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A B S T R A C T

This work is aimed at assessing the presence of positive selection and/or shifts of the evolutionary rate in a fast-
expanding HIV-1 subtype F1 transmission cluster affecting men who have sex with men in Spain. We applied
Bayesian coalescent phylogenetics and selection analyses to 23 full-coding region sequences from patients be-
longing to that cluster, along with other 19 F1 epidemiologically-unrelated sequences. A shift in the overall
evolutionary rate of the virus, explained by positively selected sites in the cluster, was detected. We also found
one substitution in Nef (H89F) that was specific to the cluster and experienced positive selection. These results
suggest that fast transmission could have been facilitated by some inherent genetic properties of this HIV-1
variant.

1. Introduction

In Western Europe, the HIV-1 epidemic is dominated by subtype B,
especially among men who have sex with men (MSM) (Abecasis et al.,
2013). However, a large HIV-1 subtype F1 transmission cluster, af-
fecting> 100 MSM in Spain and other Western European countries,
was recently reported (Delgado et al., 2015; Thomson et al., 2012). This
cluster was identified in an HIV-1 molecular epidemiological surveil-
lance study in the region of Galicia, Northwest Spain, with the first
cases diagnosed in 2009 and subsequent rapid expansion resulting in an
increase in the prevalence of subtype F1 infections among new HIV-1
diagnoses from 1.1% in 2008 to 8.3% in 2009 and 25.5% in 2010.
Viruses belonging to this cluster were also identified in several other
Spanish regions and in four Western European countries (Delgado et al.,
2015; Thomson et al., 2012). This subtype is rare in Western Europe,
displaying a prevalence of< 2% (Abecasis et al., 2013). The trans-
mission cluster presented no major resistance-associated mutations, but
was characterized by a rapid expansion among MSM in Spain, which
could be accounted for by the epidemiological scenario of HIV-1 in

Europe, which is characterized by an increase in risk behavior among
MSM (Bezemer et al., 2008; ECDC, 2013). Nonetheless, it has also been
suggested that its efficient transmission might be linked to some in-
trinsic genetic properties of the viral lineage, given its unusual large
size (Delgado et al., 2015; Thomson et al., 2012) and the fact that pa-
tients included in this outbreak presented significantly higher viral
loads and poorer response to antiretroviral treatment than subtype B
variant (Cid-Silva et al., 2018; Pernas et al., 2014).

The hypothesis of positive selection acting on HIV in fast-expanding
transmission clusters contrasts with previous works suggesting that
adaptive selection is weaker during early infection, when most infec-
tions occur due to the lack of awareness of HIV serological status
(Maljkovic Berry et al., 2007). Furthermore, mutations that are adap-
tive in one individual are possibly maladaptive in other individuals and,
consequently, HIV transmitted to a new host undergoes reversions of
mutations that adaptively occurred in the donor. Altogether, these facts
would slow down the evolutionary rate of a viral lineage involved in a
fast-expanding epidemic (Maljkovic Berry et al., 2007; Lythgoe and
Fraser, 2012). However, fast transmissions have also been associated
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with higher evolutionary rates (Pybus and Rambaut, 2009; Salemi
et al., 1999). These studies argued that, if within-host rates slow down
during infection, faster transmissions should result in higher long-term
evolutionary rates. Also, faster transmission rates could lead mutations
to be more likely to occur, which may increase the evolutionary rate.

For this study, the complete coding sequences of 24 publicly
available Spanish isolates from a fast-expanding HIV-1 subtype F1
transmission cluster were retrieved. In addition, sequences of 25 HIV-1
subtype F1, worldwide-distributed isolates were included in the ana-
lysis. First, we evaluated the impact of recombination in our samples in
order to remove its effect in subsequent analyses. Then, we performed
Bayesian coalescent analyses to compare genomic evolutionary rates of
the Spanish transmission cluster and the epidemiologically unrelated
sequences. Finally, we assessed the effect of selection on the evolution
of the transmission cluster.

2. Materials and methods

2.1. Dataset

Twenty four full coding sequences (CDS) from different patients
belonging to the Spanish transmission cluster (Delgado et al., 2015),
along with 25 HIV-1 subtype F1 sequences from epidemiologically
unrelated patients, were retrieved from the Los Alamos National La-
boratory (LANL) HIV Sequence Database (http://www.hiv.lanl.gov).
Accession numbers and information on these sequences are provided in
Supplementary Table 1. The correct subtype assignment was corrobo-
rated with the COMET HIV-1 subtyping tool (http://comet.
retrovirology.lu). A recombination analysis was performed with
RDP4, using five different methods of recombination detection: RDP,
Geneconv, Bootscan, Maxchi and Chimaera (Martin et al., 2015). Only
those breakpoints detected by at least two of the five methods im-
plemented in RDP4 were accepted. Consequently, recombinant se-
quences, as well as those lacking information on the collection date,
were excluded from subsequent analyses. An alignment consisting of
the concatenated non-overlapping regions from all HIV-1 genes (con-
sidering the HIV-1 reference sequence HXB2, accession number
K03455) was obtained using MAFFT v7 (Katoh and Standley, 2013),
and regions with poor homology (“gappy” sites) were trimmed using
TrimAl (Capella-Gutiérrez et al., 2009). The final alignment is available
upon request.

2.2. Inference and comparison of the genomic evolutionary rates

The selected set of HIV-1 F1 subtype sequences was subjected to a
Bayesian coalescent analysis in order to estimate the genomic evolu-
tionary rate of the transmission cluster and to compare it with that of
the HIV-1 lineages not included in the Spanish cluster. The presence of
molecular clock signal was assessed with a root-to-tip divergence versus
sample time correlation analysis, performed with Path-O-Gen (now
renamed as TempEst; Rambaut et al., 2016), using as input a maximum-
likelihood (ML) phylogenetic tree obtained with PhyML (Guindon et al.,
2010) under the GTR+ Γ (4 CAT) model. The Bayesian coalescent
analysis was performed with BEAST v1.8.2 (Drummond et al., 2012),
under a nonparametric demographic model (Bayesian Skyline Plot),
combined with the GTR+ Γ (4 CAT) nucleotide model and a random
local molecular clock model. This clock model proposes and compares a
series of alternative local molecular clocks, which can arise on any
branch of the phylogeny and then extend along adjacent lineages
(Drummond and Suchard, 2010), and has previously been reported to
detect evolutionary rate shifts in specific lineages of a phylogeny
(Fourment and Holmes, 2014). The comparison of the evolutionary
rates estimated from lineages belonging to the transmission cluster and
those falling outside was performed by means of a randomization test:
rates inferred at branches from both groups (transmission cluster and
outside) are randomly sampled with replacement 1000 times, and

compared. A P value is obtained by counting the number of compar-
isons where the rate from the transmission cluster is higher than that
from branches outside it (Abecasis et al., 2009; Patiño-Galindo and
González-Candelas, 2017).

2.3. Positive selection analysis

The presence of positive selection in the transmission cluster was
tested with MEDS, as implemented in HyPhy, a ML method used to
detect independent sites under directional selection (adaptive evolution
in which mutations to a particular amino acid are selected) (Murrell
et al., 2012). A ML phylogenetic tree previously obtained with PhyML
(GTR+ Γ4) for the molecular clock signal analysis was used as input,
specifying a priori that all lineages included in the transmission cluster
were susceptible of being under directional selection (foreground
branches). Only positively selected sites meeting two conditions were
considered. First, in order to minimize the presence of false positives
(i.e., sites evolving under neutral evolution or sites in which a dele-
terious mutation had occurred but had not been removed from the viral
population at the time of sampling), those sites in which amino acid
variability was caused only by singletons (affecting only one sequence
in the phylogeny) and/or only in one step of change along the phylo-
geny were excluded from the list of positively selected sites. Second,
given that the goal of these analyses was to find evidence of selection
specific to the transmission cluster, we only considered those positively
selected sites in which the consensus amino acid of the transmission
cluster differed from that of the other F1 sequences, as performed with
VESPA; (Korber and Myers, 1992). Additionally, we also required that
the amino acid distribution differed significantly between both groups
of sequences according to Fisher's exact tests, with P values corrected by
using the false discovery rate (Benjamini and Hochberg, 1995).

Positively selected sites were mapped onto the HXB2 reference
genome. A search was performed in LANL database to identify those
sites located in human epitopes (antibody, CD8+ and/or CD4+ T cells),
as well as those sites where the transmission cluster presented a con-
sensus amino acid associated with CD8+ and/or CD4+ T cell immune
escape.

3. Results

Recombination analyses performed with RDP4 found evidence of
recombination in 3 of the 49 full-genome sequences, including one
sequence from the transmission cluster (sequence name VA0043).
These sequences were removed from the dataset, as well as those with
no collection date information. Consequently, the final HIV-1 subtype
F1 dataset consisted of 23 CDS sequences from the Spanish transmission
cluster and 19 epidemiologically unrelated HIV-1 F1 sequences
(Supplementary Table 1). The resulting alignment of concatenated HIV-
1 genes, in their correct coding frame, was 7962 nt long (> 90% of the
full HIV-1 CDS).

The dataset of 42 HIV-1 F1 genomic sequences displayed sufficient
clock-like signal as to proceed with the Bayesian coalescent analysis
(R2=0.72). The resulting dated Bayesian phylogenetic tree displayed
evidence for the existence of an acceleration in the evolutionary rate in the
transmission cluster, compared with the rest of lineages in the phylogeny
(lineages outside the transmission cluster: median=2.00×10−3 sub-
stitutions per site and year-s/s/y-, 95%HPD=1.60
×10−3–2.30×10−3 s/s/y; lineages within the cluster:
median=3.20×10−3 s/s/y, 95%HPD=2.10×10−3–3.90×10−3 s/
s/y; Fig. 1a), although the difference was not statistically significant
(P=.09).

MEDS detected 89 sites significantly associated with directional
selection, but only 19 sites met the inclusion criteria: 1 in pol (0.1% of
the amino acid sequence analyzed), 2 in vif (1.3%), 2 in vpu (4.0%), 11
in env (1.4%) and 3 in nef (1.5%). Thus, most sites detected to be under
selection were located in the env gene. Most positively selected sites
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were included in CD8+ or CD4+ T cell epitopes (Table 1).
In order to assess whether positive selection could explain the ac-

celeration of the evolutionary rate in the transmission cluster, we re-
peated the BEAST analyses using an unlinked molecular clock model, in
which two different partitions (all positively selected sites detected and
the rest of the alignment) were allowed to have different molecular
clock models. We found a significant acceleration in the evolutionary
rate of the transmission cluster occurring in positively selected sites
(lineages outside the transmission cluster: median=4.90×10−3 s/s/
y, 95%HPD=3.90×10−3–6.0× 10−3 s/s/y; lineages within the
cluster: median= 12.70× 10−3 s/s/y, 95%HPD=9.60× 10−3

–16.20× 10−3 s/s/y; P < .001. Supplementary Fig. 1A) but not in the
rest of the alignment (lineages outside the transmission cluster:
median= 1.80×10−3 s/s/y, 95%HPD=1.50×10−3–2.20×10−3

s/s/y; lineages within the cluster: median= 1.70× 10−3 s/s/y, 95%
HPD=1.40×10−3–2.00×10−3 s/s/y; P= .18; Supplementary
Fig. 1B). In order to validate this finding, we repeated the MEDS po-
sitive selection analyses choosing the unrelated F1 sequences as fore-
ground lineages, and performed another BEAST analysis partitioning
the selected sites found for this subset (233 codons) and the rest of the
genome. No acceleration in the evolutionary rate was found.

Regarding positively selected sites, Nef H89F substitution (Table 1),

Fig. 1. a) Dated phylogenetic tree obtained with BEAST (time measured in years) for the HIV-1 subtype F1 analyzed using the random local clock model for the full
CDS. “I” labels on nodes represent clades with posterior probability= 1.0, and branches are colored depending on their median evolutionary rate. b) Dendrogram
displaying the evolutionary history of the nef H89F mutation (blue color) in the transmission cluster. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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which was located in CD8+ and CD4+ T cell human epitopes (Nef
positions 84–92, wild type sequence AVDLSHFLK), has been previously
associated with a decreased CD8+ T cell response for different human
HLA alleles (Fukada et al., 2002; Hoof et al., 2010) (Table 1; Fig. 1b). It
is noteworthy that this epitope has been studied in subtypes A, B, C, D
and CRF01_AE but not in subtype F1. However, in our dataset the
consensus amino acid of all the positions was wild type with the ex-
ception of Nef 89.

4. Discussion

This work was aimed at assessing the evolutionary dynamics of an
unusually large, fast-expanding HIV-1 F1 subtype transmission cluster,
which affected>100 MSM in Spain, and has been associated with
higher plasma viral loads and poorer virological response to anti-
retroviral treatment than other HIV-1 variants (Cid-Silva et al., 2018;
Pernas et al., 2014). Despite the relatively small number of sequences
analyzed here, a genome-scale analysis has allowed to detect an ac-
celeration of the evolutionary rate of this HIV-1 F1 cluster associated
with fast transmissions, which could be explained by the effect of po-
sitive selection in this cluster. This is in agreement with previous studies
that associated the evolutionary rates with the speed at which trans-
missions occur in an epidemic (Salemi et al., 1999; Pybus and Rambaut,
2009). At this point, our results must be taken cautiously because it is
worth recalling that the acceleration detected in our study was only
significant for the partition of positively selected sites, but not for the
whole genome analysis. Anyway, the analysis of this specific partition is
a way of confirming that positively selected sites evolve faster, which is
true by definition.

The presence of positive selection in transmission clusters has been
rarely reported. By performing diversifying selection analyses on three
different HIV-1 CRF01_AE clusters affecting MSM occurring in China,
Peng et al. (2015) detected that positive selection was present in ap-
proximately 5% of the amino acid sites in the env gene. In the Spanish
F1 transmission cluster, we also found significant evidence of direc-
tional positive selection, although there were no coincidences between
sites detected in our study and those observed by Peng et al. This result

suggests that, although transmission events occurred fast and probably
during the first months after infection, this viral lineage had enough
time to adapt to the hosts' immune systems. Indeed, most positively
selected sites were located in env, and a majority of them fell within
CD8+ and/or CD4+ T cell epitopes. A mutation in one of these posi-
tions, Nef H89F, has been reported to be associated with immune es-
cape from CD8+ T cells (Fukada et al., 2002; Hoof et al., 2010).

The rapid expansion of this transmission cluster could be explained
by the epidemic scenario characterized by an increased risky sexual
behavior among MSM (Bezemer et al., 2008; Diez et al., 2014;
González-Domenech et al., 2018; Patiño-Galindo et al., 2017). How-
ever, the positively selected positions detected, and particularly Nef
H89F, might be associated with the already reported high plasma viral
loads in the infected patients, that could have facilitated transmission.
At this point, it is important to note that variants from this cluster have
already been detected in seven Spanish regions, the last cases described
in Catalonia (Bes et al., 2017). Also, unpublished results have recently
shown the rapid expansion of a new F1 subcluster in Belgium, closely
related with the Spanish variant, presenting 188 reported cases be-
tween MSM (Vinken et al., 2017). Altogether, these results remark the
increasing prevalence of F1 subtype in geographically distant areas
from Europe and supports the hypothesis that the introduction and
dissemination of these variants strongly rely on the combination of the
epidemic scenario and the viral biological properties.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2018.09.008.
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