phi|_P = \left(2\sqrt{2},\sqrt{2},0\right)_{\rm esf} = \left(3/\sqrt{2},3/\sqrt{2},1\right)_{\rm cart}$.

- 5. Considerar el campo de fuerzas $\vec{F} = 6x^2\hat{i} + 2z\hat{j} 2y\hat{k}$ y el punto A de coordenadas cartesianas (1,0,1).
 - (a) Comprobar si \vec{F} es un campo de fuerzas conservativo.

- (b) Obtener el trabajo a lo largo del segmento \overline{OA} .
- (c) Calcular la divergencia de \vec{F} en un punto arbitrario del plano YZ .

Solución: (a) $\vec{\nabla} \times \vec{F} \neq \vec{0}$; (b) $W_{\overline{OA}} = 2$; (c) $\vec{\nabla} \cdot \vec{F}|_{x=0} = 0$.

- 6. Sea el potencial $\Phi(x, y, z) = x^2 + y^2 2z$ y el punto P de coordenadas cartesianas (1, 1, 0),
 - (a) Calcular $\vec{\nabla}\Phi$ en el punto P de coordenadas cartesianas.
 - (b) Calcular $\vec{\nabla}\Phi$ en el punto P de coordenadas cilíndricas.

Solución: a) $\vec{\nabla}\Phi|_P = (2, 2, -2)_{cart}$; b) $\vec{\nabla}\Phi|_P = (2\sqrt{2}, 0, -2)_{cil}$.

- 7. Sea el potencial $V(x, y, z) = x^2 2y^2 + z^3$ y el punto P de coordenadas cartesianas (1, 2, 1),
 - (a) Calcular $\vec{\nabla}V$ en el punto P.
 - (b) Calcular el trabajo desarrollado por la fuerza $\vec{F} = -\vec{\nabla}V$ a lo largo de una recta con extremos en los puntos (0,1,1) y (1,2,1).
 - (c) Desarrolle brevemente el por qué el gradiente de una función como V es perpendicular a toda superficie equipotencial.

Solución: (a) $\vec{\nabla}V|_P = (2, -8, 3)$; (b) W = 5.

- 8. Sea el campo escalar $\Phi(x,y,z)=2x^2y-y^2z+xz^2$ y el punto P de coordenadas cartesianas (1,2,1),
 - (a) Calcular $\vec{\nabla}\Phi$ en el punto P .
 - (b) Calcular $\vec{\nabla} \times \left(\vec{\nabla} \Phi \right)$ en un punto arbitrario.

Solución: (a) $\vec{\nabla}\Phi|_P=(9,-2,-2)$; (b) $\vec{\nabla}\times\left(\vec{\nabla}\Phi\right)=\vec{0}$.

- 9. Sea el punto P de coordenadas esféricas $(r, \theta, \phi) = (\sqrt{2}, \pi/4, 0)$ y la función potencial $\Phi(r, \theta, \phi) = r \sin \theta \sin \phi$,
 - (a) Obtener las coordenadas cartesianas de ${\cal P}$.
 - (b) Calcular $\vec{\nabla}\Phi$ en el punto P .
 - (c) Obtener el vector local \hat{u}_ϕ en P .

Solución: (a) P(x, y, z) = (1, 0, 1); (b) $\vec{\nabla} \Phi|_P = (0, 1, 0)_{\text{cart}}$; (c) $\hat{u}_{\phi}|_P = (0, 1, 0)$.

- 10. Sea el campo vectorial $\vec{A}(x,y,z)=2x^2y\hat{i}-y^2z\hat{j}+xz^2\hat{k}$ y los puntos $P_1(1,1,0)$ y $P_2(0,0,2)$,
 - (a) Calcular la circulación de $\vec{A}(x,y,z)$ a lo largo del segmento $\overline{P_1P_2}$.
 - (b) Calcular la circulación de $\vec{A}(x,y,z)$ a lo largo de la línea quebrada $\overline{P_1OP_2}$.

Solución: (a) $W_{\overline{P_1P_2}}=1/3$; (b) $W_{\overline{P_1OP_2}}=-1/2$.