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Abstract / Resumen

Abstract Cardiovascular disease is the number one cause of mortality in
the world, accounting for 17.7 million deaths each year, an estimated 31%
of all deaths worldwide (World Health Organization (WHO) 2018). Ven-
tricular arrhythmias are a major cause of sudden death, which accounts for
approximately half of cardiac mortality. Some of those arrhythmias are at-
tributed to the Purkinje network (PKN), which under certain conditions can
generate both automatic and triggered focal rhythms, and its network con-
figuration can sustain re-entrant circuits. Focal Purkinje triggers can serve
as initial points of ventricular fibrillation in a wide spectrum of patients.

The management of cardiac electrical diseases is an expanding clinical activ-
ity. New non-invasive imaging and mapping technologies, allow to acquire
high resolution clinical images (MRI, CT) that can be used to localize and
characterize pathological cardiac tissue. Furthermore, electroanatomical
navigating (EAM) systems, can aid electrophysiologist to find the sources
of arrhythmogenic activity or circuits maintaining arrhythmia, and elimi-
nate them by radio-frequency ablation (RFA).

Despite all the technical advances, overall clinical outcome for those diseases
is still perceived as suboptimal, with long-term treatment success rates in
the range of 60 to 65%. Therefore, there is a compelling need to improve
clinical outcomes for the benefit of the patients and the healthcare system.

The area of computational biophysical modeling has already started to pen-
etrate in clinical environments in a few technologically advanced research
oriented hospitals in the world. The main objective of these techniques is
the development of realistic 3D models of different organs, such as the heart,
that include, with a high degree of detail, genetic characteristics of the ionic
currents, their mutations, the electrophysiological characteristics of the dif-
ferent cardiac cell types, the anatomical structure of cardiac tissues, and in
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general of the human body. Following, the models are used to simulate the
heart function, e.g., electrophysiology, to try to stratify patients or improve
therapy planning and delivery.

Computer-based approaches are still facing several challenges that prevent
their complete penetration into clinical environments. Arguably, one of
the most important obstacles is the time and expertise required to build
a patient-specific model of the heart, even if all necessary clinical data are
available. In that sense, one of the model components that has remained
largely elusive to modelers has been the PKN, which is key for cardiac
electrophysiology. The main reason is that due to its small dimensions there
is no clinical technique with enough resolution to allow its visualization in
vivo.

The main purpose of this thesis is to develop a methodology able to inversely
estimate a reduced PKN of patient from his EAM. That involves, first,
finding in the EAM the sources of electrical activation, so called Purkinje-
myocardial junctions (PMJs), and, following, finding the structure that in-
terconnects those PMJs and reproduces the patient sequence of activation.
In summary, the main contributions of this thesis are:

• Methodology to estimate the PMJs, or the sources of electrical activ-
ity, from a 3D representation of the ventricular endocardium provided
by an EAM. The method developed can process directly the data ac-
quired by an electrophysiologist in the Cathlab, re-annotate the time
samples, and obtain the PMJ locations and activation times, explicitly
considering noise in the samples.

• Methodology to estimate the patient PKN from the estimated PMJs,
that is able to reproduce the patient’s sequence of electrical activation
with a minimal error. The method has been validated on synthetic
EAMs as well as in 28 real EAMs, showing errors of a few milliseconds.
In addition, an estimated PKN has been used to simulate the virtual
ECG of a patient, showing a good match with the clinical one.

In conclusion, I have developed and validated a methodology that
permits the estimation of a patient’s PKN with small errors in the
sequence of activation, that can be used to personalize biophysical
simulations of the heart or aid electrophysiologist in the planning of
RFA interventions.
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Resumen Las enfermedades cardiovasculares son la primera causa de mor-
talidad en el mundo, con 17.7 millones de muertes cada año, aproximada-
mente el 31% de las muertes en todo el mundo (Organización Mundial de
la Salud (OMS) 2018). Las arritmias ventriculares son una causa impor-
tante de muerte súbita, que representa aproximadamente la mitad de la
mortalidad card́ıaca. Algunas de esas arritmias se atribuyen a la red de
Purkinje (PKN), que bajo ciertas condiciones puede generar ritmos focales
automáticos, y su configuración de red puede sostener circuitos eléctricos
reentrantes. Los ritmos focales originados desde la red de Purkinje pueden
servir como puntos de inicio en casos de fibrilación ventricular en un amplio
espectro de pacientes.

El manejo de las enfermedades eléctricas card́ıacas es un área cĺınica en
expansión. Las nuevas tecnoloǵıas de imágenes y mapeo no invasivas, per-
miten adquirir imágenes cĺınicas de alta resolución (MRI, CT) que se pueden
utilizar para localizar y caracterizar el tejido card́ıaco patológico. Además,
los sistemas de navegación electroanatómica (EAM) pueden ayudar al elec-
trofisiólogo a encontrar las fuentes de actividad o circuitos arritmogénicos
que mantienen la arritmia y eliminarlos mediante ablación por radiofrecuen-
cia (RFA).

A pesar de todos los avances técnicos, los tratamientos cĺınicos para esas
enfermedades todav́ıa se perciben como subóptimos, con tasas de éxito del
tratamiento a largo plazo en el rango de 60 a 65%. Por lo tanto, existe una
necesidad imperiosa de mejorar los resultados cĺınicos en beneficio de los
pacientes y el sistema de salud.

El área del modelado biof́ısico computacional ha comenzado a penetrar en
entornos cĺınicos en unos pocos hospitales tecnológicamente avanzados y
orientados a la investigación en el mundo. El objetivo principal de es-
tas técnicas es el desarrollo de modelos 3D realistas de diferentes órganos,
como el corazón, que incluyen, con un alto grado de detalle, caracteŕısticas
genéticas de las corrientes iónicas, sus mutaciones, las caracteŕısticas elec-
trofisiológicas de los diferentes tipos de células card́ıacas, la estructura
anatómica de los tejidos card́ıacos y, en general, del cuerpo humano. A
continuación, los modelos se utilizan para simular la función card́ıaca, por
ejemplo, electrofisioloǵıa, para tratar de estratificar a los pacientes o mejorar
la planificación y ejecución de la terapia.

Los enfoques por computador aún se enfrentan a varios desaf́ıos que impiden
su penetración completa en entornos cĺınicos. Podŕıa decirse que uno de los
obstáculos más importantes es el tiempo y la experiencia necesarios para
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construir un modelo del corazón personalizado a paciente, incluso si todos
los datos cĺınicos necesarios están disponibles. En ese sentido, uno de los
componentes del modelo que se ha mantenido elusivo a los modeladores
ha sido la PKN, que es clave para la electrofisioloǵıa card́ıaca. La razón
principal es que debido a sus pequeñas dimensiones no existe una técnica
cĺınica con resolución suficiente para permitir su visualización in vivo.

El objetivo principal de esta tesis es desarrollar una metodoloǵıa capaz de
estimar inversamente un PKN reducido de paciente a partir de su EAM. Eso
implica, primero encontrar en el EAM las fuentes de activación eléctrica,
llamadas uniones de Purkinje-miocardio (PMJ), y seguir la estructura que
interconecta esos PMJ y reproduce la secuencia de activación del paciente.
En resumen, las principales contribuciones de esta tesis son:

• Metodoloǵıa para estimar los PMJ, o las fuentes de actividad eléctrica,
sobre una representación 3D del endocardio ventricular, proporciona-
da por un EAM. El método desarrollado puede procesar directamente
los datos adquiridos por un electrofisiólogo en el Cathlab, volver a
anotar los tiempos en las muestras adquiridas y obtener las ubicaciones
de los PMJs y los tiempos de activación, considerando explicitamente
ruido en las muestras.

• Metodoloǵıa para estimar el PKN del paciente a partir de los PMJ es-
timados, que es capaz de reproducir la secuencia de activación eléctrica
del paciente con un error mı́nimo. El método ha sido validado tanto
en EAM sintéticos como en 28 EAM reales, mostrando errores de unos
pocos milisegundos. Además, se ha utilizado un PKN estimado para
simular el ECG virtual de un paciente, donse se observa coincidencia
entre el ECG real y el simulado.

En conclusión, he desarrollado y validado una metodoloǵıa que per-
mite la estimación de la PKN de un paciente con errores mı́nimos
en la secuencia de activación, y que puede usarse para personalizar
simulaciones biof́ısicas del corazón o ayudar al electrofisiólogo en la
planificación de intervenciones de RFA.
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introduction

1.1 Motivation

Personalized medicine, computational biology and the medical device in-
dustry are growing at an incredibly rapid pace. Our overall understanding
of patho-physiology and the molecular basis of diseases steadily increases,
as does the number of available therapies to treat specific health problems.
This remains particularly true in the field of cardiovascular care. With
this rapid growth rate in cardiac medicine, clinicians and biomedical engi-
neers alike have been challenged to either re-engineer or continue looking
for sources of concise information.

However, the epidemiological burden imposed on the society by cardiac dis-
ease requires the development of novel advanced cost-effective methodolo-
gies that optimize both therapy planning and delivery. These new tools have
to build upon current advanced clinical systems that allow to explore with a
high level of detail cardiac anatomy and function in vivo. For instance, it is
possible to non-invasively explore cardiac anatomy by means of computed
tomography (CT) or magnetic resonance imaging (MRI) [1], or assess tis-
sue damage after an infarct by means of delay-enhanced MRI (de-MRI) [2].
In addition, electroanatomical mapping systems (EAM), introduced in the
last decade, allow to analyze patient’s electrical function, and complement
the information provided by the electrocardiogram (ECG), to treat com-
plex arrhythmias. All those technologies have rapidly penetrated in clinical
environments and have become part of current international guidelines for
management of arrhythmia [3].

Despite advances in medicine, cardiac arrhythmias are still one of the lead-
ing causes of mortality in Europe and impose a huge healthcare burden on
society. Long-term success rates for several cardiac disease such as ventric-
ular tachycardia (VT) or ventricular fibrillation (VF) remain too low due to
the number of variables and interactions underlying those pathological pro-
cesses. The mechanisms that govern initiation and maintenance of certain
arrhythmias are highly complex, dynamic, and involve interactions across
multiple temporal and spatial scales, leading to unpredictable outcomes at
the organ level. In addition, the amount of disparate data that has to be
considered by electrophysiologist is overwhelming, and very difficult to in-
tegrate to stratify patients or optimize therapy planning and delivery. As
a consequence, the overall clinical outcome in such therapies is still per-
ceived as sub-optimal, with success rates in the range of 60% to 65%. It
is necessary to develop novel methodologies and tools that help us to gain
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1.1. motivation

understanding in the pathophysiology of the heart, and at the same time
serve to improve patient management, therapy planning and delivery.

Modeling and simulation of cardiac electrophysiology and arrhythmias have
emerge as a new approach not only in hypothesis-driven research at various
levels of integration, but also in providing the framework for the unification
of diverse experimental findings [4]. Those models can integrate informa-
tion on cardiac physiology at various scales and allow to carry out detailed
biophysical simulations of cardiac electrophysiology including pathological
substrates [5]. Therefore, advanced information on disease and its evolution
is within clinician’s reach, who could apply novel therapeutic strategies to
treat patients. Even though the increase of computational power has open
the possibility of translating those new models into clinical environments,
they have not penetrated yet due to a number of challenges, such as the
complexity of personalizing the models to specific patients, or the inclusion
of key heart substructures [6]. If a solution for those challenges is found,
simulations could be used to build and test physical prototypes, or carrying
large clinical trials, which makes this technology an interesting alternative.

In the current clinical and modeling literature, there are some key struc-
tures of the heart which cannot be observed for a specific patient, but still
play a fundamental role in cardiac electrophysiology and arrhythmias. One
of such structures is the cardiac conduction system (CCS), and in partic-
ular the distal section called the Purkinje network (PKN) [7]. It is known
that, under pathological conditions, the PKN is responsible for the trig-
gering and maintenance of deadly cardiac arrhythmias such as ventricular
fibrillation (VF) [8, 9]. Since currently there is not a reliable technique to ex-
tract the PKN from clinical data in vivo, it is not usually incorporated into
patient-specific models of the heart, nor available for electrophysiologists
during interventions such as RFA. Being able to extract and incorporate
the PKN in a computational model of the heart would enable to go one step
beyond towards electrophysiology personalization obtaining more accurate
simulations of cardiac electrophysiology. Moreover, fusing this information
into current EAMs, electrophysiologist could have additional information,
therefore, improving therapy planning and optimization of RFA or cardiac
resynchronization therapy (CRT).

3



introduction

1.2 Objectives

The main aim of this thesis is to develop a methodology to estimate for a
given patient his personalized PKN from an EAM acquired by an electro-
physiologist in the Cathlab. For this, an inverse estimation methodology has
been developed to obtain automatically the PKN, which has been evaluated
on synthetic and real clinical data. These novel technology is expected to
improve the accuracy of personalized biophysical simulations of cardiac elec-
trophysiology, as well as to provide new information to electrophysiologists
to plan RFA interventions.

This overall objective can be divided in the following goals:

• To develop a methodology to estimate the sources of electrical activity
from local activation maps on synthetic 2D tissue models.

• To develop a methodology to estimate the PMJ locations and acti-
vation times from synthetic 3D tissue models of the endocardium,
including noise in the samples.

• To develop a methodology to estimate the PMJs and PKN from EAMs
acquired from real patients in sinus rhythm.

To achieve the first goal, an algorithm to build simplified fractal-based PKN
was developed. It could construct PKN models with different branching
depth, so that the local complexity of branches and the density of PMJs
was variable. The algorithm was used to create a set of configurations on
a 2D plane representing a sheet of tissue. In addition, since the real data
would consist in a set of randomly distributed samples from a patient’s
heart, I sampled the sheet model randomly and obtained local activation
information for each sample. In order to generate that data, the synthetic
PKN, and in particular the PMJs, were used to simulate the sheet electrical
activation sequence.

The second goal of the thesis involved an improvement of the method to
work with realistic computational domains and data. In that line, I obtained
a left ventricular endocardial anatomy from a previously segmented patient
heart, and meshed it with triangles. Following, I used a methodology based
on L-systems and physiological rules, to create a set of 20 PKN which
showed complex configurations, including loops, and a variable density of
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PMJs, which were non-homogeneously distributed. For each PKN scenario,
I generated on the left ventricular (LV) mesh the corresponding activation
sequences, and subsequently I sampled them to emulate a virtual EAM. At
this point, I included Gaussian noise in all the sampled data to mimmic the
types of error that we could find in real clinical data. Those simulations
helped us to validate the PMJ estimation methodology in more realistic
scenarios and assess its accuracy and main limitations.

The third goal wrapped up the two previous by extending the methodology
to estimate not only the PMJs but also the PKN structure that intercon-
nects them. For that purpose, an iterative algorithm that takes as an input
an EAM and a set of estimated PMJs was implemented. The method con-
nects all the estimated PMJs to a branching structure that extends from
the His bundle, optimizing the local activation times at the PMJs by cal-
culating geodesic paths on the endocardial mesh between PMJs and the
PKN. The accuracy of the complete method was studied on both synthetic
PKN and real EAMs. To further validate the results a biophysical model
for one of the patients was constructed and used to simulate the sequence
of activation on the ventricles using the estimated PKN. In addition, the
forward problem in electrophysiology was calculated, obtaining the virtual
ECG that can be compared with the one recorded on the patient.

The methodological and clinical problems tackled in this thesis are challeng-
ing and are of great interest, not only for modelers but also for electrophys-
iologists. In the last years only a few works have proposed approaches to
deal with this problem, but never with the goal of obtaining patient-specific
solutions. Therefore, the work can be considered a novel contribution to
the current state-of-the-art.

1.3 Outline of the thesis

After this chapter, the rest of the thesis is organized as follows.

Chapter 2. Presents the background about heart physiology required to
understand the importance of the PKN for electrophysiologists and
modelers. It also summarizes the most important concepts on heart
anatomy and function, with special emphasis on the PKN, and links
them with certain pathologies such as arrhythmias. Finally, it intro-
duces the field of biophysical modeling of the heart for electrophys-
iology simulation, its requirements, its advantages and applications.

5



introduction

The importance of incorporating the PKN into a 3D patient-specific
model of the ventricles for cardiac simulation is also discussed.

Chapter 3. I develop and present the methodology to inversely estimate
PMJs on a continuous 2D tissue sheet. I create several synthetic sim-
plified PKN on a 2D plane, and show the accuracy of the methodology
for different PKN configurations, considering an increasing number of
sample points. The simplified PKN configurations used have different
properties, such as branching depth, number of PMJs (sources), and
as a result different PMJ density. I conclude showing the number of
PMJs properly estimated, and the errors in local activation time for
each of the PKN configurations and density of sampling points.

Chapter 4. I extend the methodology previously described for continuous
2D sheets to be able to work on discrete 3D triangular meshes, similar
to those obtained from EAMs systems. I solve the backward Eikonal
problem on a mesh to estimate the location and activation time of
PMJs from a discrete set of samples. To test the methodology, I build
20 complex branching PKN structures using L-systems, and estimate
their PMJs subject to different levels of Gaussian noise on the samples.
I present results of a simulation study to show the accuracy of the
estimation method for different levels of noise, and for various PKN
morphologies.

Chapter 5. I complete the pipeline including the methodology to estimate
a PKN structure compatible with the estimated PMJs and the pa-
tient’s EAM. The structure built for each case is the minimal PKN
that reproduces the patient EAM with the smallest local activation
time error. In addition, I estimate the optimal conduction velocity
(CV) in the PKN for each potential structure, and derive general
parameters. The methodology is first tested on a set of five represen-
tative synthetic PKN used previously to estimate PMJs. A qualitative
analysis is provided to show errors in PKN morphology, as well, as
errors related to the endocardial sequence of activation. Finally, the
study is completed with the estimation of PKNs from real patient
EAMs in sinus rhythm. I compare the local activation maps acquired
in the cathlab with those obtained by simulations after estimating the
PKN. In addition, the PKN model is further validated by building a
patient-specific biophysical heart-torso model for one of the patients to
simulate cardiac electrophysiology and obtain the virtual ECG, which
is subsequently compared to that of the patient.

6



1.3. outline of the thesis

Chapter 6. This chapter summarizes the most important ideas and con-
tributions of this thesis. I highlight the strengths and limitations, and
propose future research directions.
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2.1 Anatomy and function

The heart is a complex organ responsible for pumping oxygenated blood
into the vessels of the circulatory system. In humans, the heart is located
in the middle of the chest surrounded by the lungs, within a compartment
called the mediastinum. It has a cone shape and a mass of 250-350 grams,
which is approximately the size of a fist [10]. The heart and the roots of
the great vessels are sheltered by a double-walled sac called the pericardium
that encloses them and provides lubrication.

It is divided in four chambers, two atria and two ventricles with differenti-
ated functions (see Figure 2.1). The upper chambers collect blood while the
lower chambers pump the blood to the lungs and the body. As depicted in
Figure 2.1, the right atrium (RA) receives through the superior and inferior
vena cava oxygen-depleted blood from the systemic circulation. From the
RA the blood flows to the right ventricle (RV) through the tricuspid valve
and is pumped out to the pulmonary circulation during ventricular sys-
tole, where it is oxygenated and released from carbon dioxide. Oxygenated
blood is returned from the pulmonary circulation into the left atrium (LA)
through the pulmonary veins, and then passes to the left ventricle (LV)
through the mitral valve where it is pumped away from the heart through
the aorta into the systemic circulation. In summary, the right heart (RA
and RV) is responsible for collecting oxygenated-poor blood and pumping
it to the lungs, while the left heart (LA and LV) is responsible for collecting
oxygenated-rich blood from the lungs and pumping it to the rest of the body.
The LV is also responsible to pump blood to the heart circulatory system.
During the diastolic period the ventricles are filled with blood, while during
the systolic period the ventricles contract and the blood is ejected. Note
that there is a one-way blood flow in the heart thanks to the four heart
valves.

The ventricles present a more regular and simpler morphology than the
atria in general terms. The gross anatomy of the right heart is considerable
different from that of the left heart, yet the pumping principles of each are
basically the same. The LV has the shape of a cone with the RV hugging it.
The wall that separates the ventricles is called the interventricular septum,
while the wall opposing the septum is the so-called lateral or free wall. The
lowest area of the ventricles is named the apex, and the area that is in
contact to the atria is the base. The lateral wall is thicker at the base of
the heart than in the apical area.
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Figure 2.1: Description of heart Anatomy including its main components. Image from
Wikimedia Commons (CC BY-SA 4.0).

The ventricular walls are formed by three layers, the endocardium (inner),
the myocardium (middle), and the epicardium (outer). The endocardium
is a thin layer that protects the heart chambers, valves, chordae tendinae
and papillary muscles, and is primarily made up of endothelial cells. The
(mid-)myocardium is the largest in volume compared to endocardium and
epicardium, and also the main responsible for the heart contraction. The
RV is characterized by an irregular endocardium with abundant trabeculae
carneae. Trabeculae carneae are irregular muscular tissue blocks with tubu-
lar shape which project from the ventricular inner surfaces. This feature
allows to distinguish morphologically the endocardial surface of the ventri-
cles, because the RV presents thick trabeculae, while in the LV they are
thinner and crisscross in a more organized way.

The effective pumping action of the heart requires a precise coordination of
the myocardial contractions (millions of cells), that is initiated by electrical
excitatory impulses. The electrical currents generated in the heart also
spread to other tissues in the body, and can be recorded on the torso surface,
which provides the electrocardiogram (ECG). Alterations in the cardiac
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impulse can lead to cardiac arrhythmia, a condition in which the heart
rhythm is irregular and beats systematically faster or slower than the normal
range of 60-100 beats per minute at rest.

2.2 The cardiac conduction system

Heart contraction results from the precise coordination of cardiac cells, and
this is accomplished via the conduction system of the heart. Contractions of
each cell are normally initiated when electrical excitatory impulses (action
potentials) propagate along their surface membranes. The myocardium can
be viewed as a functional syncytium; action potentials from one cell conduct
to the next cell via the gap junctions.

A thorough understanding of the anatomy and function of the cardiac con-
duction system is important for designing cardiovascular devices, proce-
dures, and optimize treatments. The gross anatomy of the cardiac conduc-
tion system (CCS) has been widely studied, specially its suprahisian (above
the His bundle (HB), see Figure 2.2) structures owing to their clearer im-
plications in supraventricular rhythm disorders and the complexity of the
CCS at distal sections (see Figure 2.2).

The fundamental function of the specific cardiac conduction tissue is to trig-
ger and spread at fast speeds the electrical impulse responsible for the heart-
beat, maintaining the heartbeat at an average of 60-90 beats per minute in
an adult healthy heart.

The different elements of the specific cardiac conduction system are respon-
sible for the generation and maintenance of the cardiac cycle. The effective-
ness of the cardiac contraction depends on the coordinated sequence of the
different events of the cardiac cycle. The atrial contraction must happen
before the ventricular, which in turn must first occur at the level of the
papillary muscles (attached to the valves), extending from there to the ven-
tricular apex and then to the ventricles and pulmonary and aortic outflow
tract.

The CCS comprises the sino-atrial node (SAN), the heart’s pacemaker, lo-
cated in the atria; the atrio-ventricular node (AVN), that communicates
the electrical impulse from the atria to the ventricles; the HB and the right
(RBB) and left bundle branches (LBB) that diverge the impulse to both
ventricles through the septal wall; and finally the Purkinje network (PKN),
that functions as a highway that spreads at fast speed the electrical impulse
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Figure 2.2: Gross macroscopic Anatomy of the Cardiac conduction system. Left panel
shows a simplified representation of the cardiac conduction system (blue) with the most
important components. Labels correspond to the following substructures; (1) Sino-atrial
node (SAN); (2) Atrio-ventricular node (AVN); (3) His Bundle; (4) Left bundle branch
(LBB); (5) Posterior LBB; (6) Anterio LBB; (7) Left Ventricle (LV); (8) Septal wall; (9)
Right ventricle (RV); (10) Right bundle branch (RBB). Right panel shows a picture of a
calf ventricle where the Purkinje networks is reveal thanks to a micro-injection of Chinese
ink. Left image adapted from Wikimedia Commons (CC BY-SA 4.0), and right image
courtesy of Prof. Damian Sanchez-Quintana.

across the ventricular muscle, and connects to the working myocardial tis-
sue at discrete locations called PMJs [11]. Those components are formed by
three cell types morphologically different from the cells that make up the
“working” myocardium: P cells, transitional cells and Purkinje fibers.

The electrical impulse is generated in the P cells located in the SAN, and
it is transmitted to the AVN, where a conduction delay occurs, which al-
lows the atria to contract completely before the ventricles start to contract.
The depolarizing impulse is transmitted then to the bundle of His and its
branches and, finally, the PKN, which distributes the cardiac impulse to
the apex and from there extends along the ventricular walls, thus causing
the ventricular contraction. The transitional cells connect the PKN to the
working myocardial cells.
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The sinus node

The sinus node or SA node (SAN) is also called the Keith and Flack node
because it was first described by both in 1907 [12]. It is the pacemaker of the
heart, that is, its cells are responsible for the start of the cardiac impulse. It
is situated in roughly the same location in all hearts: high on the RA wall
near the junction of the superior vena cava and the RA. At the boundaries
of the node in the human heart, short areas of histologically transitional
cardiomyocytes insert into the musculature of the terminal crest. Conduc-
tion spreads through the atria to the AVN and then to the HB, which is
the normal conducting pathway from the atria to the ventricles [13].

During an extended period of time, it was believed that a specialized in-
sulated pathway existed between the sinus node and the AVN. In reality
it does not exist, however, there are preferential conduction pathways that
permit to transmit rapidly the electrical impulse generated by the SAN to
the AVN. The main pathways are the crista terminalis and the margins
of the oval fossa. The pectinate muscles also transport the electrical im-
pulse at higher speeds within the RA, while the Bachmann’s bundle is the
preferential fast connection towards the LA.

The Atrioventricular node and conduction axis

The AVN was first described by Sunao Tawara in 1906 [14], who also clarified
the existence of a bundle of connective tissue described by His in 1893.
Tawara also described for the first time how the bundle of His was continued
with the ventricular PKN.

Anatomy

The atrioventricular conduction axis has atrial, penetrating, and ventricular
components [15]. The HB continues as a short non-branching segment that
gives rise to the fascicles of the LBB (see Figure2.2, left for a schematic
representation). The RBB takes its origin from the most distal left-sided
fascicles, located beneath the septum on its left side, and courses buried
through the septum towards the RV. The right branch runs through the
right side of the septum until reaching the base of the septal papillary
muscle of the RV. Subsequently, it penetrates the septomarginal trabecula
and extends from the septal wall of the RV to its anterior wall, through the
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moderating band. Finally, it is divided into the Purkinje subendocardial
network. On the other hand, the specialized cardiomyocytes of the LBB
fan out subendocardially giving rise to three fascicles, superior, septal and
inferior that run on the LV ((see Figure 2.2, right, for a frontal visualization
of the three main fascicles).

Activation sequence

Toward the end of atrial depolarization, the excitatory signal crosses the
AVN. Since the atria and ventricles are electrically isolated from each other
by dense connective tissue rings, the AVN located in the triangle of Koch is
the only conduction pathway between upper and lower chambers [16]. The
AVN has the mission of delaying the electrical signal before transmitting
it to the ventricle. This will allow the atria to completely pump the blood
into the ventricles, since simultaneous contraction would cause inefficient
filling and backflow. It is worth to mention that in pathological conditions
(e.g. Wolff-Parkinson-White syndrome) there exist aberrant paths between
the atria and ventricles such as the bundle of Kent. The AVN also presents
depolarization automaticity, but with a slower frequency (40 to 50 beats
per minute) than the SAN.

The Purkinje Network

The goal of the Purkinje network is twofold, to act as a fast conduction
pathway that reduces the total activation time of the ventricles, and to
synchronize and coordinate the activation pattern. Following I review its
anatomy and function.

Anatomy

After the RBB and LBB span and divide into the main fascicles, they be-
come a complex and extensive network that furcates and anastomose suben-
docardially on both ventricles, forming the PKN. Initially the fascicles direct
towards the base of the papillary muscles, since they have to be electrically
activated before the ventricle contracts [15]. There have been also reported
morphological differences in the HB and bundle branches configuration be-
tween individuals [17].
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In both ventricles the PKN forms a complex mesh of branches that emerge
from the fascicular branches and extend subendocardial throughout the ven-
tricles transporting the electrical impulse at fast speeds, and triggering the
activation of the rest of the myocardium at discrete locations [18, 19]. Note
that both the HB and the Purkinje strands are surrounded by a perifasci-
cular sheath of connective tissue that isolates them electrically from work-
ing cardiomyocytes until transitional areas where they are connected [15].
The perifascicular connective tissue sheath is important in organizing the
contraction of the myocardium by preventing lateral spread of conduction
and by permitting transmission of the impulse only at the termination of
the Purkinje fibers, that is, the so called Purkinje-myocardial junctions
(PMJs) [20]. At the PMJs, the perifascicular sheath is lost, and the electri-
cal impulse can travel from the PKN into the working myocardial tissue.

The PKN has only been described macroscopically from photographs, mi-
croCT imaging, and microscopically from histological samples, in different
species such as rabbit [21], pig [22] or human [23]. However, the full recon-
struction of the PKN in 3D has never been achieved in humans or animals.
The proximal sections have been macroscopically visualized using inks or
specific markers (bovine, sheep, murine) [14, 18, 20], but only high resolu-
tion microscopy imaging can reveal the details of the system or the PMJs
at distal locations, which reduces its scope of analysis. Therefore, in hu-
mans the distribution and number of PMJs remains elusive, although some
histological studies have shed some lights in animals [22]. Note that, in
human hearts the conduction system and PMJs have only been observed
subendocardially, unlike other species such as ungulate hearts in which the
system can run transmurally as far as the epicardium [22].

There is scarce information on PMJ density and distribution on the en-
docardium. Some studies suggest that the distribution of subendocardial
PMJs and their coupling is spatially inhomogeneous, and that the junction
regions themselves have variable degrees of electrical coupling [13]. Some
detailed electrophysiology studies have shown the continuous coupling be-
tween the PKN and the myocardium, suggesting a more dense and com-
plex network with thousands of PMJs [24]. In addition, from histological
observations, there are large endocardial areas where PMJs would not be
expected due to the lack of PK branches, such as the base of the ventricles
and portions of the septum [25].
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Activation sequence

In a healthy human heart, the PKN functions as a ’highway’ placed in the
inner cardiac surface, where the electrical signals travel fast up to the PMJs.
At each PMJ the impulse enters the ’working’ contractile myocardium,
which slowly propagates the electrical signal as a wavefront activating the
heart tissue. Once a given cell has been activated, it cannot be activated
again during a certain period (effective refractory period) by a second elec-
trical wavefront. As a result, not all PMJs are functional, in the sense that
some might try to trigger cardiac tissue that has been already activated.
Therefore, they have no practical effect, or their contribution is masked by
other surrounding PMJs.

In the LV, myocardial activation triggered from the most proximal PMJs
starts at a central area on the LV surface of the interventricular septum,
and at the posterior paraseptal area at about one third of the distance
from apex to base. These two initial activated areas spread and grow in
size during 5ms to 10ms, and become confluent at 15ms to 20ms after the
initial onset of excitation [26]. At this point, the depolarization wavefront
has activated most of the endocardium, with exception of the posterobasal
area, a middle lateral area, and an apical anterior area. Since the septum is
initially activated from the LV, a wavefront spreads within the septum from
left-to-right ventricle, and from apex-to-base. A breakthrough due to the
PKN also occurs in the middle third of the RV septum before the wavefront
initiated in the LV arrives, which produces a collision of both wavefronts
within the septum.

Note that thanks to the PKN, the endocardium activates from different lo-
cations faster than it propagates from endocardium to epicardium. After
30 ms the wavefront has activated all the endocardium, except at the pos-
terolateral area, and has arrived to the epicardium at some regions. The
last area that activates in the LV is usually the posterolateral or the pos-
terobasal. In the RV, the activation starts between 5ms to 10ms after the
onset of the LV potential. The first region that activates is the anterior
papillary muscle, and following both the septal and the lateral wall activate
in parallel. Since the RV has a thin wall, the wavefront reaches the epi-
cardium 20ms after the initial breakthrough. The last region that activates
at around 60ms, is the pulmonary conus and the posterobasal area [26].
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2.3 Cardiac arrhythmias

Cardiac arrhythmia is a condition in which the heart rhythm is irregular
and beats systematically faster or slower than the normal range of 60-100
beats per minute at rest. Faster rhythms are called tachycardia, and slow
rhythms bradycardia. It is considered an electrical disorder, which compro-
mises cardiac mechanics and affects the heart pumping efficiency. The term
cardiac arrhythmia covers a very large number of very different conditions.
The most general symptom is the feeling of palpitations, or a pause between
heartbeats, or in more severe cases shortness of breath, or chest pain.

The most common way to diagnose an arrhythmia is by evaluating the pa-
tients’ ECG, which can be complemented by an eco-cardiographic study,
and in specific cases with an EAM. Apart from the classification as a func-
tion of the heart rate in tachycardia and bradycardia, arrhythmia can be
analyzed by mechanism. There are three basic mechanisms that can elicit
heart tachycardia: automaticity produced by ectopic focus, re-entrant ac-
tivity produced by rotors and spiral waves, and triggered activity produced
by cell afterdepolarizations. Tachycardia might degrade into fibrillation
due to the electrical changes at ionic level produced by sustained fast heart
rhythms. With respect to the duration of the episodes they can be classified
as paroxysmal, sustained, or permanent.

The ventricles can develop ventricular tachycardia due to a number of rea-
sons that include coronary heart disease, aortic stenosis, cardiomyopathy,
electrolyte problems, inherited channelopathies (e.g., long-QT syndrome),
or a heart attack. Ventricular tachycardia is characterized by abnormal elec-
trical impulses that originate in the ventricular conduction system, ischemic
myocardium or scar tissue [27].

Clinically, the PKN structure is very relevant since it is responsible for the
initiation and maintenance of life-threatening arrhythmias [28, 29]. For in-
stance, it is known that some His-Purkinje system-related macro re-entry
Ventricular Tachycardia (VT) are triggered or supported by the PKN,
and that the ablation of specific PMJs or bundles can stop the arrhyth-
mia [30, 31]. These ventricular tachy-arrhythmias can be called Purkinje-
related arrhythmias, and include monomorphic VT, polymorphic VT, and
ventricular fibrillation (VF). Purkinje-related monomorphic VTs are classi-
fied into distinct groups: i) verapamil-sensitive left fascicular VT; ii) Purk-
inje fiber-mediated VT post infarction, iii) bundle branch reentry (BBR)
and interfascicular reentry VTs; and iv) focal Purkinje VT [32]. Note that,
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these VTs usually occur in specific locations and have specific QRS mor-
phologies. The VT mechanisms of i), ii) and iii) are macroreentry, whereas
iv) is abnormal automaticity. In cases of idiopathic ventricular fibrillation
(IVF), the main cause of unexplained sudden cardiac death, the majority
of cases (up to 93%) are triggered by premature ventricular contractions
(PVCs) that originate from the PKN [8, 9].

The treatment for sustained ventricular tachycardia is usually tailored to
the specific person, depending on how frequently episodes occur, and his
comorbidities. The most common treatments for arrhythmia include, the
use of drugs (beta blockers, blood thinners), implantation of pacemakers and
intra-cardiac defibrillators (cardiac resynchronization therapy), and surgery
(radio-frequency ablation).

Radio-frequency ablation (RFA) is considered a potential first-line therapy
for patients with idiopathic VT, because these VTs can be eliminated by
ablation in a high percentage of patients. However, in some types such as
focal Purkinje VT, the recurrence rate is around 29% [32], and there are
several complications associated to ablation.

2.4 Electroanatomical mapping systems

EAMs are powerful tools since they provide electrophysiologists with the
ability to map the three-dimensional anatomy of the heart and determine
the cardiac electrical activity at any given mapped point. The system com-
bines anatomical structure and electrophysiological data and displays the
information in an easily readable, visual fashion [33].

The system consists of a moving mapping catheter with small magnetic sen-
sors at the tip, a fixed sensor that acts as a reference point, a low magnetic
field generating platform and a data acquisition and visualization system.
When the moving catheter moves in a three-dimensional space, its location
in relation to the fixed sensor is monitored by the system, with a resolution
of < 1 mm [34]. By gating the acquisition of points in space to cardiac
electrical activity, points representing both the location and the electrical
activity in that location can be acquired and displayed on a computer screen.
After acquiring a series of points, a three-dimensional representation is con-
structed, and can be displayed from any viewing projection (see Figure 2.3).
The clinical applications of the system include defining the mechanisms of
arrhythmias, designing ablation strategies, guiding ablations and improving
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Figure 2.3: Example of an EAM of the RV, where colors correspond to the local activation
times manually annotated by the technician, recorded in vivo on the endocardial walls
using a catheter.

the safety of mapping and ablation procedures by allowing the location of
critical cardiac structures such as the AVN and the HB [35, 36].

2.5 Catheter ablation

Catheter ablation is a minimally-invasive surgical procedure that aims to
terminate a faulty electrical pathway in the heart of subjects prone to
develop cardiac arrhythmias such as atrial fibrillation, atrial flutter, ven-
tricular fibrillation, ventricular tachycardias or Wolff-Parkinson-White syn-
drome [37]. It involves introducing several flexible catheters through the
femoral vein (or the subclavian vein), and advance them towards the heart
chambers. Once inside the heart, catheters are used to induce the arrhyth-
mia, which is subsequently stopped by applying local heating or freezing to
ablate the abnormal electrical pathways.

The ablation basically has as a goal the creation of lesions in the tissue
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that change the conduction patterns. Catheter ablation is recommended in
people with no or little structural heart disease where rhythm control by
medication or cardioversion fails to maintain normal heart rhythms (recur-
rent or persistent arrhythmia), or requires very long drug treatments that
prolong for years [3, 38]. The procedure can be classified by energy source:
radiofrequency ablation (RFA) and cryoablation.

Before the ablation is performed the electrophysiologist constructs a cham-
ber EAM, that guides him towards the regions that need to be ablated.
EAM allows operators to record intracardiac electrical activation in rela-
tion to anatomic location in a cardiac chamber of interest, during arrhyth-
mia mapping. While originally applied towards relatively straightforward
arrhythmias with a single discrete target site (such as AVN reentry or
tachycardias associated with Wolff-Parkinson-White syndrome), they are
increasingly being used to address more complex arrhythmias, including
atypical atrial flutter, atrial fibrillation, and ventricular tachycardia. This
latter group of rhythm disturbances is often associated with significant un-
derlying structural cardiac abnormalities, such as congenital, ischemic and
post-surgical heart disease. The greatest impact of EAM is probably its
application to facilitate pulmonary vein isolation for treatment for atrial
fibrillation

Nowadays, several different EAM systems utilizing various technologies are
available to facilitate mapping and ablation. Each EAM system has its
strengths and weaknesses, and the system chosen must depend upon what
data is required for procedural success (activation mapping, substrate map-
ping, cardiac geometry), the anticipated arrhythmia, the compatibility of
the system with associated tools (i.e. diagnostic and ablation catheters),
and the operator’s familiarity with the selected system.

2.6 Biophysical modeling of the heart

Emerging research fields have the potential to contribute in the evolution
of the health care system, and in particular in cardiology [6]. Computa-
tional cardiology still lacks maturity, but that considerable improvement is
accessible. Many different steps are required to go from the raw biological
data to the patient-specific simulation for diagnosis and therapy planning.
This is a very interdisciplinary work that involves clinicians and biologists
to acquire and analyze biological samples, mathematicians and engineers
to formalize, develop and implement the computational models, companies
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that develop implantable devices and drugs, and electrophysiologist that
plan and perform interventions, and validate the models. All the biological
and clinical data has to be transformed into a representative mathematical
model, that can be personalized with additional specific data in a patient
basis.

Multiscale models for electrophysiology simulation

Over the last years, a large number of mathematical models have been devel-
oped to simulate the electrical (cardiac electrophysiology) and mechanical
(tissue deformation) dynamics of cardiac cells and tissues. Although models
are by definition simplifications of a real object or phenomenon, they can
serve the important purpose of helping researchers in gaining knowledge
about a given process or function, and avoid at the same time unnecessary
animal experiments. This is particularly important in biological systems
where millions of interactions take place at the micro scale within microsec-
onds. The cardiac processes are highly non-linear and result from very
complex interaction between subsystems. Models can yield excellent ap-
proximations of very complicated processes even though some of the details
of the real system are neglected. For instance, when modeling electrical
propagation in cardiac tissue the genetic details of an individual can be ig-
nored if they do not influence the target of the study. Hodgkin and Huxley
used their mathematical model of the nerve cell to test fundamental hy-
pothesis not directly measurable by experiments [39]. That model was the
precursor of a large number of cellular cardiac models, being the first one
by Denis Noble [40].

In the cardiac modeling literature, it is important to be aware of the ex-
istence of two difference types of mathematical models, the so-called phe-
nomenological models and the predictive (biophysical) models. Phenomeno-
logical models are often macroscopic representations of a given phenomenon
that can reproduce experimental results but do not have a reference to the
physical system. On the other hand, predictive models can provide new
findings, allowing insights into underlying mechanisms, outside the set of
experimental conditions used to fit the model. Those latter models rely on
anatomical and biophysical definitions of the phenomena under study.

In the past decades, there have been built hundreds of predictive biophys-
ical models of cardiac myocytes that can reproduce the bioelectrochemical
phenomena occurring through cardiac cellular membranes [41]. They allow
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to study the interplay between anatomical structures and functional behav-
ior, which is particularly important in pathological conditions. Models of
cardiac cells are able to facilitate insights into the mechanisms underlying
cardiac electrical dynamics, since they incorporate formulations of trans-
membrane ionic currents along with the voltage, ionic concentrations, and
ion channel kinetics responsible for the currents [4]. They can capture the
time-dependent processes that underlie common electrical pathologies at
cellular level [42, 5, 43]. Those models are based on experimental electro-
physiology data acquired from in vivo and exvivo samples using techniques
such as patch-clamp (invented by Erwin Neher and Bert Sakmann in the
1970’s), which could be assimilated thanks to mathematical and numeri-
cal models of computational electrocardiology, such as the Poisson-Nernst-
Planck (PNP) system. Hence, there are mathematical models to simulate
ventricular myocytes, atrial myocytes, specialized conducting tissues such
as Purkinje cells or fibroblast.

Most of the models have also been adapted to take into account the elec-
trophysiological heterogeneity present in real tissues [44]. However, it is
important to be aware that all those models only consider a number of
components from the real physical system, and therefore it is essential to
find out which are the most important questions that one aims to answer
with the model in order to identify the key elements and parameters. For
instance, one could use a biophysical model of the cell to study the effect of
a drug that blocks a particular ionic channel, and hence the model selected
will have to include a mathematical description of the specific channel and
its relation with other part of the whole system [45, 46].

Since cellular models by themselves will not allow to perform whole heart
studies, they have to be integrated into tissue and organ level models [47,
48]. The integrating approach is known as multiscale modelling, and has
to deal with the coupling of different temporal and spatial scales into a
single main model. Therefore, we have subsystems with different levels of
detail coupled together by a few interface variables. In cardiac electrophys-
iology modelling, cell models are coupled together by means of the so-called
bidomain model, a generalization of the one-dimensional cable theory, that
takes into account the evolution of the intra-, and extracellular potential
fields. The bidomain model is a reaction-diffusion set of equations that can
incorporate the information from the cellular scale, but not in an individual
fashion, since it is a continuous-based model that averages the properties of
many cells up to the body surface [49]. The bidomain model only receives
one parameter from the cellular level, the transmembrane potential, that
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results from a large number of ionic exchanges that are only traced at cel-
lular level. As the bidomain model is very expensive computationally, it is
often simplified by assuming that the relationship between intra- and extra-
cellular domains has equal conductivity anisotropy ratios, which allows to
obtain a simplified representation called the monodomain model [50]. This
model has been widely used for cardiac simulation because of its reduced
computational cost.

The use of biophysical models of the heart has made already important
contributions to the understanding of cardiac electrophysiology, such as un-
veiling underlying mechanisms of arrhythmia [46, 42, 6] or proposing novel
tools for patient risk stratification [51]. The multiscale biophysical mod-
els of the heart allow to model cardiac electrophysiology from cell to body
scale. When those models are combined with three-dimensional represen-
tations of the heart, it is possible to simulate heart function with a great
level of detail, and to perform experiments that could be impossible in a
real clinical setting [42, 45]. However, the utility of the models relies on
its accuracy and fidelity to reproduce experimental or clinical results, and
therefore they have to be tailored to fit available data.

Some challenges still need to be overcome and have prevented the translation
of such models in clinical environments. Among them the most important
are the computational cost associated to cardiac simulations, the lack of
patient-specific information that could be used to feed a generic model to
personalize it, the lack of a comprehensive suite of tools to model and simu-
late cardiac tissues, and the lack of a proper validation of the computational
techniques that are to be translated into the clinic.

Modelling whole heart electrical activity can be very complicated and time
consuming. Once the anatomical model is built, if one wants to simulate car-
diac electrophysiology in a full heart model, both monodomain and specially
bidomain models are very demanding in terms of memory and computation
resources. An average human heart is approximately 130 mm × 90 mm ×
70 mm, that is 8.19× 105mm3, from which 50% corresponds to myocardial
muscle. If the heart is discretized into a 3D model with a spacing of 100
µm, we obtain 4.23 × 108 computational points. For each computational
point we have to solve a cellular model which could consist of 30 ordinary
differential equations (ODE), which makes 1.27 × 1010 ODEs to be solved
at each time instance. Assuming that each ODE involves 100 floating point
operations per second (Flop), we would have 1.27 × 1012 flops per time
instance. Using a time step of 1 ms would give rise to 1.27 × 1015 flops/s.
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If we perform the simulation in a 2.4 GHz Intel Core 2 (1.7 Gflops), then
to simulate one-minute real time, we require 4.48 × 107 s, that is 518.5
days [52]. Therefore, time requirements for a single simulation are far from
what would be reasonable in a clinical workflow. Fortunately, the evolution
of parallel computing and the advance in GPU computing are easing con-
siderably the problem, and reducing the timing for a simulation from days
to a few hours.

Personalization of models

An important challenge that is also hampering the integration of biophysical
simulation tools into a clinical environment is the difficulty in personalizing
the computational models (e.g. geometric personalization or patient-specific
parameter estimation from physical measurements).

There are two fundamental sources of data to adjust the models, the so-
called patient-specific data, and population-based data. Patient-specific
data are acquired from each individual, and are limited to the clinical invivo
techniques available in each medical centre. On the other hand population-
based data comprise all the data collected from invivo and exvivo experi-
ments in several species for years. These data are very useful since most of
the information required for the models cannot be retrieved easily, however,
its use is opposed to the patient-specific philosophy.

Model personalization is a key component to understand the underlying
physiological phenomena of a given patient and thus to provide personalized
simulations for better diagnosis, decision making, and treatment planning.
The effective personalization of model parameters requires the integration
of a large amount of data provided from disparate diagnostic tools, imaging
modalities and physiological measurement systems acquired across a range
of anatomical levels (e.g. cell, tissue, organ or systemic levels). Data for
personalization can include, MR and CT to reconstruct the patient specific
anatomy of the ventricles, EAM data to obtain the patient-specific acti-
vation sequence, de-MRI to reconstruct the patient specific scar region, or
genetic information to include the proper mutations in cell models, among
others. It is important to remark that data is not only important to person-
alize models, but also to validate them by verifying their correctness and
scope of use.

The difficulty of implementing rapid, robust and efficient model personal-
ization has resulted in models that are fit to a specific geometry and thus
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cannot be qualitatively validated for other individuals. The time and the
amount of manual input required for personalizing a model remains pro-
hibitive for integration into a clinical workflow. In addition, the routine
clinical workflows do not include the very specific protocols and techniques
required to personalize properly the models due to several reasons: cost
per patient, time required to perform and acquire all the data per patient,
cutting-edge equipment availability, and willingness of clinical staff.

Even though there are already available tools and software environments
that are helping in the development of complex computational pipelines for
cardiac modeling and simulations, they are in general individual efforts of
single research labs [53].

Among the most complex cardiac substructures that are fundamental for
modeling of patient-specific cardiac electrophysiology are the organization of
cardiomyocytes (fiber orientation), and the cardiac conduction system [6].
The arrangement of cardiomyocytes in the atria and ventricles follows a
specific configuration that has been studied both in animal and human
hearts [54, 55], and has permitted the definition of mathematical models
that describe it [56]. In order to obtain the patient-specific fibre orienta-
tion of the ventricular tissue, non-trivial techniques such as diffusion tensor
MRI have to be employed [57]. However, due to the long acquisition times
required and the fact that the heart is beating, only a few heart planes can
be imaged invivo, and the rest have to be interpolated, which hampers the
original goal.

This thesis focuses on the development of methods to estimate the PKN for
a given patient, to improve the personalization of the activation sequence.

Modeling the PKN

The structure of the PKN and the location of the PMJs cannot be directly
segmented from any in-vivo imaging technique. This fact has led researchers
to the construction of generic population-based computational models of the
CCS in the ventricles [58, 7]. Among the most popular techniques to build
a synthetic PKN, there is the use of fractals [59], or L-Systems [60, 7],
which in some cases are enhanced with rules and permit the generation
of loops to create networks instead of trees. Other researcher have opted
for manually delineating the PKN on the endocardium of a segmented 3D
model [61, 62]. Ex-vivo images have also been used to build reference models
in humans [63, 11], and different animals such as rat, rabbit or dog where
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the most prominent structures can be observed [64, 65, 66], overlooking the
complex morphology of the network. In some cases, modellers have opted
for paying little attention to it, and instead have indirectly considered its
function by altering the model’s endocardial properties, e.g. increasing the
tissue endocardial conduction velocities. The reader is referred to [7] for a
review on different techniques commonly used to build computer models of
the CCS.

Since it has been described the interaction of the PKN with disease [58, 67],
therapies [61, 68] and drugs [45], some modelers are trying to obtain per-
sonalized PKNs. Therefore, recent studies have started to use patient-
specific data obtained from EAMs of the ventricles to estimate a patient
PKN [69, 70]. In an EAM procedure, the local activation time (LAT) at
different tissue locations can be measured using catheters on the inner sur-
face of the ventricles. EAMs are one of the few in vivo clinical sources of
information that can be directly used to obtain the electrical function of
the heart. The LAT maps obtained from EAMs can be used to estimate
the location of PMJs, and therefore, to somewhat personalize the PKN in a
ventricular model [71, 72, 73]. In addition, in some studies such as [70], the
PKN was further personalized not only to match the normal activation from
PKN to the myocardium, but also for cases in which the PKN is activated
retrogradely from an abnormal ectopic focus out of the AVN.

In the works by [69] and [72], a mathematical method to optimize positions
of randomly placed PMJs is presented that reduces simulated activation
errors given a pre-computed generic Purkinje tree structure. In [71], the
location of PMJs is determined from singularity points on highly dense
activation maps obtained from simulations.

Application to therapy planning

Despite all the drawbacks, biophysical models are also starting to be em-
braced in clinical research environments to assess their predictive capacity
for treatment delivery and optimization [74, 5, 75]. The applications are
countless, and although they will require a long validation process and ac-
ceptance from the clinical community, the initial results are promising. For
instance, related to the PKN, they have been used to study the relation of
Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhyth-
mias [28], sawtooth effects on the Purkinje system [62], the interaction of
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the PKN and CRT pacemaker configuration [76], or the Purkinje-mediated
effects in the response of quiescent ventricles to defibrillation shocks [77].

Some of the therapies that could potentially benefit from biophysical models
are cardiac resynchronization [78] or radio-frequency ablation [79], among
others. Both are electrical therapies with a medium-low rate of success (up
to 35% patients do not respond to the therapy) in which a large number of
input parameters needs to be considered to deliver the therapy optimally,
and increase the response in the patients. However, the basic principle of the
therapy remains unchanged, pacing and ablation approaches being largely
non-dependent on individual patient’s characteristics.

Detailed biophysical models have been reported to mimic the therapy out-
comes in reduced groups of patients, but are validated against measurements
obtained from experimental laboratories providing animal and human data
in well controlled conditions. Basically they could predict in a procedure
of radiofrequency ablation where the optimal ablation points are to stop
a scar-derived ventricular tachycardia before the intervention. Therefore,
those studies are paving the road for more complex and realistic clinical
settings in which the biophysical models can be useful. However, it is im-
portant to remark that all those models results are to some extent approxi-
mations of reality where assumptions and approximations have been taken,
and therefore outcomes have to be carefully interpreted.
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Abstract – Modeling the cardiac conduction system is a challenging
problem in the context of computational cardiac electrophysiology. Its ven-
tricular section, the Purkinje system, is responsible for triggering tissue elec-
trical activation at discrete terminal locations, which subsequently spreads
throughout the ventricles. In this chapter, we present an algorithm that is
capable of estimating the location of the Purkinje system triggering points
from a set of random measurements on a synthetic tissue sheet. We present
the properties and the performance of the algorithm under controlled syn-
thetic scenarios. Results show that the method is capable of locating most
of the triggering points in scenarios with a fair ratio between terminals and
measurements. When the ratio is low, the method can locate the termi-
nals with major impact in the overall activation map. Mean absolute errors
obtained indicate that solutions provided by the algorithm are useful to
accurately simulate a complete patient ventricular activation map.

This chapter is adapted from: Barber F., Lozano M., Garcia-Fernandez. I., Sebas-
tian R. Inverse Estimation of Terminal Connections in the Cardiac Conduction System.
Mathematical Methods in Applied Sciences, Vol. 41(6):, pp. 2340 - 2349, 2018.
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3.1 Introduction

Computational modeling of the heart aims at helping to understand the
complex structure and function of the heart in health and disease. The con-
struction of realistic computational cardiac models that can be personalized
to a patient is challenging and requires the fusion of disparate medical and
biological data [6, 80]. On the one hand, clinical images from computed to-
mography (CT) or magnetic resonance imaging (MRI) can be acquired and
segmented to build patient-specific 3D heart geometries. Those segmented
hearts would be meshed to create a fine computational domain in which
finite element methods can be applied. On the other hand, to model heart
function ex-vivo measurements from cell and tissue samples are needed to
feed models, which are commonly represented by sets of differential equa-
tions that describe its coupled nonlinear behavior. However, the heart is
highly complex and inhomogeneous, and not all the cardiac structures and
tissue properties can be personalized due to imaging resolution limits.

Among these structures, there is the cardiac conduction system (CCS) or
PKN (in the ventricles), which is responsible for the synchronized activation
of the cardiac muscle that triggers the heart contraction.

In recent works by [71, 69, 72], summarized in Chapter 2, some techniques
have already been developed to infer the location of PMJs and structure
of a Purkinje tree from EAMs acquired in-vivo. None of those techniques
try to estimate the real location of PMJs, but a distribution of them that
is coherent with tissue global activation sequences. Estimating the real
location of heart electrical triggers, i.e. PMJs or ectopic foci in pathological
tissue, is highly relevant for both constructing realistic models of the heart
and providing substrate data to planning interventions. For instance the
CCS is known to interact retrogradely with the electrical impulse triggered
by pacing leads of cardiac resynchronization therapy devices [61, 81]. In
addition, it is still unknown how ablation lines carried out in ventricular
tissue to interrupt ventricular tachycardia can affect CCS and in particular
PMJs, and therefore a better knowledge in their localization might help in
planning interventions.

Our goal is to perform an inverse estimation of the location and activation
time of PMJs on the inner surface of the heart, given a set of randomly
distributed measurements, similar to those obtained in EAMs.

Before addressing the problem on a 3D structure representing a patient’s
heart, in this chapter, we present an estimation method, and evaluate it
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on several synthetic 2D scenarios. To represent the complex PKN patterns
described in the literature [82], we build synthetic tree structures recursively.
Basically, we create two perpendicular child branches at the end of each
branch with decreasing length and locating the PMJs at the leaf nodes of
the tree. We build several scenarios by constructing Purkinje trees with an
increasing number of branches and PMJ density, to assess the potential of
the algorithm to estimate PMJs. The estimation of the underlying Purkinje
system branching structure is not addressed in this chapter.

3.2 PMJ estimation method

To develop and test the methodology we take the following assumptions:
the cardiac tissue is represented by a 2D, Euclidean domain, Ω ⊂ R2; the
signal propagation is considered isotropic, and the propagation velocity is
constant. According to the previous description of a Purkinje tree, we
assume that the signal enters cardiac tissue through a set S of n PMJs,
with locations sk ∈ Ω, k = 1, . . . , n. The activation time of PMJ k will be
denoted as τk ∈ R.

Given a point p ∈ Ω, its local activation time (from now on LAT) will be
the earliest arrival time of the signal from the source nodes, i.e. PMJs, and
is given by

t(p) = min
k

(
τk +

‖p− sk‖
v

)
, (3.1)

where v is the propagation velocity of the signal through the cardiac tissue.
Figure 3.1 (a) shows a simple scenario with two PMJs represented with
solid circles, and several points with measurements (LATs) represented with
crosses. Three of the measurement points displayed with LATs ti1, ti2 and
ti3, were activated by the same PMJ (indicated with arrows).

Since the Purkinje tree cannot be observed, PMJs will be considered as
unknown, both in their number and location. Our goal is to estimate the
location of the set of effective PMJs that produces the observed measure-
ments, which are the activation times at m given locations. Thus, we state
our problem as

Problem 3.2.1 (PMJ estimation). Given a set P of tuples (pl, tl) ∈ Ω ×
R, l = 1, . . . ,m, where tl is the known activation time at pl, find a set Ŝ of
estimated PMJs and associated activation times (ŝi, τ̂i), i = 1, . . . , r, that
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Figure 3.1: The relationship between PMJs and measurement points. Spatial represen-
tation in a 2D plane with spatial location of PMJs and measurement points (left) and a
space-time representation (right). If a location is activated by a certain PMJ, si, then its
space-time coordinates (pi, ti) belong to a cone with vertex in the PMJ and with slope
defined by the propagation velocity.

minimizes the error function

E =
1

m

m∑
l=1

(tl − t̂l)2 (3.2)

where t̂l is the estimated activation time defined by (3.1), for p = pl and
the min function ranging in (ŝi, τ̂i), i = 1, . . . , r.

This problem admits a trivial solution consisting on taking F = P. If
we apply a general unconstrained optimization method using (3.2) as cost
function we shall find that many of the estimated points are located at
positions belonging to P. Moreover, the existence of this alternative solution
shows that the problem is not convex, since it has several local minima.
Thus we need a method to build F that avoids this unwanted trivial solution.

Let us consider a PMJ with spatial coordinates s ∈ Ω and activation time
τ . And let us consider a point p that is activated by the propagation of the
signal from s. The activation time t of point p must meet the equation

‖p− s‖ = v(t− τ). (3.3)

Equation (3.3) defines the positive half of a cone (see Figure 3.1, right, for
a two dimensional representation of this idea) with its vertex in (s, τ); thus,
for any point activated by s, the point (p, t) ∈ R3 belongs to that cone.
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Figure 3.2: Two different measurement point sets, P, and their corresponding Delaunay
triangulations. (Left: |P| = 100, right: |P| = 1000).

Given three points activated by the same PMJ, if a cone can be found in
R3 containing their coordinates in the form (pl, tl), then PMJ coordinates
(s, τ) must be located at the cone’s vertex. Moreover, since the activation
of the point p is the result of a signal propagation, then its activation time
t will always be greater than the activation of the PMJ that caused it, τ ≤ t
(it would be equal only if p = s).

To construct a set of candidate PMJs, we are going to use these properties.
As a first step in our method we build a Delaunay triangulation D for
the set of measured points, considering their spatial coordinates. Such a
triangulation is the construction of an irregular mesh that takes the points
as vertexes and in which all the faces are triangles [83]. Figure 3.2 shows the
Delaunay triangulations for the smallest and largest sizes of P, considered
in our experiments.

Let T be the set of indices that define the Delaunay triangulation

T = {{k1, k2, k3} : The triangle pk1 ,pk2 ,pk3 belongs to D}.

Given a triangle i = {i1, i2, i3} ∈ T , formed by the measurement points,
pi1 , pi2 and pi3 , with activation times, ti1 , ti2 and ti3 , we look for a solution
fi = (ŝi, τ̂i) ∈ R3 of the system of nonlinear equations

‖pi1 − ŝi‖ − v(ti1 − τ̂i) = 0,

‖pi2 − ŝi‖ − v(ti2 − τ̂i) = 0,

‖pi3 − ŝi‖ − v(ti3 − τ̂i) = 0. (3.4)
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Moreover, since a valid PMJ will have an activation time earlier than the
LAT of the three measurements points that are used to find it, namely

τi ≤ tij , j = 1, 2, 3, (3.5)

the solution we find must also meet this constraint.

3.2.1 Algorithm description

To extract a set Ŝ containing valid PMJs belonging to the hidden tree, we
have designed Algorithm 1. For each triangle i ∈ T included in the Delaunay
triangulation D we look for a valid tentative PMJ, fi. This step, correspond-
ing to line 5 in the algorithm, consists of the solution of the system (3.4).
By means of a change in the reference system, and a transformation to polar
coordinates, this system can be solved analytically.

Algorithm 1 PMJs estimation

1: Input → P {Set of measurement points with activation time}
2: Ŝ ← ∅ {PMJs}
3: T ← delaunay(P) {Build a Delaunay triangle mesh}
4: for all tri ∈ T do
5: fi ← find source(tri) {The solver finds out a local solution from the

triangle tri }
6: if is valid(fi) then
7: Ŝ ← Ŝ ∪ fi
8: end if
9: end for

10: Output ← Ŝ {Set of estimated PMJs }

The previous step can lead to a false PMJ. This will happen when three
points that form a triangle in the Delaunay triangulation were not activated
by the same real PMJ. Under this situation, a candidate point fi assumes
that the three points were activated from a single source, while they were
actually activated by two or three sources. To reduce the number of spurious
PMJs, fi needs to be validated. The validation function, called in line 6 of
the algorithm, checks four conditions and only accepts the candidate PMJ
if all of them are met.

The first condition checked is the verification that the candidate PMJ is
consistent with the three measurement points that have generated it, by
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means of the inequalities (3.5). The second condition checked is whether
the estimated PMJ is inside the Delaunay triangulation T . Otherwise, it
is considered to be outside the domain of the problem and is disregarded.
The third condition requires that the estimated PMJ is compatible with the
backward eikonal problem associated to the triangle where the estimated
PMJ is located in. This criterion has already been used by other authors [72]
and states that a measurement point cannot activate later than the traveling
wavefront produced by the closest PMJ. That is, the activation time of the
estimated PMJ must be consistent with the nearby observed activation
times. Thus, we request that the vertexes of triangle k containing fi =
(ŝi, τ̂i) meet the condition

tkj ≤
‖ŝi − pkj‖

v
+ τ̂i + ε, j = 1, . . . , 3 (3.6)

where ε is a tolerance parameter that accounts for possible numerical errors.

The last condition requires to find a new measurement point satisfying
equation (3.4). Therefore, the total number of measurement points that
must be compatible with a candidate PMJ to validate it is 4: 3 points from
the triangle in T that generated the candidate PMJ plus an additional one.

3.2.2 Discussion of the method

The proposed method takes as an input the set P of measurement points in
Ω with their associated activation times, (pk, tk). The detection of a given
PMJ, si ∈ S, depends on the fact that at least one triangle of T is contained
in the region

V (si) = {x ∈ Ω : ‖si − x‖+ vτi ≤ ‖sk − x‖+ vτk, ∀(sk, τk) ∈ S} , (3.7)

which is the additively weighted Voronoi region associated to si [83]. For
the sake of brevity we shall denote it by Vi. In the absence of further
assumptions about the data acquisition procedure, we will consider that the
spatial locations of measurement points are a random sample of a uniform
distribution on Ω. As a consequence, the probability that a point lies on a
given region is proportional to its area. The question that arises is whether
the probability of not detecting a given PMJ can be made arbitrarily small
by increasing the number of measurement points.

Let si be a PMJ with activation time τi. The area of Vi depends on the
relative position and activation time of si respect to the other PMJs. If there
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exists some sj with τj < τi such that ‖si − sj‖ < τi − τj , then the signal
from sj will arrive in si before it activates. As a consequence, V (si) = ∅
and no tissue will be activated from si, making it undetectable. A similar
condition appears when there exists some PMJ sj , with τj < τi, such that
‖si− sj‖ = τi− τj . In this case, the region activated by si is a line segment
that starts at si and it spans in the opposite direction from sj . Since the
Voronoi region of si has, in this case, null measure, it is undetectable by
our method. Anyway, this PMJ is indistinguishable from sj and, it has
no effect on tissue activation (if we remove it, the activation time at any
location does not change due to sj).

These layouts are not relevant to our goal, since the activation map is not
affected at all by PMJs that fulfill any of these conditions. They are not
effective, in the sense that they do not change the activation time at any
location of the heart tissue. In what remains, we will call effective PMJ to
any signal source point that is not in any of the two cases described above.
That is, a PMJ with location si and activation time τi is said to be effective
if there is no other PMJ, sj with τj < τi, such that ‖si − sj‖ ≤ τi − τj . In
this chapter, we focus only on the estimation of effective PMJs.

Let si be an effective PMJ. For si not to be detected, it is necessary that
there is no triangle of the Voronoi triangulation V with its three vertexes in
Vi. This would happen either if there is less than three measurement points
in vi or if, having three or more points in Vi, they would not form a triangle
in V.

Let us first consider the probability that no three points fall in Vi. Let
Ai be the area of Vi and A the area of the whole problem domain Ω, the
probability that a single point is in Vi will be pi = Ai/A. If a set P ⊂ Ω with
m ≥ 3 random points is generated, we can consider the random variable
Xi = |{(p, t) ∈ P : p ∈ Vi}|, where | · | denotes cardinal, which follows
a Binomial distribution Xi ∼ B(m, pi). The probability that less than 3
points are in Vi is, then,

P (Xi ≤ 2) = (1− pi)m + pi(1− pi)m−1 + p2
i (1− pi)m−2, (3.8)

which tends to 0 as m→∞.

Next, we focus in the case when we have three or more points inside Vi
and they do not form a triangle in V. An example of a set of measurement
points that leads to this situation with three points is shown in Figure 3.3.
Let pi1,p

i
2, . . . ,p

i
k be a set of k ≥ 3 measurement points which are inside
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Figure 3.3: A situation with a Voronoi region, Vi, containing three measurement points,
pi
1, pi

2 and pi
3, which do not form a triangle of the Delaunay triangulation.

Vi but do not generate any triangle in V, and let H be the area of the
convex hull formed by them. If any new measurement point is added which
is contained in H, then the new set of points in Vi will form two or more
new triangles in V [83]. Since H is nonzero with probability 1, following the
previous reasoning, we can see that the probability of this not happening
tends to 0 as m grows.

From previous analysis, it is derived that the probability of not detecting
a given PMJ tends to zero if we are capable of increasing the number of
measurement points. An additional property that arises from this discussion
is that, the bigger the area a given PMJ activates, the higher the probability
of being detected by the algorithm. Since in many clinical situations the
interest is in knowing the origin of the activation of a given tissue region,
this indicates that our method will detect the most relevant PMJs first with
higher probability.

Another possible source of error in the algorithm is the estimation of a PMJ
that actually is not in S. This can happen if we estimate a PMJ from a
triangle with vertexes belonging to different Voronoi regions. However, as
discussed in Section 3.2.1, before a tentative PMJ is accepted several valida-
tions tests are performed, which reduce the number of spurious estimations.

3.3 Performance Evaluation

To evaluate our approach, we have generated several scenarios consisting
of a simulated Purkinje tree structure along with a set of measurement
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Figure 3.4: Example of generated trees. A) 1 main branch with depth 6 (B1D6), B) 3
main branches with depth 2 (B3D2)

points uniformly distributed. In this section we describe the experimental
methodology used and discuss the results. We provide several performance
measurements for our method, together with a comparison with the method-
ology proposed by Cardenes et al. [71].

3.3.1 Methodology

The test trees representing the cardiac conduction system are built proce-
durally. We use a recursive algorithm that, at every level, creates two new
branches at the end of each branch that was built in the previous level.
Every new branch is perpendicular to the parent branch. The leaf nodes
of the tree are the PMJs, which represent sources of electrical signal in the
myocardium. The density of PMJs is indirectly controlled by the depth of
the branch recursion. Branch lengths are generated following a normal dis-
tribution with parameters obtained from [7]. Figure 3.4 shows two examples
of trees used in our experiments.

We generate two types of scenarios: i) trees with a single main branch,
and ii) trees with three main branches connected as depicted in Figure
3.4. For each scenario type, we consider 3 different recursion depths for
generating tree subbranches: depth 2, depth 4 and depth 6. We will label
every configuration with letter B followed by the number of branches plus
letter D followed by the depth used to generate it. E.g., a tree with 3
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branches and depth 4 will be named B3D4. Figure 3.4 (A) shows a tree
with one branch and recursion depth of 6 (B1D6). Figure 3.4 (B) shows a
tree with three branches and a recursion depth of 2 (B3D2).

Given a simulated Purkinje tree, we firstly place a set of measurement points
in the domain, uniformly distributed, with a number of points varying from
100 to 1000 in steps of 100. Secondly, the LAT at each measurement point
is computed, by propagating the electrical signal along the tree. This prop-
agation is done first from the tree root up to the PMJs and then from the
PMJs to each sensor through the shortest path, using Equation (3.1). The
signal propagates within the tree around three times faster than on the my-
ocardial tissue domain. The experimental process can be summarized as
follows: i) Generate an artificial tree with a set of PMJs as source points,
S; ii) Generate a set P of measurement points uniformly distributed; iii)
Propagate the signal from S to P and set the corresponding activation times
for every point in P; iv) Run the algorithm proposed in Section 3.2.1 and
obtain an estimation Ŝ; v) Compare the solution S with the estimation Ŝ
and evaluate its quality.

In Figure 3.5, the results of the algorithm can be observed for two dense
scenarios (B3D4 and B3D6), with two different measurement points den-
sities. In the figure, measurement points are represented by crosses. The
blue dots represent the PMJs that have been found, while the red dots rep-
resent PMJs that have not been found in the solution by our algorithm.
The set of all measurement points which are activated by a common PMJs
is represented by a polygon enclosing them.

To evaluate these results we consider two approaches. First, we compare
the generated PMJs S (considered as the true unknown cardiac conduction
system) and the estimation Ŝ provided by our algorithm. This will give us
information about the ability of the algorithm to find the actual PMJs in the
simulated scenarios. This quality measurement is only available because we
have the actual (generated) PMJs of the CCS. When the method is applied
to clinical data, real PMJs will not be available for comparison. Then, as
a second error measure we compare the activation map generated by Ŝ to
the activation times measured in the locations of P. Following previous
works [69, 72], we use the maximum absolute error and the mean absolute
error.

To be able to understand the quality of the results, it is important to define
what is an acceptable error in our problem. The physiological signal prop-
agation process that motivates this work starts when the electrical signal
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(a) (b)

(c) (d)

Figure 3.5: Solutions provided for scenario B3D4 (top) and B3D6 (bottom) with (a,c)
500 measurement points and (b,d) 1000 measurement points.

enters the CCS and ends when the whole cardiac tissue has been activated.
In our synthetic cardiac tissue, this process cannot last more than 134ms,
which corresponds to the diameter of the domain divided by the propagation
velocity of the signal in the tissue. It is also important to know that in the
literature an error below 5ms is considered a highly accurate LAT [84, 85].

3.4 Results and discussion

The results of the simulation study, including all the scenarios, are summa-
rized in Figure 3.6. The number of sources, i.e. PMJs, estimated for the
scenario with a single main branch is displayed in Figure 3.6 (a,c,e), while
Figure 3.6 (b,d,f) shows the PMJs estimated using three main branches.
Every row represents a different recursion depth, for depths 2, 4 and 6.
Each plot shows the number of PMJs in the scenario (F REAL), the num-
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ber of PMJs that can be truly estimated (F DET) or effective sources, the
total number of PMJs estimated by the algorithm (F EST) and finally, the
number of PMJs correctly estimated (F OK).

In Figure 3.6, there is a small difference between the values of the estimated
(F EST) and correctly estimated (F OK) number of PMJs which indicates
that some false positives are obtained (estimated PMJs in Ŝ that were not
in S). In configurations where measurement points are not activated by the
same PMJ, but produce a feasible candidate we obtained false positives.
Although several validation tests are performed during the algorithm, as
discussed in Section 3.2, the results show that the validation function does
not detect all of them. In scenarios B1D2, B1D4 and B3D2 the algorithm
obtains nearly all PMJs when it has enough measurement points. However,
when the density of PMJs increases the problem becomes more complex,
since these points tend to be clustered, as Figure 3.5 shows.

Figure 3.7 (a) shows the number of PMJs estimated versus the number of
real PMJs for a fixed number of 1000 measurement points. Notice that each
point in the plot corresponds to one scenario (B1D2, B3D2, B1D4, B3D4,
B1D6 and B3D6) with it corresponding number of PMJs. In the first four
scenarios, the number of estimated PMJs increases with the total number
of PMJs. However, this does not occur in the last two scenarios (B1D6,
B3D6) where the number of found PMJs decreases. This behaviour is also
amplified because we have set a fixed number of measurement points. As
a consequence, the ratio between measurement points and PMJs decreases,
making it more difficult to build a complete estimate.

Despite these apparent limitations, Figure 3.7 (b) shows how the mean of
the absolute error associated to each scenario decreases rapidly with the
measurement points and from 500 measurement points and on, it stays
below 2ms for all scenarios. This behavior of the error reveals that the
correctly estimated PMJs are the most significant ones. As can be seen in
Figure 3.5, the PMJs which are properly detected are close to the border of
the region occupied by the tree, while the inner PMJs are those missed by
the algorithm. The signal emitted by these inner points is quickly masked
by the points at the border of the tree and they are mainly non-effective
PMJs. From these results, we conclude that our algorithm is capable of
finding most of the effective nodes of the Purkinje system.

To compare our method with previous approaches, we have implemented the
method described in [71] based on the gradient of the activation time con-
sidered as a differentiable function of the location. In Figure 3.8 we present
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Results for (a,c,e) a single main branch, and (b,d,f) for three main branches.
Every row corresponds to a different recursion depth. The used recursion depths are
(from top to bottom) 2, 4 and 6. The results are averaged for the different instances of
each scenario, and plotted with its standard deviation. Figures are not at the same scale,
since the number of PMJs varies for the different scenarios. See the text for details on
the figure contents.
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Figure 3.7: (a) Number of PMJs detected with respect to the total number of PMJs with
1000 measurement points. (b) The mean of the absolute error (in milliseconds) for the
different scenarios considered.

the two extreme scenarios, B1D2 and B3D6, solved with this method, in
Figure 3.9 (a) we show the total number of estimated PMJs and the num-
ber of correctly estimated PMJs and in Figure 3.9 (b) we can see the mean
of the absolute error for the different scenarios. It is remarkable that in
the simplest scenario, B1D2, the method performs poorly, many PMJs are
detected but only few are correct, producing a high absolute error. Nev-
ertheless, with the most complex scenario, B3D6, the number of correctly
estimated PMJs is similar to that obtained with our method.

In summary, our method has shown a higher accuracy at estimating PMJs
and it performs well with low and high densities of PMJs. On the other
hand, the gradient method has obtained lower errors for scenarios with high
densities of PMJs and low density of measurement points.

3.5 Conclusions

We have developed a method to estimate the sources of electrical activation
from a set of random sampled acquired from a 2D tissue sheet. The method
is capable of locating most of the triggering points in scenarios with a fair
ratio between terminals and measurements. When the ratio is low, the
method can locate the terminals with major impact in the overall activation
map. Mean absolute errors obtained indicate that solutions provided by the
algorithm are useful to accurately simulate a complete patient ventricular
activation map.
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(a) (b)

Figure 3.8: Estimation results for scenarios B1D2 (a) and B3D6 (b) using the gradient
method.

Figure 3.9: Results for the gradient method: (a) Number of PMJs detected with respect
to the total number of PMJs with 1000 measurement points. (b) The mean of the absolute
error (in milliseconds) for the different scenarios considered.
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Abstract – The reconstruction of the ventricular cardiac conduction sys-
tem (CCS) from patient-specific data is a challenging problem. High-res-
olution imaging techniques have allowed only the segmentation of proxi-
mal sections of the CCS from images acquired ex-vivo. In this chapter,
we present an algorithm to estimate the location of a set of PMJs from
synthetic simulated EAMs, as those acquired during radio-frequency abla-
tion procedures. The method requires a mesh representing the myocardium
with local activation time measurements on a subset of nodes. We calculate
the backwards propagation of the electrical signal from the measurement
points to all the points in the mesh to define a set of candidate PMJs,
that is iteratively refined. The algorithm has been tested on several PKN
configurations, with simulated activation maps, subject to different levels
of Gaussian noise. The results show that the method is able to estimate
a set of PMJs that explains the observed activation map for different syn-
thetic PKN configurations. In the tests, the average error in the predicted
activation time is below the amplitude of the Gaussian noise applied to the
data.

This chapter is adapted from: Barber F., Lozano M., Garcia-Fernandez I., Sebastian
R. Automatic Estimation of Purkinje-Myocardial Junction hot-spots from Noisy Endo-
cardial Samples: A simulation study. International Journal for Numerical Methods in
Biomedical Engineering, Vol. 34(7):e2988, pp. 1 - 17, 2018.
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4.1 Introduction

In Chapter 3, we have proposed a method to estimate a set of activation
points that are compatible with an observed activation on a simple, flat
domain Ω. In order to apply this method to the problem of patient-specific
PKN estimation, we need to extend the previous algorithm to a domain that
properly represents the surface of the human ventricle. In this Chapter we
generalize the ideas presented in Chapter 3 to make them suitable for a
ventricle represented by a triangle mesh that can be obtained from Medical
Image.

It is worth to mention that a proper estimation of the PMJs is necessary in
a computer model of the heart not only to reconstruct the structure that
connects them. Besides the simulation of the normal activation, PMJs play
a very relevant role in a number of pathologies such as left bundle branch
block, or sustained ventricular tachycardia macro-reentries [58, 32, 86, 30] in
which the PKN is retrogradely activated and used to transport the electrical
impulse [61].

Previous studies in the literature have never tried to estimate the location
of PMJs from EAM data. Instead, they look for PMJs that were in-line
with local observations in a EAM, such as local minima [71], which does
not include all the potential sources of activation. In other studies, random
PMJs were placed, and subsequently moved in a limited area to limit the
error in the measurements points, but never with the goal of looking for
actual PMJ locations [69].

In this chapter, we present a novel method to estimate the location of PMJs
from simulated EAMs directly on a 3-dimensional realistic representation
of the ventricles extracted from MRI. The algorithm can track back the
activation sources on the endocardium and approximate their location and
corresponding activation times. The estimation method explicitly considers
the uncertainty associated to the samples used to estimate the PMJs. These
errors may arise from the positioning error (tip of the recording catheter)
of the acquisition system or the error in annotating the local activation
times (LATs) from the bipolar and unipolar signals. They are introduced
by including Gaussian noise in the sampled LAT maps.
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4.2 Material and methods

We will consider synthetic PKN scenarios on 3-dimensional domains, that
represent the ventricular-endocardium surface. Note that since the PKN
is comprised within the endocardial layer, we do not need to consider the
myocardial volume in our analysis. In our method, the inputs are the local
tissue activation times at a set of scattered measurement points. The acti-
vation time and location of measurement will be altered by some random
error with known standard deviation σ. From this information, our goal
will be to estimate a set of electrical source points on the mesh (i.e. PMJs)
that explains the observed activation times.

For the purpose of our study, the ventricular endocardium can be considered
as a surface embedded in R3 and, in our computational approach, we will
use a homogeneous simplicial 2-complex to discretize the surface of the
endocardium. This corresponds to the kind of data that can be obtained
from medical image in the form of a triangle mesh. In this domain, we
will consider the distance defined in Ω as the minimum length of the piece-
wise linear curves contained in Ω connecting two given points, that will
be computed using a Fast Marching algorithm [87]. Under this scenario,
the analytical approach that was used in Chapter 3 is not available and,
thus, we need to generalize it. In order to do this, we will turn around
the approach; in Chapter 3 we took measurement points and sought for the
possible source, and now we are going to take potential sources and evaluate
their compatibility with the data. We will start with a characterization of
the PMJs, and develop the method upon it.

4.2.1 PMJ characterization

We assume that the activation of the ventricular CCS triggers at certain
(unknown) source points, i.e. PMJs, the tissue depolarization that spreads
through the endocardial surface at a speed v (we neglect the transmural
electrical propagation). At a given location p ∈ Ω, we define its activation
time as

t(p) = min
s∈S

(
τ(s) +

d(p, s)

v

)
, (4.1)

where S is the set of source points, τ(s) the activation time of source s ∈ S
and d : Ω × Ω → R is the aforementioned distance on Ω. Note that the
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activation time for each source is specific. We will say that s has activated
a location p ∈ Ω if the minimum in (4.1) is achieved for s.

We consider a finite set P ⊂ Ω representing N measurement points pi, i =
1, . . . , N . For every measurement point, pi ∈ P, its measured Local Ac-
tivation Time (LAT) is given by ti = t(pi) + Z, where Z is a Gaussian
random variable Z ∼ N(0, σ2). For a source point, s we define the set
A(s) = {pi : pi has been activated by s}, and the set of indexes IA(s) =
{k : pk ∈ A(s)}. Indeed, these sets are defined for any point x ∈ Ω, even
if x /∈ S, but A(x) = IA(x) = ∅ if x has not activated any measurement
point.

Let us now consider an arbitrary point x ∈ Ω. If x is actually a source
point, and pi ∈ A(x) has activation time ti, then, by propagating the signal
backwards from pi to x, the activation time for x can be estimated as
ai(x) = ti − d(pi,x)/v. This estimation will have a Gaussian error due to
Z. If we propagate the signal from every point in P onto x, we will have
the set T (x) = {ai(x) : i ∈ 1, . . . , N}. This set can be partitioned into the
two disjoint subsets T (x) = TA(x) ∪ TNA(x), where

TA(x) = {ai(x) : i ∈ IA(x)}; TNA(x) = {ai(x) : i /∈ IA(x)}. (4.2)

For all the time estimations ai ∈ TA(x), coming from points activated by x,
we have that

ai(x) = ti −
d(pi,x)

v
= τ(x) +

d(pi,x)

v
+ Z − d(pi,x)

v
= τ(x) + Z, (4.3)

where τ(x) is the actual (unknown) activation time of x. Thus, all these
values are samples of the same Gaussian random variable ai ∼ N(τ(x), σ2).

On the contrary, for any value ai ∈ TNA, the associated value of ti depends
on the source s that activated pi and on the distance from pi to s

ai(x) = ti −
d(pi,x)

v
= τ(s) +

d(pi, s)

v
+ Z − d(pi,x)

v
(4.4)

and, as a consequence, the values of these ai are random variables with
mean values µi that will not be, in general, equal. The values ai ∈ TNA
will have an additional property; since point pi /∈ A(x), it has not been
activated by x, and we have by definition of ti,

ti ≤ τ(x) +
d(pi,x)

v
, (4.5)
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Figure 4.1: Distribution of the values of ai for a simulated scenario. Left histogram shows
all the values of ai ∈ T (s) at a source point s in a scenario with a single source point.
Central histogram shows all the values ai ∈ T (s) at a source point s in a scenario with
two source points. Right histogram shows the values ai ∈ T (x′) at a point x′ that is
not a source point. Noise in all scenarios was included using a Gaussian with a standard
deviation of 1.5.

and, then, for the value of ai we have that

ai(x) = ti −
d(pi,x)

v
≤ τ(x) +

d(pi,x)

v
+ Z − d(pi,x)

v
= τ(x) + Z (4.6)

and all ai ∈ TNA(x) are Gaussian random variables with mean µi ≤ τ(x).

As stated earlier, this development is valid no matter whether x is a source
point or not. But in the former case, the set TA(x) is empty and all the
values in T (x) are variables with mean values given by Equation (4.4). To
define our method, we propose a characterization of source points based on
this property; our goal is to find those points s ∈ Ω for which the set TA(s)
is not empty.

In Figure 4.1 we show the distribution of values of T (x) in different sim-
ulated scenarios. The leftmost histogram shows the distribution of T (s)
at the source point s, for a scenario with a single source point, showing a
frequency distribution consistent with a normal distribution. In the middle
figure, we show the frequency distribution of T (s) at a source point s, in
a scenario with two source points, showing a tail on the left side of the
histogram. This tail corresponds to the values in TNA(s), which in this case
are measurement points activated by the second source. The rightmost his-
togram shows again the distribution of the whole set T for a non-source
point, x, in the scenario with two source points. Since x has not activated
any measurement point TA(x) = ∅ and the distribution shown actually cor-
responds to the values of TNA(x).

This characterization identifies those source points that have activated a
minimum number of measurement points so that it is possible to observe
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Figure 4.2: Simplified grid scenario. Measurement points are defined by the position pi
and their LAT ti. Distance between measurements points and any point of the grid, di,
is obtained by the Fast Marching algorithm.

them as a peak in the histogram, see Figure 4.1 central panel. Indeed, we
consider as non-source any point where the set TA is not higher than a given
threshold. This property makes it possible to identify sources that explain
the observation P. But the total number of sources that can be identified
depends on the size and distribution of this observation. This issue will be
discussed in the results section.

4.2.2 Algorithm description

As we said before, in our numerical approach, the domain Ω is a homoge-
neous simplicial 2-complex that corresponds to a discretization of the surface
of the endocardium. The set of measurement points P is formed by some
of the vertices of this triangular mesh. This constraint is motivated by the
fact that in a real clinical setting, the mesh is built from the measurement
points P and therefore these are always nodes of the final mesh. Every
measurement point pi ∈ P has a local activation time, ti (see Figure 4.2).
Our method will result in a set S of estimated source points that will also
be vertices of the mesh.

We propose a method with two main steps, described in Algorithm 2 and
Algorithm 3. In the first step (Algorithm 2), we look for a set of PMJ
checking if a mesh point x can be a source point according to the charac-
terization described in Section 4.2.1 and the measured data. In a second
step, once a set of estimated sources has been built, we will reduce the num-
ber of estimated PMJs by removing points that are in the neighborhood of
other estimated PMJ and that have a small influence on the activation map
prediction. This step is described in Algorithm 3.
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At the beginning of the first step, given the set of all measurement points
pi ∈ P, we compute the distance between every point in the triangle mesh
M and every point in P. To do so, we simulate the propagation of a signal
from every point in pi ∈ P by solving the isotropic Eikonal equation [88]
as in [72] by a fast marching algorithm [87]. This distance computation is
performed only once, before we start the estimation of the set S. Note that
since we are using the isotropic Eikonal equation, distances and activation
times on the mesh nodes are proportional. Figure 4.2 shows a simplified
scenario, where the discretization is represented by a regular grid on a flat
domain, and the distances di are obtained for every pair formed by a mea-
surement point and grid point.

Algorithm 2 Estimation of candidate electrical sources from measurement
points

1: for all x ∈M do
2: T ← [ai(x) : ai(x) = ti − d(pi, x)/v ∀(pi, ti) ∈MeasurePoints]
3: T ← sort(T , decreasing)
4: Tok ← T [1 : n] : Test(T [1 : n])
5: if (n ≥ 3) then {Focus candidate}
6: Add (x, Tok) to listCSP
7: end if
8: end for
9: Output ← listCSP

Using the ti of all the measurement points pi ∈ P and the computed dis-
tances, we estimate the backwards activation time for each point x in the
mesh, ai(x) (lines 2 and 3 in Algorithm 2). As a result, we have the set T (x)
for every point in the discretized domain. Next, the method will examine
this set for every point x ∈ M , to decide whether it can be considered a
source point, i.e. if we have a nonempty set TA(x) for each point x ∈ M
(line 4 of the pseudocode). We know, from equation (4.6), that the vari-
ables in TA(x) have a common mean that is higher than any mean values
of the variables in TNA(x). Thus, we will take the n largest values of T (x).
Let Tn be the subset of T (x) with the n largest values. If the values in
Tn have been generated by a common Gaussian distribution, with standard
deviation σ and unknown mean value τ(x), we can assume that Tn ⊆ TA.

This test will be performed for increasing values of n, until we reach the one
for which the times in Tn set are not consistent with a Gaussian distribution.
If the test indicates that Tn ⊂ TA(x) for at least, n = 1, 2, 3, then we
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will consider that TA(x) 6= ∅ and as a consequence, x ∈ (S) (lines 5-7 of
Algorithm2). The reason why three positive tests are requested is that at
least three measurement points are required to exactly compute a source in
absence of noise in the data as shown in Chapter 3 [73]. This value could
be increased, to require a higher value of n before a point is considered to
be a source, reducing the number of estimated points.

The main decision in Algorithm 2 relies on the test to decide whether a set
of values Tn is a sample of a Gaussian distribution (line 4). The natural
approach to perform this test would be a hypothesis contrast, or a normality
test. However, in our problem, the size of the sample will be, in general,
small (n < 10) since the total number of measurement points will be of
hundreds or, in the best cases, of a few thousands. Depending on the
number of PMJs in the scenario, the value of |TA| will be rather small for
most of the source points. Taking into account these considerations, we
find that most tests will not meet the requirements to perform a significant
hypothesis contrast. In turn, we will focus on the fact that we know the
standard deviation, σ, of the values in |TA| and we set the following criterion
to test if Tn ⊂ TA. Given a point x ⊂ M and an n ≥ 3, we compute the
mean of the ai(x), denoted as t̄n, and we consider that the point x is a
candidate source point, x ∈ S, if

max
ai∈Tn

(|ai − t̄n|) ≤ ασ,

with α a parameter to determine the sensitivity of the decision and σ the
standard deviation of the measurements, defined in Section 4.2.1. If the
point x meets this criterion, it is stored in the list listCSP and it is assigned
the activation time τ(x) = t̄n. Along with each possible source point, we
store the largest value of n for which we obtain a positive result and the set
of points pi associated to the values in Tn.

As a result of Algorithm 2, we have a list of Candidate Source Points (CSP)
which represents a first estimation of S. This first estimate will be denoted
as S0. Figure 4.3 shows two outputs of Algorithm 2. In both examples two
PMJs, represented by stars, are shown. The set of red circles corresponds to
the estimated CSPs, generated from the measurement points (small crosses).
The figures show that Algorithm 2 gives a resulting list with many false
positives. From Eq. (4.4), it can be seen that for a point x that is near a
source point s, the terms involving distance are similar in magnitude and
will almost cancel each other. As a consequence, points that are near to
source points are also likely to be detected as such.
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Figure 4.3: Candidate Source Points (red circles) after the application of Algorithm 2 for
two real sources (stars) with a deviation in the error of 0.5ms (Left) and 1.5ms (Right).
Measurement points are represented with small crosses. The signal propagates from the
lower left corner of the image to the upper right corner. It can be observed that spurious
candidate sources appear, specially near the actual source points.

To reduce the number of false positives, we apply a second step, described
in Algorithm 3. Starting from listCSP , we process the points again to
remove spurious points and obtain a more accurate set of PMJs. In this
second step, every CSP in S0 is given a score that is intended to assign high
values to actual PMJs and low values to spurious ones. The function we
use to score the candidates is −τ(x). The motivation for this function is
that PMJs are activated through the Purkinje network, where propagation
speed is faster than in working myocardium and, as a consequence, CSPs
with a later activation time are more likely to be false estimates. Therefore,
the set of CSPs is ordered according to this score so that we first assess the
elimination of those points with lower score value (higher activation time).
For each point, we evaluate if the resulting set S still explains the observed
activation properly, that is with similar or lower error.

We start the second step of the method by computing the estimated ti of
every measurement point p ∈ P using equation (4.1). This ti is computed
using the estimated sources, and allows us to assign to every CSP the list
of the measurement points it has activated. The value of the score is also
computed for every CSP (line 1 of Algorithm 3, in CalculateScore). Then,
we take the CSP, x ∈ S0, with the lowest score value, we remove x from the
set S0 and try to reassign the set of points it activated, A(x), as follows.
Given a point pi ∈ A(x), we consider ŝ ∈ S0, with ŝ 6= x, and we take the
backwards electrical propagation ai(ŝ) that was computed in the first step of
the method. We compute the distance from ai(ŝ) to the estimated activation
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time δi,ŝ = |τ(ŝ) − ai(ŝ)|. For every point pi ∈ A(x), we will say that it
can be reassigned to source ŝ if δi,ŝ ≤ βσ, where β > 0 is a parameter that
determines how restrictive we are to allow a point to be reassigned. Once
this information has been computed for all the measurement points, we will
establish that the candidate x can be removed if all the points in A(x) can
be reassigned to another source in S0 − {x}. This evaluation is performed
by procedure CanBeReassigned in line 5 of Algorithm 3, returning true
only if all the points in A(x) can be reassigned within the tolerance defined
by parameter β. The method Reassign in line 6 takes the measurement
points in A(x) and reassigns them to the best remaining candidate sources
in the list. If the point x cannot be removed, then it is inserted again in S0.
This process is repeated for all the CSPs, in increasing order of the score.
Once this process is completed for all the points x ∈ S, we will have a new
set of estimated source points, S1 ⊆ S0. The complete process is repeated
to build a sequence of estimations S0 ⊇ S1 ⊇ · · · ⊇ Sk until we reach an
iteration in which Sk = Sk+1, which means that no point in Sk can be
removed. The set of source points resulting from this process, Ŝ = Sk, is
taken as the final estimation of S. This process can also be stopped after a
fixed number of iterations. Indeed, according to our experiments, most of
the CSP removal is done in the first iteration.

Algorithm 3 CSP reduction

1: listCSP2← CalculateScore(listCSP )
2: listCSP2← sort(listCSP2, key = score)
3: repeat
4: changed← False
5: for all (x, A(x)) ∈ listCSP2 do
6: if (CanBeReassigned(A(x), listCSP2− {x}) then
7: Reassign(A(x), listCSP2)
8: listCSP2← CalculateScore(listCSP2)
9: changed← True

10: end if
11: end for
12: until not(changed)
13: Output ← listCSP2
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4.2.3 Experiments

We have set up a series of experiments to test the proposed methodology.
Since the new PMJ estimation method intends to generalize the method of
Chapter 3, we start our evaluation on an Euclidean 2-dimensional domain
where we can compare them. Then, to test the methodology in a realistic
scenario, we use a 3-dimensional model of the left ventricular endocardium
that includes different complex computer generated Purkinje networks. The
ventricular mesh has been obtained from a virtual population of segmented
hearts built from medical imaging of real patients [89]. The human ven-
tricular model has the following dimensions: 8.65 cm (long axis) x 5.22
cm (short axis). The endocardial mesh, where the Purkinje networks are
deployed, is made of 42144 triangular elements and 21189 nodes.

4.2.3.1 Experiments on Euclidean, 2-dimensional scenarios

The set of 2-dimensional planar scenarios reproduce those described in
Chapter 3 and in [73] to test the algorithm presented therein to estimate
a set of PMJ from measured data. In that work, LATs were free of error.
The main goal of this test is to evaluate the performance of the new method
proposed here, compared to the algorithm described in Chapter 3 applied
to noise free data.

In these tests, the scenarios are rectangular regions with an area similar
to that of a human left ventricle, and we use simplified versions of a PKN
in the ventricle, based on a binary tree. The trees are built randomly
by creating a number of main branches, and building ramifications of this
branch up to a given depth d. A higher value of d leads to more PMJs
distributed around the main branch. The trees have been built using four
different configurations, with ten random trees of each type. Two of the
configurations have a single main branch, and use depth d = 2 and d = 4
in the sub-branch generation. The other two configurations consider three
main branches, spanning parallel to each other, and with the same values
for d. In Figure 4.4 two of the scenarios are shown: B3D2 with 34 PMJs
and B3D4 with 130 PMJs. For further details on the procedure to build the
different tree models see 3 and [73].
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Figure 4.4: 2-dimensional scenarios with random set of measurement points (small
crosses), real sources (stars) and location of estimated source points (red circles). Stan-
dard deviation in the measurement error of 0.5ms. Left: Example of B3D2 scenario with
34 PMJs. Right: Example of B3D4 scenario with 130 PMJs. Units are in mm.

4.2.3.2 Experiments on 3-dimensional human ventricles

The second set of tests is performed on a left ventricular mesh generated
from a virtual population constructed from a set of segmented medical im-
ages. On these 3-dimensional models we built synthetic PKNs using the
stochastic method described by [7]. A total of 20 different scenarios with
diverse PKN morphology, number of PMJ (varying from 213 to 1228), and
heterogeneity in PMJ density were built. These scenarios will be referred to
as PK1,. . . , PK20. The activation maps generated by Purkinje trees built
with this method were already validated in [7], by analyzing the activation
sequence and the total activation times. Figure 4.5 shows the structure
and location of PMJs for three different PKNs with low, medium and large
amount of PMJs. The real LAT for the PMJs was calculated considering the
activation of atrio-ventricular node at t = 0ms and a constant conduction
velocity in the PKN of 3m/s.

For each scenario we studied the effect of the number of measurement points
by placing different sets with an increasing density (100, 250, 500, 1000, 1500
and 2000) uniformly distributed as in a real EAM acquisition. To make the
results independent of the measurement point locations, for each set size
we randomly sampled (Mersenne twister random engine) the endocardium
10 different times. Results are provided for the average of the 10 different
sampling sets. The correct LATs for these measurement points are calcu-
lated propagating a signal from the PMJs to all the computational nodes in
the domain, by solving the isotropic Eikonal equation using a fast marching
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Figure 4.5: Purkinje tree models developed with an increasing number of PMJs and PMJ
density. As can be observed the distance between PMJs is lower in PK3 and PK6.

algorithm [87]. Once the actual LAT for each measurement point is known,
we add Gaussian noise to the LAT as described in section 4.2.1, with a mean
of 0 and a standard deviation ranging from 0 ms to 5.0 ms (in particular:
0ms, 0.5ms, 1.5ms, 2.5ms and 5.0ms).

In order to measure the quality of estimated PMJ sets we use two main
indicators. First, we compare the activation map generated by propagating
the electrical signal from the estimated PMJs to the real activation map,
at all the nodes of the computational mesh (21189 nodes). We take the
absolute value of the difference in the activation time at every mesh node
as the error at that point, and measure the error of the activation map
as the mean absolute error over all the points in the mesh. As a second
quality indicator, we consider the distance from each estimated PMJ to the
closest real PMJ. This distance indicates if the method has located a false
estimated PMJ far from the actual Purkinje tree. This situation is indicated
by the appearance of large values of this error measure.

4.3 Results and discussion

The method proposed has been applied to the synthetic 2-dimensional sce-
narios described in Section 4.2.3.1. A set of 1000 measurement points have
been generated with a uniform random distribution on the simulation re-
gion, and Gaussian noise has been added to the computed LATs. The tests
have been repeated for different values of standard deviation σ2.
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Scenario Gaussian Error 0.5

Num. PMJ Est. PMJ Abs. Error(ms) D. Fe-F(mm)

B1D2 11.7 ± 0.5 18 ± 3 0.22 ± 0.07 0.34 ± 0.05
B1D4 43.9 ± 2.5 42 ± 4 0.33 ± 0.05 1.11 ± 0.16
B3D2 35.4 ± 0.9 40 ± 3 0.28 ± 0.03 1.52 ± 0.24
B3D4 132.2 ± 3.6 68 ± 5 0.46 ± 0.04 2.71 ± 0.16

Scenario Gaussian Error 2.5

Num. PMJ Est. PMJ Abs. Error(ms) D. Fe-F(mm)

B1D2 11.7 ± 0.5 16 ± 3 1.02 ± 0.48 1.72 ± 0.32
B1D4 43.9 ± 2.5 17 ± 3 1.12 ± 0.33 3.31 ± 0.31
B3D2 35.4 ± 0.9 25 ± 3 1.21 ± 0.18 4.49 ± 0.39
B3D4 132.2 ± 3.6 25 ± 3 1.29 ± 0.14 5.25 ± 0.32

Table 4.1: Results for 2-dimensional scenarios with 1000 measurement points and Gaus-
sian noise with a standard deviation of σ = 0.5ms and σ = 2.5ms. Column Num identifies
the scenario, PMJs represents the number of PMJs in the scenario, Est. PMJs is the num-
ber of estimated PMJs by the algorithm, Abs. Error is the mean of the absolute error in
all the points of the mesh and D. Fe-F is the distance from an estimated PMJs to the
nearest real PMJ.

Table 4.1 shows the results obtained for the different types of trees, consid-
ering the number of main branches and bifurcation depth. The table shows
the average results for the 10 synthetic Purkinje trees built using the same
parameters. The first column indicates the tree configuration. In the labels,
the number alongside label B indicates the number of main branches and
the number following label D the depth of the ramification. The second
column indicates the average number of PMJs in that configuration. The
following columns show the results for two magnitudes of the measurement
error; σ = 0.5 and σ = 2.5. For each value of σ, the first column indicates
the average number of estimated PMJs that are found by the algorithm,
the second column indicates the average absolute error of the resulting ac-
tivation map and the third column shows the maximum distance from the
estimated PMJs to the real ones.

Figure 4.6 shows the evolution of the mean absolute error for the scenarios
B3D2 and B3D4 when changing the number of measurement points (size
of input data). From the results we can see that errors are kept low in-
dependently of the number of measurement points. Moreover, although
the error grows as σ increases, observed errors are always lower than the
standard error introduced in the samples, even for just 100 measurement
points in some cases. It is noteworthy that the number of measurements
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Figure 4.6: Absolute error for scenarios B3D2 and B3D4 with different number of mea-
surement points and a standard deviation error in the measurement of 0.5, 1.5, 2.5 and
5.0 milliseconds.

is often over 500 in real acquisitions during catheter ablation interventions.
These results improve the errors obtained in Chapter 3 and in our previ-
ous work [73] which, despite the absence of error, were larger for all the
number of measurement points analyzed. The results for σ > 0 cannot be
compared, since the method in the previous work was not able to handle
error in the measurement data, and the errors grew as σ was increased.
However, results shown in Chapter 3 show absolute errors larger than 10ms
for sets with less than 200 measurement points, while the new method can
obtain absolute errors below 4ms even in presence of errors of 0.5ms in the
samples. In addition, it converges to values below 0.5ms in absolute error
when the number of samples increases.

The study in 3-dimensional ventricles focused on the estimation of PMJs
from 20 distinct synthetic PKN. A summary of the different PKN proper-
ties, including number of PMJs, and mean density and standard deviation
of PMJs per segment (17 AHA segment division), can be seen in Table 4.2,
and tables in Appendix A.1. For each PKN configuration, the correspond-
ing LAT map was generated by firstly simulating the signal propagation
on the tissue, and secondly randomly sampling (as in a real EAM) the en-
docardium using an increasing amount of measurement points to study the
effect of the sampling density on the results accuracy. Since the endocardial
sampling was random, each sampling size was repeated 10 times for each
configuration, and results were averaged. Finally, we introduced Gaussian
noise in all the samples with different standard deviations. As a result of
all the combinations we obtained 6000 different scenarios for which PMJs
were estimated. Table 4.3 (the full set of results is summarized in the tables
of Appendix A.1) summarizes the average results for six selected PKN us-
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ing 1000 measurement points, which is a feasible amount for an EAM, and
two different levels of Gaussian noise (σ = 0.5ms and σ = 2.5ms). Note
that clinical studies that use contact-mapping catheter systems such as [90]
(CARTO3, Webster BioSense Inc.), or non-contact-mapping catheters [35]
(Rhythmia mapping, Boston Scientific) have reported that they could col-
lect 1000 measurement points (3-5 minutes), and 4227 measurement points
(6.1 minutes), respectively.

When we introduced Gaussian noise with a standard deviation of 0.5ms in
the measurements, the absolute LAT error obtained in the estimated PMJs
for the whole mesh ranged between 0.5ms and 0.9ms. The average distance
from the estimated PMJs to the real PMJs (D. Fe-F) ranged from 1.1mm to
1.5mm. This means that the algorithm finds the more influential PMJs and
only a small number of estimations do not correspond to real ones. Figure
4.7 shows the estimation results for PK15, which includes 206 PMJs. Real
PMJs are represented by circles, while estimated PMJs are displayed as
squares. When PMJs are not clustered, the algorithm matches their location
with high accuracy. In regions with clustered PMJs, some representative
PMJs are detected, that summarize the whole activity in the area. In
Figure 4.7 detail, it can be observed that incorrectly estimated non-existent
PMJs produce an early activation in the region (label ’1’, bluish colours),
while missing the detection of a PMJs produces a late activation in the
region (label ’2’, redish colours). However, most of the PMJs are correctly
estimated, and therefore when activation is triggered from estimated PMJs
the error in the mesh is close to 0. For Gaussian noise with a standard
deviation of 2.5ms the absolute errors obtained in the mesh were still low,
around 1.7ms in average, specially when compared with the deviation in
the measurement introduced. However, the distance error clearly increased
with values ranging from 1.9mm to 4.0mm. As we increased errors in the
measurements, there was an increasing possibility of estimating erroneous
PMJs.

In Figure 4.8 we have a representative selection of the scenarios visualized
in 3D where the surface meshes are colour-coded with the absolute LAT
error on the mesh, that is the difference between the real LAT and the new
LAT calculated from the estimated PMJs. As can be observed in the first
row (measurement error of 0.5ms) almost all meshes show a local error in
the range of -2ms to 2ms. In the second row (measurement error of 2.5ms)
local errors increased in several areas, where both false and underestimated
PMJs occurred. In blue colour we have regions that were activated too early
by the estimated PMJs, and in red colour areas that were activated later
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than ground truth. Among the reasons that produced the underestimation
there is the lack of measurement points in certain areas due to the random
mapping, or the summarization in groups of PMJs detected by the algo-
rithm. On the other hand, false PMJs were added because several CSPs
belonging to the same source were not correctly merged in the second step
of the method due to an excessive error in the measurement points. The
creation of an excessive number of false PMJs can be controlled increasing
the parameter β commented in section 4.2.2, but then more PMJs will be
clustered together.

The plots in Figure 4.9 show the variation of the absolute LAT error as we
increase the number of measurement points with different levels of Gaussian
noise. We can observe that in general, the absolute error decreases with
more measurement points except when the Gaussian noise introduced in the
measurements is too high. With Gaussian noise with a standard deviation
of 5.0ms, the absolute error increases with the number of measurement
points, due to the inclusion of spurious PMJs in the estimated set. This
clearly represents a limit in the error admitted by the actual algorithm. We
can also see in the plots that in the scenarios with a low density of PMJs
and with small deviations in the error, the absolute LAT error tends to zero.
The plots in Figure 4.10 show the variation in the distance from estimated
PMJs to real PMJs for the same scenarios. In these plots we observe that for
small standard deviations (0.0ms and 0.5ms) in the measurement error, the
mean distance between real and estimated PMJs decreases as we increase
the number of measurement points. However, when higher errors in the
measurement points (> 1.5mm) are introduced, the number of measurement
points do not always improve the results. That means that with more error,
we estimate PMJs in erroneous positions. We can also notice that the
density of PMJs does not have a clear effect in these plots. The distance
from estimated PMJs to real PMJs seems to depend more on the geometry
of the Purkinje tree than on the number of PMJs.

Other authors have presented in the past algorithms to set the activation
sequence of the ventricles using different techniques, but only a few of them
are based on clinical data or other types of ground truth data to compare
with. The two most common non-personalized approaches are the manual
inclusion of endocardial activation triggers in accordance with descriptions
in the literature [26], or the generation of synthetic Purkinje trees without
a specific patient reference. The latter approach has been performed with
different mathematical techniques that range from simple fractal trees [59]
to complex and dense network structures based on L-systems [7]. Another
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Scenario

Num. PMJ Density TAT pkj (ms) TAT (ms)

PK1 1128 94.1 ± 0.7 10.0 51.5
PK3 831 51.9 ± 1.1 15.6 47.4
PK4 362 22.6 ± 0.7 12.7 35.1
PK6 1224 76.5 ± 0.7 11.3 33.0
PK11 442 27.6 ± 0.6 12.8 34.5
PK15 206 14.7 ± 0.6 13.5 35.5

Table 4.2: Information about six representative 3-dimensional scenarios. Column Num
identifies the scenario, PMJ represents the number of PMJs in the scenario, Density is the
density and standard deviation of PMJs per segment (17 AHA segment division), TAT
pkj is the Total Activation Time of the Purkinje Network, TAT is the Total Activation
Time for the whole surface/ventricle.

Scenario Gaussian Error 0.5

Num. PMJ Est. PMJ (%) Abs. Error(ms) D. Fe-F(mm)

PK1 1128 91 ± 4 (8.0) 0.69 ± 0.03 1.19 ± 0.19
PK3 831 95 ± 3 (11.4) 0.67 ± 0.03 1.16 ± 0.11
PK4 362 103 ± 4 (28.3) 0.68 ± 0.04 1.34 ± 0.15
PK6 1224 116 ± 2 (9.5) 0.82 ± 0.03 1.08 ± 0.03
PK11 442 108 ± 3 (24.5) 0.75 ± 0.04 1.41 ± 0.13
PK15 206 86 ± 4 (41.6) 0.60 ± 0.04 1.34 ± 0.15

Scenario Gaussian Error 2.5

Num. PMJ Est. PMJ (%) Abs. Error(ms) D. Fe-F(mm)

PK1 1128 53 ± 3 (4.7) 1.64 ± 0.16 3.37 ± 0.76
PK3 831 56 ± 5 (6.8) 1.63 ± 0.14 2.71 ± 0.41
PK4 362 62 ± 3 (17.0) 1.74 ± 0.13 2.84 ± 0.18
PK6 1224 62 ± 5 (5.0) 1.74 ± 0.10 1.92 ± 0.27
PK11 442 63 ± 3 (14.2) 1.74 ± 0.11 2.58 ± 0.33
PK15 206 53 ± 4 (25.8) 1.67 ± 0.10 3.21 ± 0.33

Table 4.3: Results for six representative 3-dimensional scenarios with 1000 measurement
points and Gaussian noise with standard deviation of 0.5 and 2.5. Column Num identifies
the scenario, PMJs represents the number of PMJs in the scenario, Est. PMJs is the
number of estimated PMJs by the algorithm, Abs. Error is the mean of the absolute
error in all the points of the mesh and D. Fe-F is the distance from an estimated PMJs
to the nearest real PMJ.
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Figure 4.7: Estimation in low PMJ density model. Left panel shows two views of the
endocardium where colour correspond to the error in ms between the real LAT and the
estimated LAT. LATs obtained with real PMJs and estimated PMJs is depicted in the
upper row. A detail of an endocardial region is provided, including real (circles) and
estimated (squares) PMJs. Red areas (label 2) correspond to errors where PMJs have
not been detected and activation is delayed, while blue areas (label 1) correspond to
wrongly estimated PMJs, which activate tissue too early.

Figure 4.8: Spatial distribution of LAT errors. Local differences in activation times
between simulations triggered from real and estimated PMJs. Five different Purkinje tree
configuration with differences in PMJ density (see Table 4.3) for which Gaussian noise
with standard deviation σ = {0.5, 2.5} were included in the samples. Errors are colour
coded using a scale bar between -6.0ms and 6.0ms. Red colours mean that estimated map
activated later than real, and blue colours that estimated map activated earlier.
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Figure 4.9: Plots of the absolute error for 5 different scenarios in increasing order of PMJs
density: PK15, PK4, PK11, PK3 and PK16.
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Figure 4.10: Plots of the distance from estimated PMJs to real PMJs for 5 different
scenarios in increasing order of PMJs density: PK15, PK4, PK11, PK3 and PK16.
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method is based on segmentation of the proximal section of the PKN from
ex-vivo biological [82, 11, 63, 23], but PMJs cannot be obtained, except
at a few specific locations [22]. However, all those strategies are valid for
mechanistic studies, and do not allow to generate patient-specific activa-
tion sequences or ECGs, such as those presented in our work. EAM data
have been used in different ways to estimate the PKN to subsequently per-
form simulations of cardiac electrophysiology. In [71] PMJs were obtained
from EAMs, previously fit to a reference endocardial model, by calculat-
ing sources and sinks from the patient LAT maps. The method used not
only the data at the measurement points but all the interpolated informa-
tion on the mesh, which probably introduced errors in the estimation since
the interpolation does not reflect the real activation sequence. LAT errors
reported ranged from 5.12 ms to 8 ms. In [69, 72], during the validation
analysis, the estimation of PMJs was performed considering previously a
synthetic PKN structure, and following moving, adding or deleting PMJs
to decrease the error with respect to measurements. The main similarity of
our method with the one presented in [72] is that both use the solution of
the backward Eikonal equation (from the measurement points to the points
in the mesh) to search for (or move/add/delete) candidate PMJs. However,
the criterion we define to decide the final PMJs is different to that in [72].
In addition, in our methodology we consider that the samples include Gaus-
sian noise due to the annotation of the measurement points. Finally, in [72]
the optimization of the PMJ locations is done per region of interest while
the method presented here uses a global ranking of the candidate PMJs.
In [69], the authors reported mean absolute errors ranged from 4.9 ± 4.1
ms to 9.9± 7.5 ms, depending on the subject and the initial PKN, whereas
in [72], results were improved significantly. It is important to remark that
in both studies patient-specific EAM data were used. For synthetic PKN
without noise in the samples, the mean absolute error for 300 measurement
points ranged from 1.92± 2.00ms to 2.94± 2.82 ms depending on the num-
ber of test points used for the cross-validation. For an equivalent number
of measurement points without noise, we obtained mean absolute errors of
around 1ms using a cross-validation with 21189 points (i.e. all the endocar-
dial points). With regard to the results including noise, the comparison is
difficult since the noise was included in a different way, and we cannot de-
termine which is the equivalent noise between both studies. Finally, in [72]
EAMs were used to test the methodology, and results show mean absolute
errors of 5.84 ± 4.45 ms for the patient-specific network. Although we do
not have results yet for acquired EAMs, these results serve as a reference
to indicate that our errors with synthetic EAMs are below these values.
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One of the drawbacks of using a previously defined PKN structure, as in [69,
72], is that this imposes a constraint for the location and amount of the
PMJs. Thus starting with an inaccurate PKN can affect the quality of the
final estimation of the set of PMJs. On the contrary, our approach works
directly with the estimation of PMJs locations, which are completely free
from any predefined PKN structure. It is also important to remark than
only a few studies such as [72] have explicitly considered errors in the clinical
measurements. That is relevant, since mapping systems have been reported
to introduce errors in the catheter tip position of about 0.7± 1.5 mm [34],
which have to be added to the errors due to the LAT annotation from the
monopolar and bipolar catheter recordings.

So far, there has not been a thorough analysis of the density of Purkinje
myocardial junctions in the human heart. There have been a few attempts
to describe PMJs in selected regions of the heart such the base of the pap-
illary muscles, or random locations, in a few hearts. Most of the studies
that analyze the PK system and PMJs have been carried out in animals,
which present a different configuration than in humans. Therefore, apply-
ing techniques to estimate the density of PMJs to a large number of human
cases can shed some light in the distribution and density of them, allowing
to build atlases.

4.4 Conclusions

We have developed a method that is able to estimate the location and acti-
vation times (LATs) of PMJs from a 3D representation of the endocardium.
From a set of 20 synthetic complex PKN, we have been able to estimate the
sources of activation with an average LAT error between 0.5 ms and 0.9 ms
in cases where Gaussian noise with an amplitude of σ = 0.5 was introduced.
For higher noise (σ = 2.5), LAT error increased to 1.7 ms in average.

In conclusion, the method can be used to estimate the PMJs from complex
scenarios, similar to those that are expected on real patients. Therefore, it
could be applied to real data, that is, patient EAM in sinus rhythm. How-
ever, the PKN structure, which is fundamental still needs to be estimated.
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Minimal Purkinje Systems
from Human
Electroanatomical Maps

71



estimation of personalized purkinje system

Abstract – The Purkinje system is a heart structure responsible for trans-
mitting electrical impulses through the ventricles in a fast and coordinated
way to trigger mechanical contraction. Reconstructing a patient-compatible
PKN structure from an EAM is a challenging task, that could help improve
models for electrophysiology simulations or provide aid in therapy planning
for radiofrequency ablation. In this study, we present a method to build
a PKN structure that is inversely estimated from a patient’s EAM. First,
we carry out a simulation study to show the accuracy of the estimation
method for different Purkinje myocardial junction densities and Purkinje
morphologies. Second, we estimate the PKN from a set of 28 EAMs from
patients with idiopathic ventricular fibrillation, obtaining an optimal con-
duction velocity in the PKN of 1.95± 0.25 m/s, the location of PMJs, the
PKN structure, and an average local activation time error of 6.1± 2.2 ms.
Finally, using the patient-specific Purkinje network, we show good agree-
ment between simulated and real ECG in an exemplary case.

This chapter is adapted from: Barber F., Langfield P., Lozano M., Garćıa-Fernández
I., Duchateua J., Hocini M., Haissaguerre M., Vigmond E., Sebastian R Estimation of
personalised minimal Purkinje systems from human electroanatomical maps. Medical
Image Analysis. Under revision.
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5.1 Introduction

As it has been previously discussed, it is fundamental to be able to in-
corporate a PKN in patient-specific biophysical models aimed to simulate
and reproduce several types of arrhythmia. However, the construction of
a realistic computational PKN for humans is complex, and in general does
not provide a patient-specific activation sequence [7]. Therefore, generic
PKN models are usually included in 3D ventricles for mechanistic stud-
ies [43, 91]. Some methods have already been presented to estimate the
PKN from EAMs, by building an initial random network and following re-
ducing the error by moving, adding or pruning branches [72] or looking for
local minima from EAMs [71]. However, the goal of those methods was to
generate random PKNs compatible with the observed EAM, and not esti-
mating the PKN from the data, or other parameters such as the optimal
conduction velocities (CVs) for each patient’s PKN.

As we have seen in Chapter 4 using synthetic scenarios and simulations,
we can inversely estimate parts of the PKN, such as the set of PMJs, from
virtual EAMs. Therefore, the structure can be estimated not from images
but from the electrical sequence that produces when it activates.

Since clinical EAMs can be acquired in vivo using catheters, we could po-
tentially estimate the PMJs of a patient, but we still need to estimate the
structure of the PKN that connects those EAMs. The first step, is to pro-
cess the EAMs to obtain the spatio-temporal activation map, or LAT map,
by annotating the activation time of each of the samples recorded from the
patient’s endocardium. Following, we have to estimate the location and
activation time of the PMJs, and finally the PKN compatible with the acti-
vation times of the PMJs, provided a conduction velocity within the PKN.

In this chapter, we present an algorithm to first estimate the location of
a set of PMJs from EAMs based on an adapted version of the algorithm
presented in Chapter 4 [92] that is able to process real EAMs, and second,
build a simplified PKN based on the location and activation time of the
PMJs, with an estimated CV for the PKN. The algorithm has been tested
on several PKN synthetic configurations, with simulated activation maps,
subject to different error amplitudes. The results show that the method is
able to estimate a set of PMJs and PKNs that explains the observed activa-
tion maps for different synthetic CCS configurations. In the synthetic tests,
the average error in the predicted activation time is below the amplitude of
the error applied to the data. Moreover, the algorithm has also been ap-
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plied to a clinical dataset obtained from EAMs of patients in sinus rhythm
without structural heart disease. In real EAMs, errors are subject to the
estimated (annotated) LAT error, and geometrical localization of the sam-
ple points. We could estimate 28 PKN, and obtain the optimal conduction
velocity (CV) in the PKN, and an average LAT error. The simulated acti-
vation sequence using the estimated PKN together with estimated CVs for
tissue and Purkinje in a exemplary patient, provided a good match between
simulated and real ECG, validating the PKN sequence of activation.

5.2 Material and methods

The study has been conducted with data from a cohort of 13 patients. In
addition, a series of synthetic cases have also been generated to be able
to extract quantitative error measurements. Following, we describe the
characteristics of the population and the algorithms proposed to estimate
the PKN from EAMs.

5.2.1 Patient Data

A set of 11 anonymized EAMs (10 men and 1 women, between 16 and 63
years old) was provided by Bordeaux University Hospital using CARTO
3 system (Biosense Webster, Inc., Diamond Bar, CA, USA), and different
catheters, namely NaviStar ThermoCool ablation catheter and PentAray.
Patients had an indication of idiopathic VF or syncope, and different types
of substrate. Two additional EAM studies were included from a previous
study [93], where MRI data was also available so the detailed anatomy of
the endocardium could be reconstructed, and the EAM data fitted to it
(see Figure 5.1 (c)). For every patient three studies were acquired in sinus
rhythm: a map of the LV endocardium, a map of the RV endocardium
and a map of the epicardium. Five patients benefited from high density
endocardial mapping with a decapolar catheter to map the endocardium of
both the RV and the LV.

Table 5.1 summarizes the electrophysiological studies acquired. Columns
labeled as ’LV Pts’ and ’RV Pts’ show the final number of EAM points avail-
able after analyzing and filtering the data with respect to the total number
of EAM points acquired in each case. The duration of the QRS complex
is also provided in ms (QRSd). Patients P2 and P6 showed a nonspecific
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intraventricular conduction delay (NICD). Patient P13 was mapped twice
in the same intervention, thus for that patient we have the studies P13A
and P13B.

Study Catheter LV Pts RV Pts Age Sex Substrate QRSd

P1 Pentaray 229/860 276/810 50 M HCM 110
P2 Pentaray 230/1460 371/1523 57 M Laminopathy 102
P3 Navistar 174/691 165/744 34 M Idiopathic VF 91
P4 Navistar 115/491 161/539 58 M Idiopathic VF 120
P5 Navistar 177/514 190/532 18 M Idiopathic VF 90
P6 Pentaray 191/1224 313/1494 63 M Idiopathic VF 138
P7 Navistar 75/100 115/189 16 M Idiopathic VF 102
P8 Pentaray 284/1044 345/792 23 F Idiopathic VF 102
P9 Pentaray 320/874 387/1064 26 M Idiopathic VF 102
P10 Navistar 92/174 78/169 51 M Idiopathic VF 96
P11 Navistar 179/372 92/215 41 M Brugada 120
P12 Navistar 219/315 73/78 58 M Scar-related VT 105
P13A Navistar 118/140 159/179 53 M Idiopathic VT 104
P13B Navistar 151/198 177/188 53 M Idiopathic VT 104

Table 5.1: Description of EAM data acquired. QRSd stands for QRS duration in ECG.

Figure 5.1: Example of EAM data for patient P12. (a)-(b) Electrograms recorded at
points on the endocardium. Plots correspond to the ECG precordial lead V5 (green),
distal unipolar EGM (M1) (orange) and distal bipolar EGM (M1-M2) (blue), showing 200
ms prior and after the R-wave peak in V5 lead (reference point for LAT measurement).
Dashed vertical lines represent the R-wave peak automatically detected by EAM system
(black) and the estimated time for tissue activation (red). (c) Fitting of LV and RV
endocardial EAM to the corresponding patient MRI segmentation.
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5.2.2 EAM processing

For each EAM, first, we filtered some of the points acquired based on volt-
age, local activation time (LAT) and distance to the EAM mesh. In partic-
ular, sample points with a bipolar peak-to-peak amplitude below 1.5 mV or
with a LAT outside the range [-200, 200] ms, or more than 7 mm away from
the endocardial wall were discarded. Note that, since the Pentaray catheter
consists of five soft, flexible branches some of the leads can be away from the
endocardial wall during the recording, which can be detected and removed
using the filters described.

After the EP study, LAT annotations of the EAMs were automatically
determined by the Confidense module of CARTO 3 System. However, a
visual inspection of the EAMs showed spatio-temporal discrepancies among
LATs in many sampled points. Figure 5.2 (top row) show the original LAT
maps obtained from several LV EAMs, projected to a 2D unitary disk.
Large time gradients can be observed in most patients, without a clear
sequence of activation, and large delays between close areas, where there is
no underlying substrate that can explain them.

Therefore, we carried out a re-annotation of the LATs, using a tailor-made
Matlab code that, for each acquired point, searches the deflection on the
distal bipolar signal (M1-M2) closest to the point of maximum negative
slope on the distal unipolar signal (M1). Figure 5.1 (a) and (b) show an
example of two electrograms recorded from patient P12. Green line cor-
responds to the ECG precordial lead V5 signal, which is used as a time
reference (dashed black line on R-wave peak) to obtain the relative LAT.
Dashed red line corresponds to the final LAT annotation. Note that after
the re-annotation, those samples that do not show a good spatio-temporal
correspondence with its closest neighbours will be discarded or not consid-
ered by the PMJ estimation algorithm, although they will still be used to
calculate activation errors. The final numbers of curated samples for each
patient are summarized in Table 5.1.

Figure 5.2 (second row) shows the resulting LV EAMs in 5 patients after
data was filtered and re-annotated. After the re-annotation of the samples,
a linear interpolation was performed to obtain the LAT on every point of
the 3D mesh. For visualization purposes, the original EAM and the re-
annotated EAM (Re-EAM) LAT maps were projected into a unitary 2D
disk using a quasi-conformal projection (QCM) as in [94]. In particular, we
used the conformal energy minimization (CEM) algorithm [95], based on
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Figure 5.2: LV original EAMs and re-annotated EAM, projected into a 2D unitary disk.
A set of 5 EAMs, (top) as they are obtained from the system, and (below) after applying
filters, and re-annotating the local activation maps. After the re-annotation, the data
was linearly interpolated on the 3D mesh, and projected using a quasi-conformal trans-
formation, into a disk. Colorbar shows the local activation time from blue (t=0ms), to
red (t=100ms).

discrete Laplace-Beltrami operator. This representation is very convenient
to compare data from different LV geometries in a common reference space.
As can be observed, the sequence of activation (early to late regions) is
preserved, however there are large differences between the LAT maps locally
due to previous errors in annotation. In all cases the postero-basal and
lateral regions (orange to red area) were the last to activate, whereas the
antero-apical region was the earliest (bluish areas).

5.2.3 Synthetic data

To evaluate the PKN estimation algorithm, we need scenarios in which
ground truth data is known, i.e., on which the actual location of the PMJs,
PKN and the associated activation pattern are known. Therefore, we built
a set of synthetic PKNs on a generic LV endocardium, reconstructed from a
MRI sequence, using the stochastic method described in [7]. The properties
of the PKNs are summarized in Table 5.2.

The proposed PKN estimation algorithm is divided into two stages, the es-
timation of the PMJs and the estimation of the PKN from those estimated
PMJs. Thus, we set up two different types of experiments to evaluate the
performance of the PKN estimation. Based on the set of synthetic EAMs,
first we evaluated the PKN estimation alone. To do this, we used the actual
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Scenario TAT (ms)

Name # PMJ # PMJ/Seg # Br PKN ENDO

PK1 1224 76.5 ± 0.7 2650 56.3 78.3
PK2 831 51.9 ± 1.1 1908 78.2 110.4
PK3 442 27.6 ± 0.6 948 64.2 86.5
PK4 362 22.6 ± 0.7 830 63.5 86.1
PK5 206 14.7 ± 0.6 298 67.7 89.7

Table 5.2: Information about five synthetic PKN. Column Name identifies the scenario,
PMJ represents the number of PMJs in the scenario, Density is the average and standard
deviation of the number of PMJs per segment (17 AHA segment division), TAT PKN
is the total activation time of the Purkinje Network, TAT ENDO is the total activation
time for the whole surface/ventricle.

PMJ locations and LATs, and estimated the corresponding PKNs, which
were subsequently compared with the original conduction system. In the
second set of experiments, for each PKN we simulated the corresponding
His-Purkinje activation sequence for the endocardium, and following we
sampled the endocardial tissue randomly at a number of locations (1000
samples), mimicking a virtual EAM. Once we had the actual LAT on the
measurement points, we added a Gaussian error to the LAT values to em-
ulate measurement errors, or wrongly annotated samples. This set of syn-
thetic LATs was used as the input of our algorithm that first estimates a
set of PMJs and, then, the PKN associated to these estimated PMJs.

Since we have all the information for these synthetic cases, we can conduct a
quantitative assessment of the estimated PKNs. We have considered several
measures of quality, summarized in Tables 5.3 and 5.4: the number of PMJs
that have been successfully connected to the synthetic tree (error εmax <
threshold); ∆PMJ , the mean absolute error of the LAT at PMJs si, i.e.,
difference between estimated LAT at PMJ and the PKN LAT resulting from
the propagation from the His Bundle to the PMJs through the estimated
PKN, given a CV, in ms; the average distance from the estimated branches
to the real branches per branch subsegment; ∆EAM , the mean absolute
error at EAM obtained as the difference between sampled value and value
calculated from a simulation triggered from the estimated PKN.

5.2.4 Estimation of the PMJs

The proposed method starts with the estimation of the PMJs from an EAM.
This step is done using an adapted version of the algorithm proposed in [92],

78



5.2. material and methods

and described in Chapter 4. Basically, the new version requires certain
filters to adjust the EAM data before it is processed. In that method, the
endocardial domain is discretized by means of an homogeneous simplicial
2-complex in a three-dimensional space, Ω. The EAM either synthetic or
acquired during an intervention is defined by a set P of measurement points.
All these points belong to the set V of the vertices of Ω.

The procedure takes the location and LAT, (pi, ti) of the points in P, to
generate a set of points Ŝ that are compatible with the observed activa-
tion times. The set V is traversed to evaluate if each vertex is a feasible
activation point. By means of a hypothesis contrast, if a given vertex can
be considered a PMJ, then a new candidate ŝi is added to Ŝ. After the
generation of the set Ŝ of candidate PMJs, all the ŝi are evaluated to de-
termine their quality. By means of a new hypothesis contrast, we assess
if the observed error in the points, P, activated by ŝi is compatible with
the distribution of the measurement error. This distribution can be that
of the measurement process in clinical data or the injected Gaussian error
in the synthetic cases. In the cases that lead to a very unlikely set of ob-
served LAT, the associated points in P are removed, and the LAT of the
measurement points is re-estimated. In general, we have observed that the
cases that correspond to activation sequences with heterogeneous or non-
smooth electrical propagation require a more aggressive refinement process,
although errors below the measurement error values have been achieved in
all cases. Note that, the set of PMJs is estimated for a range of predefined
tissue conduction velocities (CVs), from 0.4 to 0.9 m/s. Finally, after test-
ing all the CVs, the estimated set of PMJs with less average error at the
sampling points, ∆EAM , is the one kept for the next stage.

5.2.5 Estimation of PKN

The goal of the PKNs estimation algorithm is to find a PKN branching
configuration that is able to reach all the estimated PMJs at the esti-
mated LATs, with the minimum number of branches. We start by con-
sidering the set of estimated PMJs that were obtained in the previous step,
Ŝ = {ŝ1, ..., ŝn} ⊂ V × R+. As in the previous chapters, for each PMJ
ŝi = (xi, τi), the point xi ∈ Ω will be called the location and τ ∈ R+ the
estimated LAT at the PMJ. Without loss of generality, we will assume that
PMJs are in ascending order of LAT, that is, i ≤ j ⇒ τi ≤ τj . We will also
consider, Ξ, a connected simplicial 1-complex to represent the branches that
form the PKN. Each vertex or node in Ξ will have an associated LAT, that
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corresponds to its activation time according to the PKN generated and the
CV through the PKN. The estimated PKN, will have the constraint that
all the vertices of Ξ will be in a vertex or an edge of Ω, and all the edges
of Ξ will coincide with an edge of Ω or will be contained in one of its faces.
Moreover, the terminal vertices of Ξ have to be locations of the estimated
PMJs.

We build the estimated PKN in an iterative fashion. An initial branch
Ξ0, corresponding to the His bundle and left bundle branch (LBB), is built
before the algorithm generates any further branch. The initial branch starts
always from a location determined by the user and expands to the apex
through the septal wall following the shortest path, which is obtained by
calculating the geodesic path between both points. Then, we process the
PMJs in order of LAT, starting by the earliest one. Therefore, we start
building the PKN from the region closer to the LBB, which is expected to
show smaller LAT errors due to the shorter path from the Atrioventricular
Node (AVN).

After step i, we have processed i−1 PMJs in Ŝ and have built an estimated
tree Ξi−1 that connects them. We pick ŝi and solve the Eikonal problem
on Ω starting from ŝi to obtain the distance from the estimated PMJ to all
the vertices on Ξi−1. Then, we try to connect the PMJ ŝi with Ξi using a
geodesic that ends at a point ξi ∈ Ξi−1. The connection point is chosen as
the solution of the optimization problem

ξi = argmin
ξi∈Ξi−1

{
ti −

(
t(ξi) +

|ξi − xi|Ω
v

)}
, (5.1)

s.t. pathΩ(ξi,xi) ∩ Ξi−1 = ∅, (5.2)

where | · |Ω is the distance on Ω defined in Chapter 4, pathΩ(ξi,xi) is the
piece-wise linear curve that connects xi with ξi built with the Fast Marching
algorithm to compute the distance, and v is the CV in the PKN. With the
constraint on the path, we exclude new branches that intersect the PKN
created so far. In summary, we are trying to connect the estimated PMJ
to the current PKN at a location so that the LAT at the PMJ matches
the estimated one, provided a CV, v, inside the PKN. Only solutions with
an error value, ∆PMJ < εn (user-defined threshold at iteration ’n’), will
generate a new branch for the PKN in each iteration. In cases in which the
residual in Eq. 5.1 is above the threshold, the candidate ŝi is not connected.
Once the iteration ends with the last ŝi, the process is restarted trying
to connect the disregarded PMJs to the estimated PKN, using a larger
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threshold. The algorithm stops when all the PMJs have been connected to
Ξ or when the error threshold in the unconnected PMJs reaches a predefined
bound.

5.2.6 Biophysical Simulations

For patient P12, where the heart and torso MRI, as well as EAMs were
available, a detailed computational model for biophysical simulations was
built as described in [93] (see Figure 5.1 (c)). Therefore, for this case, we
estimated the PKN directly on the segmented 3D mesh, which included tra-
beculae, instead of using the coarse EAM mesh. In summary, the volumetric
mesh was composed of 4 million nodes, and 3.7 million hexahedral elements
(resolution of 0.4 mm). The model includes a detailed endocardium, since
the most important trabeculations and papillary muscles were segmented.
The resulting finite element model was labeled to differentiate, LV and RV,
as well as endocardium (17% wall thickness), mid-myocardium (41% wall
thickness) and epicardium (42% wall thickness) to take into account cell
heterogeneity. Fiber orientation was included in the model by using a rule-
based model [96] adapted to Streeter’s descriptions [56]. The heart model
was fit to a full torso model, that included the most important organs,
and was meshed with tetrahedral elements. Electrical propagation through
the torso model was considered isotropic. The different conductivity val-
ues assigned to each organ were, lungs (0.039 S/m), blood (0.700 S/m),
liver (0.028 S/m), bones (0.020 S/m) and the rest of the torso, conformed
mainly by flesh and fat (0.239 S/m) [97]. To register the three available
EAMs (LV, RV and epicardium) to our 3D ventricular model, we apply a
rigid transformation, using the ICP (iterative closest point) algorithm.

Cellular electrophysiology was modelled using the human ventricular ionic
model by ten Tusscher et al. [98] for the myocardium and Stewart et al.
model for Purkinje [99]. Electrical propagation in tissue was modelled by
solving the monodomain formulation with ELVIRA software [100]. Time
step was set to 0.02 ms.

CVs were adjusted to each ventricle by tuning the longitudinal and traver-
sal conductivities, considering axi-symmetric anisotropy, and the CVs esti-
mated for tissue and the PKN during the PKN estimation procedure.
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5.3 Results

5.3.1 Estimation of PKN from synthetic data

For the five PK synthetic scenarios, we obtained the set of estimated PMJs,
and the set of estimated PKNs. For the estimation of PKNs, we compared
the results using actual (Table 5.3) and estimated PMJs (Table 5.4) as input
to the algorithm.

As it can be observed, when using the actual PMJs (location and LAT taken
directly from the model) the errors, ∆PMJs and ∆EAM , are smaller, and the
PKN structure is reproduced more accurately (see Figures 5.3 and 5.4 first
row). When all the PMJs are available, the resulting PKN can easily follow
the branching pattern of the original underlying PKN, with the estimated
branches overlapping the actual branches in most cases (distances between
actual and estimated PKN around 0 mm, blue branches in Figure 5.3 (d)).
In Figure 5.4 it is shown, using single headed arrows, the location of the main
PKN branches that almost match between actual (yellow branches) and
estimated PKN (red branches). As expected, when Gaussian errors were
introduced in the samples, the LAT times changed and the corresponding
estimated PKN started to diverge from the original PKN. The effect is clear
in Figure 5.4, where estimated branches are further from the original than
same cases with less LAT error. The effect of the sample error it is not
linear with respect to the distance, as can be seen in Table 5.4, since the
morphology and complexity of the PKN also plays an important role. A
complete view of real and estimate PKN using actual PMJs is displayed in
Appendix A.2, Figure A.7.

When using the actual PMJs as input, ∆PMJs, i.e. the difference in LAT at
PMJs (between real and obtained through the PKN) is, on average, below
0.85 ms for all scenarios, as it is ∆EAM , the average errors after propagating
the signal to all mesh points. The average distance between tree segments
is smaller than 1 mm (Table 5.3), due to the close match between real and
estimated PKNs in most tree sections. In addition, around 95% of the PMJs
could be connected to the tree with an error below εmax < 4.0ms. Not all
PMJs could be connected due to a restriction imposed on the PKN with
respect to overlapping branches. It is noteworthy, that the number of PMJs
in the model affected both errors ∆PMJs and ∆EAM . When models show a
large density of PMJs (PK1, 1224 PMJs), ∆PMJs and ∆EAM where slightly
smaller than less crowded models (PK5, 206 PMJs).
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Figure 5.3: Graphical results for estimation of synthetic model PK3 with Gaussian error
σ = 0.5. The original PKN is depicted as a tubular structure in grey color, while PMJs
are represented with spheres. First row corresponds to estimated PKNs using the real
PMJs, while second row are the PKN estimated from estimated PMJs (also included).
(a) and (e) show the real (gray) and estimated (red) PKN structure, together with and
the location of the (a) real PMJs, and (e) estimated PMJs. PMJs in (b) and (f) are
color coded to show the error at PMJs, when the estimated PKN is used. PKN in (c)
and (g) show the differences in angle (degrees) between the real and the estimated PKN
branches, while (d) and (h) show the distance (mm) between the elements of the real and
the estimated PKN.

When the estimated PMJs were used to build the PKN (see Figure 5.3
second row, and Figure 5.4 second and third rows, and Table 5.4), the
CV in the PKN had to be estimated. Note that, for simplicity, in the
simulations we used a reference CV of 1.0 m/s in the PKN. In scenarios
with estimated PMJs, the percentage of PMJs available to build the PKN
decreased considerably. We used 1000 EAM samples to estimate the PMJs.
In dense scenarios such as PK1 (1224 PMJs), we estimated 9.3% of PMJs
when the Gaussian error introduced was σ = 0.5, and 5.4% when σ = 2.5,
while in coarser models such as PK5, we estimated 40.3% when the error
was σ = 0.5, and 27.7% when σ = 2.5. Since we only could estimate a
subset of the actual PMJs, the algorithm tends to overestimate the CV,
as can be seen in Table 5.4 (CV), where most cases have an optimal value
above 1.0 m/s. Having less PMJs estimated, the resulting PKN is simpler
(less branches), and the estimated CV is larger. In Table 5.4 the number of
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Figure 5.4: Detailed comparison of PK3 with different Gausian errors in the samples.
PKNs are rendered with tubes, yellow for the original, and red for the estimated. Blue
spheres are the PMJs, either actual ones or estimated (for error σ = 0.5 and σ = 2.5).
Single headed white arrows show perfect fit between original and estimated PKN, while
double headed arrows show the displacement between them. Black circles point out PMJs
not connected to the tree due to temporal errors.

branches of each estimated PKN is summarized in column labeled ’# Br’.
Using the proposed methodology the number of branches in an estimated
PKN is always the number of PMJs plus one branch (bundle branch).

The percentage of estimated PMJs that can be successfully connected to the
PKN decreases as we increase σ from 0.5 to 2.5, due to errors in location
and LAT of estimated PMJs (note that Gaussian error was inserted in
the samples as described in [92] and Chapter 4). Figure 5.4 shows, as an
example, PMJs (within a black circle) that could not be connected to the
tree. The PMJ showed in the septal view was correctly discarded, since in
that region there were no PMJs, and the PMJ position was not compatible
with its estimated LAT. However, the PMJ shown in the posterior view was
properly estimated and overlapped an area of 5 real PMJs, but due to the
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complex branching pattern in the original PKN necessary to reach that area,
the simplified estimated PKN could not reach that region at the estimated
LAT, and could not connect the PMJ with a LAT error εmax < 4.0ms. In
general, the percentage of estimated PMJs that are connected to the PKN
with εmax < 4ms is around 75%. Errors at PMJs, ∆PMJs, are still below
1ms in all scenarios, however, the average error across the mesh, ∆EAM ,
(measured at the 1000 sampled EAM points) increases due to two main
reasons: i) the underestimation in the overall number of PMJs, which is
around 10% of the real ones; and ii) the error in the LAT of the estimated
PMJs. The same explanation applies to the increase in distance error, since
due to the low number of PMJs and branches in the estimated PKN, the
distance to the real PKN is larger. In summary, ∆EAM is below 3ms, even
when σ = 2.5, in all scenarios except PK1, which has a very large number
of PMJs.
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Name PMJs ε <5ms ε <1ms ∆PMJs # Br Distance error ∆EAM

PK1 1224 96.32% 84.23% 0.69 ± 0.6 ms 968 0.87 ± 1.32 mm 0.52 ± 0.3 ms
PK2 831 94.83% 79.42% 0.72 ± 0.6 ms 591 1.76 ± 2.61 mm 0.63 ± 0.5 ms
PK3 442 96.83% 88.20% 0.65 ± 0.6 ms 369 1.19 ± 1.39 mm 0.63 ± 0.5 ms
PK4 362 95.86% 78.45% 0.70 ± 0.6 ms 300 1.53 ± 1.58 mm 0.65 ± 0.5 ms
PK5 206 95.63% 80.58% 0.81 ± 0.7 ms 186 1.89 ± 2.06 mm 0.72 ± 0.8 ms

Table 5.3: Estimation of the PKN directly from the real PMJs without error.

Name σ #PMJs CV ε <4ms ε <1ms ∆PMJs # Br Distance error ∆EAM

PK1 0.5 114 1.1 76.32% 62.28% 0.79 ± 0.9ms 86 2.20 ± 2.7mm 1.67 ± 1.8ms
PK1 2.5 67 1.2 50.75% 41.79% 0.96 ± 0.9ms 35 2.46 ± 3.1mm 4.48 ± 4.5ms

PK2 0.5 95 1.2 77.89% 60.00% 0.66 ± 0.7ms 74 2.11 ± 2.4mm 1.20 ± 1.4ms
PK2 2.5 66 1.2 63.64% 46.97% 0.88 ± 0.9ms 43 4.94 ± 5.1mm 3.24 ± 2.6ms

PK3 0.5 111 1.0 81.98% 63.96% 0.76 ± 0.8ms 90 1.92 ± 1.8mm 1.40 ± 1.4ms
PK3 2.5 68 1.3 69.12% 58.82% 0.72 ± 0.8ms 46 2.81 ± 1.3mm 2.70 ± 2.9ms

PK4 0.5 99 1.0 85.86% 69.70% 0.72 ± 0.6ms 86 2.17 ± 2.1mm 1.18 ± 1.2ms
PK4 2.5 68 1.1 75.00% 60.29% 0.71 ± 0.7ms 52 2.35 ± 2.0mm 2.54 ± 2.6ms

PK5 0.5 83 1.1 79.52% 57.83% 0.72 ± 0.5ms 67 3.09 ± 3.6mm 1.38 ± 1.6ms
PK5 2.5 57 1.3 78.95% 57.89% 0.83 ± 0.9ms 46 2.40 ± 2.2mm 2.37 ± 1.9ms

Table 5.4: Estimation of the PKN from estimated PMJs and error σ = 0.5ms. CVs (conduction velocities) in m/s. # Br stands for
number of branches in the PKN. εmax < threshold, percentage of estimated PMJs connected to the PKN below a threshold error;
∆PMJs: Average time error between estimated time at PMJs and time at which the wavefront arrives through the PKN; ∆EAM :
Average time error between LAT at endocardial samples and time at which activation wavefront arrives using the estimated PKN.
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EAM PMJ Estimation PKN Estimation
Study #Pts Link CVT CVPK TATPMJs #PMJs ∆EAM ε <5ms ∆PMJs ∆EAM

P1 LV 229 79% 0.5 1.7 56.7 ms 31 7.66 ms 30 (97%) 0.69 ± 0.7 ms 8.0 ms
P1 RV 276 69% 0.4 2.1 54.4 ms 34 15.96 ms 32 (94%) 1.30 ± 1.3 ms 16.0 ms
P2 LV 230 85% 0.6 1.7 59.2 ms 37 5.70 ms 32 (86%) 0.73 ± 0.9 ms 7.2 ms
P2 RV 371 88% 0.6 1.9 48.7 ms 38 6.65 ms 35 (92%) 0.70 ± 1.0 ms 6.9 ms
P3 LV 174 79% 0.8 1.7 38.0 ms 23 6.25 ms 20 (88%) 1.18 ± 1.4 ms 6.9 ms
P3 RV 165 92% 0.9 2.3 37.1 ms 16 4.76 ms 13 (81%) 0.79 ± 1.2 ms 5.2 ms
P4 LV 115 76% 0.8 1.7 57.6 ms 11 8.05 ms 9 (82%) 0.99 ± 1.3 ms 8.3 ms
P4 RV 161 76% 0.6 1.9 44.1 ms 19 11.02 ms 15 (79%) 0.63 ± 0.5 ms 13.6 ms
P5 LV 177 84% 0.9 1.7 28.0 ms 19 4.10 ms 18 (95%) 0.69 ± 0.6 ms 4.4 ms
P5 RV 190 93% 0.8 2.1 48.8 ms 20 5.60 ms 17 (85%) 0.67 ± 0.8 ms 5.8 ms
P6 LV 191 76% 0.4 1.7 93.4 ms 28 8.34 ms 23 (82%) 0.93 ± 1.2 ms 9.5 ms
P6 RV 313 63% 0.4 1.7 66.4 ms 39 20.20 ms 31 (79%) 0.68 ± 0.7 ms 21.0 ms
P7 LV 75 87% 0.8 2.1 36.48 ms 12 5.43 ms 12 (100%) 1.06 ± 1.5 ms 5.9 ms
P7 RV 115 64% 0.7 2.1 60.7 ms 17 10.90 ms 13 (76%) 1.06 ± 1.5 ms 12.1 ms
P8 LV 284 89% 0.6 1.9 42.8 ms 38 5.63 ms 32 (84%) 1.00 ± 1.1 ms 6.1 ms
P8 RV 345 89% 0.6 2.5 44.4 ms 51 3.96 ms 47 (92%) 1.02 ± 1.0 ms 4.4 ms
P9 LV 320 86% 0.7 2.1 32.1 ms 39 3.91 ms 34 (87%) 1.06 ± 1.1 ms 4.5 ms
P9 RV 387 91% 0.7 1.7 36.5 ms 43 3.61 ms 38 (88%) 0.87 ± 1.1 ms 4.7 ms
P10 LV 92 66% 0.8 1.7 24.2 ms 13 13.83 ms 11 (85%) 0.89 ± 1.0 ms 15.2 ms
P10 RV 78 88% 0.6 1.9 50.6 ms 13 7.56 ms 11 (85%) 0.68 ± 1.0 ms 9.4 ms
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EAM PMJ Estimation PKN Estimation
Study #Pts Link CVT CVPK TATPMJs #PMJs ∆EAM ε <5ms ∆PMJs ∆EAM

P11 LV 179 69% 0.4 1.9 91.7 ms 27 14.97 ms 25 (93%) 0.87 ± 1.1 ms 16.1 ms
P11 RV 92 66% 0.7 1.9 80.9 ms 12 7.92 ms 10 (83%) 0.69 ± 0.6 ms 9.9 ms
P12 LV 219 72% 0.5 1.9 108.8 ms 37 6.42 ms 33 (89%) 0.25 ± 0.5 ms 6.7 ms
P12 RV 73 81% 0.4 1.9 25.2 ms 17 5.29 ms 16 (94%) 0.39 ± 0.8 ms 5.5 ms
P13A LV 118 75% 0.9 2.3 20.5 ms 17 5.61 ms 16 (94%) 0.26 ± 0.3 ms 5.9 ms
P13A RV 159 69% 0.6 2.3 32.4 ms 22 9.32 ms 19 (86%) 0.57 ± 1.0 ms 10.9 ms
P13B LV 151 72% 0.8 2.3 29.9 ms 21 6.39 ms 19 (90%) 0.36 ± 0.7 ms 6.4 ms
P13B RV 177 62% 0.7 2.3 32.8 ms 14 12.51 ms 13 (93%) 0.33 ± 0.6 ms 13.2 ms

AVG 195 78% 0.7 1.96 47.8 ms 25 8.13 ms 22 (88%) 0.76 ± 0.9 ms 8.9 ms
AVG>70 203 83% 0.7 1.95 46.9 ms 27 6.10 ms 24 (89%) 0.75 ± 0.9 ms 6.8 ms

Table 5.5: Estimation of the PKN from EAMs. #Pts: Points of EAM after filtering; Link: Percentage of Pts consistent with estimated
PMJs ; CVs (conduction velocities) in m/s for tissue (T) and Purkinje (PK). TAT: Total activation time of the PMJs; #PMJs:
Estimated PMJs; and εmax < threshold, number of estimated PMJs connected to the PKN below a threshold error; AVG: Average
results; AVG>70: Average for cases with Link over 70%.
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5.3.2 Estimation of PKN from EAMs

A set of EAMs acquired from patients (summarized in Table 5.1) was used
to estimate the corresponding PKNs. First, the EAMs were analyzed to
detect problems with the LAT maps. It can be clearly seen in Figure 5.2
(top row) the existence of large gradients in the patient’s LAT maps, which
are mainly due to wrongly annotated LATs in the EAM. After the re-
annotation (Figure 5.2 bottom row), the LAT maps showed much smoother
transitions, and more physiological patterns of activation. Once the data
was filtered and re-annotated, we could estimate the PMJs, using more
reliable data at the cost of loosing many samples. Table 5.5, column ’#Pts’
indicates the final number of points available in each EAM after filtering,
which was on average 195.

For the estimation of PMJs, an optimal CV for tissue (CVT ) has to be esti-
mated for each case. Therefore, the estimation was carried out considering
a range of CVT between 0.4 m/s and 0.9 m/s, which is within a physiolog-
ical range. For each CVT , we obtained an estimation of the total number
of PMJs, the number of EAM samples that support each of those PMJs
(and their correlation), and the error ∆EAM after propagating from the
estimated PMJs to the endocardial samples. The best results were used as
an input to estimate the PKN.

The number of PMJs obtained from the real cases ranged from 11 to 51,
which was expected mainly due to the low number of endocardial samples
finally used to estimate them (between 73 and 387 samples), the errors in
the LAT maps and the sample location errors (a detailed geometry was not
used in almost any case). The error ∆EAM when directly activating from
the PMJs (PKN structure not considered) ranged from 3.61ms to 20.20ms,
with an average of 8.13ms ± 4.12 ms. This error can be explained looking
at the number of EAM samples that were compatible with any of the PMJs
estimated, which is included in Table 5.5, column labeled as ’Link’. It is
important to remark that during the estimation of the PMJs only a subset of
the EAM samples actually produced PMJs for a given CVT . i.e., the ’link’
factor. In general, when less than 70% of the samples generates PMJs,
LAT errors are large (> 10 ms). This is explained by the fact that, once
the propagation from PMJs is carried to the whole mesh, non-contributing
EAM samples are not in agreement with the LATs, increasing the error.
Therefore, the ’Link’ is a measure of confidence in the PKN estimation,
that can help assessing the accuracy together with the error ∆EAM . There
might be several reasons that explain small ’Link’ numbers such as, wrongly
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annotated samples, that make the map spatio-temporally incoherent, or
tissue inhomogeneities that produce local changes in CV that affect the
convergence of the inverse estimation. Attending only to estimated PMJs
with a Link over 70%, the average error ∆PMJs decreases to 6.10± 1.8 ms
(Table 5.5 last row).

As with the synthetic PKNs, the CV in the PKN (CVPK) had also to
be estimated. The algorithm estimated PKNs for velocities in the range
between 1.5 and 2.5 m/s on the best PMJ estimation solution, based on final
average error ∆PMJs. The final anatomy of the estimated PKN changes as
a function of the CVPK , since the sum of branch lengths has to shorten as
we increase CVPK for a given PMJ with a specific LAT. As can be observed
in Figure 5.5, for a given set of estimated PMJs, using a CVPK = 1.7m/s,
branches in the septum branch out earlier than the case of CVPK = 2.3
m/s. The arrival time at PMJs also changes, and therefore the LAT of
the PMJs differs (within the allowed threshold), resulting in different errors
and number of PMJs connected. For most of the cases, summarized in
Table 5.5, the optimal CVPK was between 1.7m/s and 2.1m/s, with an
average of 1.95 m/s, which resulted in more than 80% of PMJs connected
and average errors ∆PMJs under 1.3 ms (Table 5.5, column ’∆PMJs’). In
Appendix A.2, Figures A.8, A.9, A.10, show the estimated PKN for patients
P1 LV, P1 RV, and P2 RV, respectively.

For the PKN estimation, the maximum error allowed at a PMJ to connect
a branch to it, was set to εmax < 5ms, to keep average errors under a
reasonable threshold. The number of estimated PMJs connected to the
PKNs was in average 88%. Since in most scenarios estimated PMJs included
PMJs incorrectly estimated, we expected that the PKN algorithm filtered
some of them, and therefore a 100% connection was not desirable. In fact,
when more PMJs were connected to a PKN the average LAT error ∆PMJs

increased, which required a trade-off between PMJs connected and average
LAT error. We choose to get the maximum number of PMJs connected, with
a maximum average LAT error ∆PMJs below 1.3 ms. As can be observed
in Table 5.5, ∆PMJs was in average 0.76± 0.9 ms.

Figure 5.6 shows a comparison of LV LAT maps for five patients, including
the re-annotated EAMs used to estimate the PKN (first row), the PMJs
(spheres) estimated and the LAT map obtained when simulating from the
PMJs (second row), and the LAT map obtained when the activation was
triggered from the estimated PKN (third row). As can be observed, the PMJ
and PKN LAT maps are very similar, since most PMJs were connected
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Figure 5.5: PKN Estimated from patient P2 LV EAM using different conduction velocities
(CVs), from (a) 1.7 m/s to (d) 2.3 m/s. Colors correspond to the LATs. PMJs (spheres)
together with ∆PMJs and standard deviations (in ms) are included for each velocity,
together with the PMJs connected (εmax < 5ms) out of 37 PMJs estimated.

to the corresponding PKN and the LAT errors ∆PMJs were small (see
Table 5.5, column ’∆PMJs’). However, there are differences with respect to
the EAM, specially for the case of patient P1. EAM maps showed in the first
row are obtained after re-annotating the LAT of the endocardial samples
and interpolating the data. Therefore, it is important to take into account
that the resulting interpolated LAT map is not exactly the real activation
sequence of the patient, since the activation time range is bounded by the
earliest and latest sample acquired. Moreover, a Gaussian kernel is used
to interpolate the LATs, which introduces a smoothing effect that reduces
the range of the LATs. Overall, the best results were obtained for P5 LV,
P8 RV, and P9 (see see Table 5.5, column ’∆EAMs’). The reason for those
improved results was a larger number of EAM samples (above 300 in most
of them) together with a high Link factor (> 84%). On the contrary, worst
cases showed Link values around 63% and large errors. The number of
PMJs estimated did not correlate with the error, although the best cases
included more than 30 PMJs estimated, which is above the average (22
PMJs) in our study. There was an outlier, patient P6, that showed an
error ∆EAMs of 21.0 ms, which was really high compared with the rest of
cases. That particular case corresponded to a case with NICD (QRSd 138
ms), which probably had some problems at the level of the PKN, or the

91



estimation of personalized purkinje system

Figure 5.6: Comparison between projected LV LAT maps. Comparison for five patients
of the LAT maps corresponding to i) EAM re-annotated and interpolated (first row), ii)
Simulated LAT map from estimated PMJs (second row), iii) Simulated LAT map from
estimated PKN (third row). Maps are color-coded from t=0 ms (bluish regions) to t=100
ms (redish regions).

myocardial tissue, which hamper the estimation that assumes homogeneous
propagation on both media.

For the particular case of patient P12, the LATs annotated for each point in
the EAM were manually corrected by an expert, and inconsistent samples
removed. In addition, the endocardial anatomy was obtained from MRI,
and the EAM was mapped on it. As a result, we observed that a larger
proportion of PMJs could be estimated, compared to other cases with more
samples. In addition, both the number of PMJs connected and the average
errors were smaller.

For patient P13, we had two different EAM studies (P13A and P13B), which
were used to obtain two different estimations of the PMJ set. As can be
observed in Table 5.5 and Figure 5.7, the optimal CVs (2.3 m/s) in the
PKN matched for both ventricles in both cases. The estimated PMJs for
each study differs in the number of PMJs (e.g. LV (a) 17 vs (b) 21) and the
location of some of them. When the PKN was estimated, the final number
of PMJs was almost the same (LV (a) 16 vs (b) 19), and the sequence
of activation show a similar pattern with respect to early a late activated
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Figure 5.7: Comparison of PKNs estimated from two different EAM studies on the same
patient. LATs (first row) and Error at PMJs (second row) for (a) study 1 (P13A), and
(b) study 2 (P13B).
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Figure 5.8: Comparison between Simulated LAT and EAM for P12. LATs obtained by
simulating the patient P12, using the estimated PKN (upper-row), compared to patient
EAM (bottom-row). (a) Epicardial LATs on the 3D mesh (left) and equivalent projected
into a disk (right). (b) Endocardial LATs on the 3D mesh and projection of the LV into
a disk.

regions. Nonetheless, we did not observe a perfect coincidence between the
LAT maps, since the EAMs were not identical among them, despite they
were recorded from the same patient.

5.3.3 ECG simulation

To further validate the PKN method, we performed full biventricular bio-
physical simulation for patient P12, were the volumetric finite element mesh
was constructed. As can be observed in Figure 5.8, the EAM activation
sequences in the epicardium (a) and the endocardium (b), were properly
reproduced by the simulation, following the main patterns. The total acti-
vation times of EAM and simulation matched each other.

Finally, the extracellular potentials generated in the heart were propagated
to the torso surface to obtain the ECG. Figure 5.9 (a) shows the clinical ECG
recorded from the patient, while (b)-(d) correspond to simulations. Figure
5.9 (b) is the result of the activation triggered from the estimated PKN, in
which can be appreciated that the polarity of all precordial leads is in agree-
ment with the clinical data, as well as the timing and the evolution of the
amplitude from V1 (the most negative) to V5 (the most positive). Figure
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Figure 5.9: Comparison between real and simulated ECG of patient P12. (a) Clinical
patient ECG recorded at precordial leads in sinus rhythm. (b) Simulated ECG using
the estimated PKN. (c) Simulated ECG using discrete endocardial points to match Dur-
rer’s [26] activation sequence. (d) Simulated ECG using an stochastic PKN generated
using L-systems [7].

5.9 (c) corresponds to a sequence of activation that mimicked Durrer’s de-
scriptions [26], and is commonly used in modelling papers, while Figure 5.9
(d) corresponds to a sequence of activation triggered from a stochastic PKN
generated using the methodology described in [7, 60]. Both cases produce
non-physiological ECGs, which differ from the patient’s clinical recordings.

5.4 Discussion

In this chapter, we have presented a novel methodology to estimate a PKN
for a given patient by estimating its PMJs and branching structure from an
EAM. From the estimated model, it is possible to obtain information about
the PMJ locations (early activated regions) as well as to reproduce the
patient electrical sequence of activation using computer simulations. This
result is important since it has been demonstrated the role of the Purkinje
system in several types of cardiac arrhythmia, such as VT or idiopathic
VF [30]. The PKN cannot be directly observed invivo and it is very complex
to map with current clinical technology [23, 101]. That is one of the main
reasons why having accurate computer models of the PKN to carry out
biophysical simulations is so important. Clinically, a better knowledge of
the PKN structure of a patient showing VT triggered from the PKN could
help in the identification of ablation sites. Recently, it has been proposed
the use of ablation for “De-Networking” of the Purkinje system in cases in
which it has been implicated as a source of initiation of VF [102]. In those
cases, having information about PKN structure is fundamental to plan the
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ablation.

In the modeling literature the most common approach to build a PKN is
either manually [61, 62] or by developing random networks based on fractals
(L-systems) or following optimization criteria [60, 58, 91, 103, 104]. Some
authors have chosen to segment the proximal sections of the PKN in animals
such as dog [105] using Lugol’s solution or calf ([7]) using Indian ink. Many
computational studies simply neglect the PKN and focus on pathologies,
where there is little involvement of the ventricular conduction system, such
as scar-related VT [46, 75, 106, 93]. Having a more faithful PKN, able to
reproduce the sequence of activation of a specific patient with an error of a
few milliseconds, can help in virtual therapy planning and optimization of
RFA or cardiac resynchronyzation therapy (CRT) [5].

By means of a simulation study, we have verified that the methodology
presented is able to estimate the most relevant PMJs or early activated
areas with small spatio-temporal errors. In addition, the main bundles
of the PKN (anterior and posterior) could be properly reconstructed, and
most of the PMJs (>80%) successfully connected to the estimated PKN
considering physiological CVs in both tissue and PKN. In distal areas, where
the branching pattern is complex, the morphology could not be reproduced,
but only simplified representations of the PKN. It is important to remark
that since branch intersections are not allowed by design, the resulting PKN
is a tree instead of a closed network. Nonetheless, the estimated PKN can
reproduce the sequence of activation observed in the EAM of the patient,
avoiding the use of a random PKN with an arbitrary number of PMJs.

A few computational studies have also focused on the invivo estimation of
a compatible PKN from EAMs [69, 70, 71]. For instance, in [69], a complex
fractal-based PKN is built on the endocardium as a background network,
and following PMJs are either moved, removed or added to the network
to reduce the error ∆EAM . Our minimal PKNs, estimated from the data,
had less than 100 branches and 50 PMJs (see Table 5.5), while the fractal
models in [69] had between 1500 and 2500 branches, and 200 to 250 PMJs,
similar to our synthetic PKNs (see Table 5.2). Still, there is a remarkable
difference in the optimal CVPK obtained in our study that ranged between
1.7 and 2.1 m/s, compared to the 3.9 m/s obtained in [69], or 2.25 m/s used
in [105]. It is important to point out that the average conduction velocity
of 1.95m/s estimated in the PKN was very stable between cases, and can
be considered as a physiological parameter for the human PKN. We avoid
to perform a CV over-fitting, that is, adapting locally the CV in different
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regions so that our simulation match exactly the clinical data. Instead, we
opt for a global optimization of the CV within physiological ranges, which
is what would be expected in a real PKN.

One of the main advantages of the method proposed is that the PKN is built
estimating the optimal branches for the estimated PMJs, while other meth-
ods build first a generic PKN, and then place the PMJs which cannot have
an optimal LAT since the CV is fixed. In such approach, one could place
the PMJs exactly on each of the endocardial EAM samples, and use the
measured LAT, obtaining an error ∆EAMs of 0 ms. However, that will not
correspond with the PKN of the patient. In our approach, each of the PMJs
that is placed in our model can explain the activation of many endocardial
samples, i.e., it is compatible with their spatio-temporal location given a
global CV. Hence, we do not have a PMJ associated to each endocardial
sample, which in general should not have any spatial relationship.

It is important to point out that sparse EAMs or wrongly annotated ones
will cause a reduction in the number of estimated PMJs, which in turn could
generate poor PKNs with larger errors in the activation maps. In this study,
after filtering the patient EAMs, the number of endocardial samples was
always under 400 points, which makes it difficult to obtain a large number
of estimated PMJs. Four of the PKN models, namely P8 and P9 (LV and
RV), which showed smaller errors, correspond to high density EAMs. That
is why it is key the use of high-dense maps such a those provided by multi-
polar catheters. However, we did not observe a direct relationship between
the number of PMJs estimated for a given model and the final error at the
EAM samples. One of the most relevant measures of quality is the Link
percentage. Therefore, estimated PKN with a ’Link’ factor (percentage of
EAM samples that gave rise to PMJs) under 70% should be considered
carefully or discarded, since the PKN will not be able to reproduce the
sequence of activation in at least 30% of the samples. This turns out in
average errors above 10 ms, which cannot be considered a patient-specific
activation. We had this problem in 8 out of 28 PKN models estimated.
Those studies will require a careful revision of EAM LATs, and analysis of
local inhomogeneities.

Other studies have reported mean absolute errors at the endocardial mesh,
using an estimated PKN, between 4.9 ± 4.1 ms and 7.4 ± 6.6 ms [69], and
5.8±4.5 ms in [72], but using EAMs provided by EnSite NavX system with
a number of endocardial samples between 172290 to 571382, and patient
geometry segmented from MRI. It is difficult to compare those errors with
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the ones reported in Table 5.5, since our EAMs had in average 195 sam-
ples. Errors obtained in our models fitted to a segmented LV endocardium
were 6.42 ms (219 EAM samples) for patient P12, and 5.61 ms (118 EAM
samples), and 6.39 ms (151 EAM samples) for the two maps of P13. Includ-
ing all cases, if we attend to PKNs with Link higher than 70% (Table 5.5,
AVG>70), the average error at EAM from the PKN was 6.10± 1.8 ms.

Finally, we showed by means of biophysical simulations that the sequence of
activation generated by the patient-specific PKN in patient P12 produced
as a result a virtual ECG comparable to the patient one. In addition, virtual
ECGs on the same geometrical model generated by stochastic procedures
or following descriptions from the literature resulted in non-physiological
ECGs. To our knowledge, other studies that try to estimate the PKN have
never obtained the corresponding ECGs by simulation. Although, previous
studies on synthetic PKN such as [103, 45] obtained simulated ECGs to
compare the effect of model parameters or simulate His-Bundle pacing in
different scenarios [107].

5.5 Conclusions

We have estimated the PKN from a set of 28 EAMs from patients with
idiopathic ventricular fibrillation, obtaining an optimal conduction velocity
in the PKN of 1.95 ± 0.25 m/s, the location of PMJs, the PKN structure,
and an average local activation time error of 6.1±2.2 ms. Using the patient-
specific Purkinje network, we show good agreement between simulated and
real ECG in an exemplary case.

In conclusion, I believe that incorporating more personalized information to
the biophysical models of the heart, or even into the EAM systems, could
help in therapy planning and optimization. The use of computer models to
optimized therapies require not only the personalization of the anatomy of
the heart but also their electrical properties. In that sense, having a more
personalize PKN model and sequence of activation that help to understand
patient particularities or enable to study the effect of different treatments
on the ECG would be fundamental.

On the other hand, if the estimation method developed would be integrated
into an EAM navigation system, the sources of activation could be esti-
mated during an intervention, and the mapping could be guided, acquiring
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samples on areas with higher uncertainty, and improving the robustness of
the results.
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6.1 Summary

The PKN is a network responsible for the fast transmission of the electrical
impulses that trigger the ventricular depolarization [108, 109]. Clinically,
the PKN structure is very relevant since it is responsible for the initiation
and maintenance of life-threatening arrhythmias [28, 29]. For instance, it
is known that some His-Purkinje system-related macro re-entry ventricular
tachycardia (VT) are triggered or supported by the PKN, and that the
ablation of specific Purkinje-myocardial junctions (PMJs) or bundles can
stop the arrhythmia [30, 31].

From a geometrical point of view, it can be seen as a set of interconnected
1D cables, that branch and anastomose, connecting to the underlying endo-
cardial tissue at discrete locations, known as PMJs. The tubular structures
are so thin that can not be differentiated with clinical imaging acquisition
techniques such as magnetic resonance imaging (MRI) or computed tomog-
raphy (CT). Therefore, the characterization or reconstruction of the PKN
from patient-specific human data is a challenging problem ([91]). In humans,
high-resolution imaging techniques have allowed only the segmentation of
proximal sections of the PKN from images acquired ex-vivo in combination
with specific markers [110, 23, 11]. In animals, several studies have analyzed
and modeled either the proximal sections macroscopically [105, 63, 7], or
random sections observed with the combination of confocal microscopy and
specific inks [18, 19].

A potential way to reconstruct the PKN is to estimate it inversely from
electrical activation sequences from the endocardium by means of EAMs.
EAMs can be acquired invivo, using catheters that map the electrical ac-
tivity of a patient in real-time, producing a spatio-temporal map of the
activation sequence. Therefore, the structure can be estimated not from
images but from the electrical sequence that produces when it activates.

Some methods have already being presented to estimate the PKN from
EAMs, by building an initial random network and following reducing the
error by moving, adding or pruning branches ([72]) or looking for local
minima from EAMs ([71]). However, the goal of those methods was to gen-
erate random PKNs compatible with the observed EAM, and not estimating
the PKN from the data, or other parameters such as conduction velocities
(CVs).

The main goal of this thesis was to develop a methodology that allowed
the estimation of the ventricular PKN from EAMs, including the PMJ lo-
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cation and PKN structure, that can reproduce patient-specific activation
sequence. To accomplish the goal, several methods have been developed so
that estimation can be obtained from continuous 2D domains, as well as
from discrete 3D domains provided by clinical EAM systems. As a result,
patient specific PKN can be estimated from clinical EAMs, to personal-
ize biophysical simulations of cardiac electrophysiology, aiming to help in
therapy delivery planning and optimization.

In this thesis, I have evaluated the different methods using synthetic scenar-
ios in which results could be quantitatively evaluated, and the accuracy of
the estimated PMJs and PKN could be analyzed under different conditions.
The developments have been carried out by increasing the level of complex-
ity of the data to be analyzed, starting from simple 2D tissue sheets, to a
3D endocardial domain that included Gaussian noise in the samples, and
ending with real EAM data. Therefore, I could analyze the performance of
the estimation algorithm.

6.2 Main findings

In Chapter 3, I have presented a novel methodology to estimate, from virtual
EAMs, the location and activation time of the sources of electrical activa-
tion, known as PMJs, in a 2D simplified model of cardiac tissue. Therefore,
using the location and the corresponding LATs of these estimated PMJs, I
can obtain the activation map (simulating a diffusion from these PMJs to
the tissue considered).

The following conclusions can be dragged from the numerical results shown
in Chapter 3. The proposed method can detect any PMJ if enough mea-
surement points are available, that is, when the scenario has an appropriate
ratio between the number of PMJs and samples acquired. It must be ob-
served that in order to detect all PMJs, it is needed to sample, at least,
with a density three times higher than the highest density of PMJs. When
clustered PMJs appear, many of them are virtually impossible to be de-
tected with the current setup. However, in those scenarios the method still
shows a good performance, since many clustered PMJs are non-effective or
have a very local impact in the overall activation map. This is confirmed
by the mean absolute errors obtained when using estimated PMJs, which
are low in all the scenarios (including clustered) for EAMs with more than
600 samples acquired. With low density EAMs (< 250 samples) the method

103



conclusions

might perform poorly in dense PMJ scenarios. Compared to previous meth-
ods [71], our method outperforms in all scenarios tested when the number
of measurement points is greater than 250.

In Chapter 4, I have presented a methodology to estimate the sources of
electrical activation in the ventricles, that in normal conditions will corre-
spond to PMJs hotspots. From the electrical information recorded with an
EAM system at discrete locations, the method could provide the location
and activation times of the electrical triggers with an error bounded by the
measurement system error. The errors in location and activation times ob-
tained are small enough to permit the accurate simulation of sequences of
activation in biophysical models of cardiac electrophysiology. In areas where
a large number of PMJs exist, the system would recover a representative set
of source points that can predict the combined effect of all the real PMJs
with a low absolute error. Non-clustered PMJs can be located with high
precision, even when Gaussian noise is incorporated in the samples.

Finally, the number of endocardial electrical samples required by the method
is well within standard clinical EAM procedures, which makes it more appli-
cable. I consider that widely used EAM systems such as CARTO3 (Biosense
Webster, Inc), Ensite NavX (St. Jude Medical), or the new Rhythmia sys-
tem (Boston Scientific), can acquire more than 1000 samples in times that
are compatible with an intervention in the EP lab. The location of the
PMJs could be useful to reproduce the activation sequence of a given pa-
tient in the model, or to plan RFA therapies that target the PMJs to stop
a macro-reentrant tachycardia.

Finally, in Chapter 5, I have developed a methodology to build the structure
of the PKN that is compatible with the PMJs previously estimated with the
minimum number of branches. I have analyzed by means of a simulation
study the errors in the activation sequence using estimated PKNs, and I have
obtained a very high accuracy (average LAT errors < 1 ms) on synthetic
PKNs.

I have also applied successfully the methodology to a cohort of 28 real EAMs
(from LV and RV) acquired in sinus rhythm from patients suffering from
VT and VF. Results were consistent among cases, showing an optimal CV
in the PKN of 1.95±0.25 m/s, and an average number of estimated PMJs of
25. Average errors in the sequence of activation using the personalized PKN
were 6.10± 2.2 ms for cases where EAMs had a good spatio-temporal con-
sistence. The number and distribution of EAM points on the endocardial
surface, as well as the proper annotation of LATs, are critical for a correct
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estimation of the PKN model. Otherwise, the number of EAM points that
generated PMJs decreases, making it harder to have an overall accurate
estimation of the sequence of activation by the estimated PKN. The result-
ing estimated PKN structure used in a patient-specific biophysical model
of the heart allows the personalization of the sequence of activation, and as
results showed for an exemplary patient, permit to obtain an accurate in-
silico ECG for the patient. Therefore, the model can be used to analyze the
patient status, and to plan different types of interventions in cases where
the PKN is target for RFA interventions.

In conclusion, the methods and pipeline developed in this thesis have shown
the potential to go one step beyond towards personalization of the biophys-
ical models of the heart. In addition, the information about the PMJ dis-
tribution and PKN structure, can be used to gain knowledge about patient
particularities before an intervention planning.

One of the major advantages of using the developed methodology is the
possibility to study different scenarios such as the implantation of a pace-
maker that interacts with the PKN, or the most probable locations where
PMJs are located when they are targets for RFA.

The translation into the clinical environment does not require experts in the
field of modeling and simulations, or time consuming tasks such as segmen-
tation, modeling and biophysical simulations, since the only requirement is
the patient’s EAM. Therefore, the most important limitation is the quality
of the EAMs, which should be dense and well annotated.

The methodology could be easily integrated into already available clinical
tools for planning interventions without a big effort, since the methods used
in the thesis are standard and available in open-source scientific software
packages.

6.3 Contributions

The thesis presents the following contributions, related to the main goals:

• Estimation of electrical sources of activation on a tissue sheet.
A method to estimate the location and activation time of a set of
discrete points that have triggered the activation on a sheet of tissue
is developed. The methodology works on an infinite and continuous

105



conclusions

2D tissue sheet, and solves an inverse problem to locate the origin of
the activation. The accuracy of the method is presented for several
distributions of triggering points and sample points.

• Estimation of PMJs from ventricular endocardium on syn-
thetic 3D models. The methodology developed previously is ex-
tended to work on 3D discrete meshes of the ventricles, such as those
obtained from EAM systems. The methodology is analyzed on a series
of synthetic 3D PKN models created with different parameters, and
for several noise levels.

• Estimation of PKNs from endocardial EAMs acquired in real
patients. A method to estimate the most plausible simplified PKN
structure of a patient based on his EAM is presented. The method is
based on the estimation of PMJs, and minimizes the activation error
with respect to the patient EAMs considering physiological conduction
velocities. The methodology has been successfully applied to a set
of real EAMs showing small errors in the LAT maps. In addition,
the use of a personalized PKN on a patient model, combined with
biophysical simulations, has shown a good match between simulated
and real ECGs.

• Clinical contributions The methodology presented could estimate
the PKN of several patients, showing the most probable location of
PMJs and main PKN branches, to plan RFA interventions that target
the PKN as a source of arrhythmias. In addition, I have developed
software to annotate automatically the samples of EAMs, and ob-
tain the LAT. Finally, I have made use of a quasi-conformal mapping
technique to simplify the visualization of LAT maps, and to be able
to compare data between patients that can be very useful in clinical
environments.

6.4 Limitations

There are several limitations of the work presented that are summarized in
the following paragraphs.

One of the drawbacks of the methodology presented is that it requires a
few parameters such as the system measurement error, which is the sum of
the error location and the automatic LAT annotation. This information,
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however, can often be retrieved from the manufacturer of the EAM device
used. In addition, the method has to be applied to a large cohort of patient
specific EAMs in order to analyze the distribution of PMJs in real cases,
and not only in simulated data, to draw meaningful clinical conclusions.

On the other hand, our estimated PKNs are trees, and not networks with
closed loops as the ones observed in real Purkinje networks at both proximal
([110, 23]) and terminal sections ([21]). That feature provides the network
with resiliency in case of local conduction blocks, or damage of part of the
tissue. A complete looped PKN could be required to model pathologies such
as bundle branch block, macro-reentries that involve the Purkinje system,
or treatments such as cardiac resynchronization therapy. Since I cannot
estimate the location of those loops, I choose not to add them synthetically.
However, if desired, loops could be created in the required density, without
altering the LATs at the PMJs.

The location of the estimated PMJs depends indirectly on the location
of the endocardial samples acquired in the cathlab, and therefore, non-
homogeneous maps will give rise to unbalanced PMJ distributions and PKN
morphologies. An homogeneous sampling is therefore required to obtain
meaningful PKNs that can be compared among patients.

It is important to remark that I could not validate the morphology of the
PKN, or the location of the estimated PMJs in real patients, since all the
studies are performed in vivo. However, the results obtained in synthetic
PKN showed that the estimated PKNs were similar to the original ones
(comparing distance and angles), and the location of estimated PMJs was
close to original one. Nonetheless, to obtain accurate results, the number
of endocardial samples, and their LAT error should be bounded.

Finally, I observed that in patients with pathologies that affect conduction
velocities, such as patient P6 (NICD), the error ∆EAMs increases with re-
spect to other cases. That inhomogenous activation which might affect the
PKN should be specially treated, and probably consider several CVs on the
PKN to account on local delays.

6.5 Future Work

Although the methodology presented has fulfilled the goals of the thesis,
and has shown good accuracy on both, synthetic and real data, there are
still some improvements that could be developed in the future.
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The first and most direct improvement is the extension of the PKN to
include loops. Since it is reported that the PKN forms closed loops [15, 7],
it would be interesting to add them once the PKN is estimated. In that
sense, the loops synthetically generated should not alter the estimated LAT
at the PMJs. A potential way to personalize a PKN with loops would be to
obtain EAMs under pace mapping, so that the activation of the ventricle,
when the PKN is retrogradely activated, can be used as an additional source
of information.

A second extension should involve the direct validation of the estimated
PKN. The validation could be carried out on animal models, where a EAM
could be acquired and subsequently analyzed histologically to search for the
location of PMJs and PKN branches. In such a case, the species selected
should be similar to humans with respect to the Purkinje system. For
instance, pigs are known to have an intramural Purkinje system [22], and
therefore would not be useful as an animal model.

A third important improvement would be to consider variable conduction
velocities within the PKN for cases in which the conduction is impaired
inside the PKN due to specific pathologies. This is important to be able to
estimate the PKN in specific pathological scenarios, where having informa-
tion about its morphology would be key.
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4. Barber F., M. Lozano, I. Garćıa-Fernández, R. Sebastian. Auto-
matic location of sources of electrical activation from electrophysiology
maps. Computing in Cardiology, Vol. 43, pp. 445–448. Vancouver,
Canada, 2016

110



A

Appendix

111



A.1 Complete catalogue of PMJ estimation
results from synthetic PKNs

In Appendix A.1 we can find all the information and results for the 20 PKN
models described in Chapter 4. Tables A.1 and A.2 contain the information
and results for all scenarios with 1000 measurement points and Gaussian
noise with standard deviation of 0.5 and 2.5 respectively. Figures A.1, A.2
and A.3 contain the plots of the absolute error for all scenarios and figures
A.4, A.5 and A.6 contain the plots of the distance from the estimated PMJs
to the nearest real PMJ for all scenarios.
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Scenario Gaussian Error 0.5

Num. PMJ Density TAT pkj(ms) TAT(ms) Est. PMJ (%) Abs. Error(ms) D. Fe-F(mm)

PK1 1128 94.1 ± 0.7 10.0 51.5 91 ± 4 (8.0) 0.69 ± 0.03 1.19 ± 0.19
PK2 1184 79.6 ± 0.9 14.8 49.9 105 ± 4 (8.9) 0.78 ± 0.05 1.18 ± 0.12
PK3 831 51.9 ± 1.1 15.6 47.4 95 ± 3 (11.4) 0.67 ± 0.03 1.16 ± 0.11
PK4 362 22.6 ± 0.7 12.7 35.1 103 ± 4 (28.3) 0.68 ± 0.04 1.34 ± 0.15
PK5 785 56.1 ± 0.9 14.8 49.8 83 ± 4 (10.6) 0.61 ± 0.03 1.05 ± 0.10
PK6 1224 76.5 ± 0.7 11.3 33.0 116 ± 2 (9.5) 0.82 ± 0.03 1.08 ± 0.03
PK7 212 13.3 ± 0.7 11.3 34.1 86 ± 3 (40.7) 0.59 ± 0.02 1.36 ± 0.08
PK8 647 40.4 ± 0.6 14.8 32.4 124 ± 3 (19.2) 0.87 ± 0.03 1.38 ± 0.09
PK9 203 14.5 ± 0.7 11.6 39.9 70 ± 3 (34.4) 0.52 ± 0.02 1.37 ± 0.14
PK10 663 44.2 ± 0.6 12.7 31.9 124 ± 5 (18.8) 0.87 ± 0.03 1.33 ± 0.09
PK11 442 27.6 ± 0.6 12.8 34.5 108 ± 3 (24.5) 0.75 ± 0.04 1.41 ± 0.13
PK12 434 28.9 ± 0.7 13.2 33.4 98 ± 6 (22.5) 0.67 ± 0.03 1.22 ± 0.09
PK13 435 29.0 ± 0.7 11.2 37.4 90 ± 4 (20.7) 0.64 ± 0.02 1.29 ± 0.07
PK14 213 13.3 ± 0.7 12.3 34.7 89 ± 5 (41.8) 0.61 ± 0.03 1.45 ± 0.12
PK15 206 14.7 ± 0.6 13.5 35.5 86 ± 4 (41.6) 0.60 ± 0.04 1.34 ± 0.15
PK16 217 13.6 ± 0.6 15.3 38.5 93 ± 3 (42.8) 0.64 ± 0.03 1.39 ± 0.11
PK17 208 13.9 ± 0.6 12.2 32.2 88 ± 3 (42.2) 0.60 ± 0.03 1.33 ± 0.08
PK18 215 12.9 ± 0.8 15.4 35.3 95 ± 3 (44.0) 0.66 ± 0.04 1.50 ± 0.11
PK19 376 23.5 ± 0.7 18.1 36.0 107 ± 2 (28.4) 0.73 ± 0.02 1.42 ± 0.10
PK20 389 24.3 ± 0.6 13.3 33.0 119 ± 5 (30.5) 0.83 ± 0.03 1.44 ± 0.09

Table A.1: Information and results for all 3-dimensional scenarios with 1000 measurement points and Gaussian noise with standard
deviation of 0.5. PMJs represents the number of PMJs in the scenario, Density is the density and standard deviation of PMJs per
segment (17 AHA segment division), TAT pkj is the Total Activation Time of the Purkinje Network, TAT is the Total Activation
Time for the whole surface/ventricle, Est. PMJs is the number of estimated PMJs by the algorithm, Abs. Error is the mean of the
absolute error in all the points of the mesh and D. Fe-F is the distance from an estimated PMJs to the nearest real PMJ.
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Scenario Gaussian Error 2.5

Num. PMJ Density TAT pkj(ms) TAT(ms) Est. PMJ (%) Abs. Error(ms) D. Fe-F(mm)

PK1 1128 94.1 ± 0.7 10.0 51.5 53 ± 3 (4.7) 1.64 ± 0.16 3.37 ± 0.76
PK2 1184 79.6 ± 0.9 14.8 49.9 55 ± 2 (4.6) 1.66 ± 0.12 2.45 ± 0.38
PK3 831 51.9 ± 1.1 15.6 47.4 56 ± 5 (6.8) 1.63 ± 0.14 2.71 ± 0.41
PK4 362 22.6 ± 0.7 12.7 35.1 62 ± 3 (17.0) 1.74 ± 0.13 2.84 ± 0.18
PK5 785 56.1 ± 0.9 14.8 49.8 51 ± 3 (6.5) 1.56 ± 0.23 2.62 ± 0.48
PK6 1224 76.5 ± 0.7 11.3 33.0 62 ± 5 (5.0) 1.74 ± 0.10 1.92 ± 0.27
PK7 212 13.3 ± 0.7 11.3 34.1 59 ± 4 (27.7) 1.60 ± 0.10 2.91 ± 0.24
PK8 647 40.4 ± 0.6 14.8 32.4 62 ± 5 (9.6) 1.79 ± 0.10 2.18 ± 0.21
PK9 203 14.5 ± 0.7 11.6 39.9 46 ± 4 (22.8) 1.42 ± 0.18 4.04 ± 0.88
PK10 663 44.2 ± 0.6 12.7 31.9 66 ± 8 (9.9) 1.85 ± 0.10 2.39 ± 0.31
PK11 442 27.6 ± 0.6 12.8 34.5 63 ± 3 (14.2) 1.74 ± 0.11 2.58 ± 0.33
PK12 434 28.9 ± 0.7 13.2 33.4 56 ± 5 (12.9) 1.64 ± 0.08 2.63 ± 0.25
PK13 435 29.0 ± 0.7 11.2 37.4 55 ± 5 (12.6) 1.63 ± 0.12 3.03 ± 0.66
PK14 213 13.3 ± 0.7 12.3 34.7 56 ± 3 (26.3) 1.56 ± 0.14 2.73 ± 0.26
PK15 206 14.7 ± 0.6 13.5 35.5 53 ± 4 (25.8) 1.67 ± 0.10 3.21 ± 0.33
PK16 217 13.6 ± 0.6 15.3 38.5 56 ± 3 (26.0) 1.57 ± 0.08 2.88 ± 0.32
PK17 208 13.9 ± 0.6 12.2 32.2 56 ± 4 (26.8) 1.59 ± 0.11 3.16 ± 0.34
PK18 215 12.9 ± 0.8 15.4 35.3 57 ± 3 (26.7) 1.62 ± 0.10 3.20 ± 0.27
PK19 376 23.5 ± 0.7 18.1 36.0 60 ± 3 (15.9) 1.69 ± 0.10 2.59 ± 0.25
PK20 389 24.3 ± 0.6 13.3 33.0 63 ± 4 (16.2) 1.75 ± 0.06 2.47 ± 0.19

Table A.2: Information and results for all 3-dimensional scenarios with 1000 measurement points and Gaussian noise with standard
deviation of 2.5. PMJs represents the number of PMJs in the scenario, Density is the density and standard deviation of PMJs per
segment (17 AHA segment division), TAT pkj is the Total Activation Time of the Purkinje Network, TAT is the Total Activation
Time for the whole surface/ventricle, Est. PMJs is the number of estimated PMJs by the algorithm, Abs. Error is the mean of the
absolute error in all the points of the mesh and D. Fe-F is the distance from an estimated PMJs to the nearest real PMJ.
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Figure A.1: Plots of the absolute error for scenarios PK1 to PK8.
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Figure A.2: Plots of the absolute error for scenarios PK9 to PK16.
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Figure A.3: Plots of the absolute error for scenarios PK17 to PK20.
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Figure A.4: Plots of the distance from estimated PMJs to real PMJs for scenarios PK1
to PK8.
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Figure A.5: Plots of the distance from estimated PMJs to real PMJs for scenarios PK9
to PK16.

119



appendix

 0

 1

 2

 3

 4

 5

 6

 0  500  1000  1500  2000

D
is

ta
n
c
e
 (

m
m

)

Number of measurement points

Distance FE-F in scenario PK17

 0

 1

 2

 3

 4

 5

 6

 0  500  1000  1500  2000

D
is

ta
n
c
e
 (

m
m

)

Number of measurement points

Distance FE-F in scenario PK18

 0

 1

 2

 3

 4

 5

 6

 0  500  1000  1500  2000

D
is

ta
n
c
e
 (

m
m

)

Number of measurement points

Distance FE-F in scenario PK19

 0

 1

 2

 3

 4

 5

 6

 0  500  1000  1500  2000

D
is

ta
n
c
e
 (

m
m

)

Number of measurement points

Distance FE-F in scenario PK20

Measure error 0.0

Measure error 0.5

Measure error 1.5

Measure error 2.5

Measure error 5.0

Figure A.6: Plots of the distance from estimated PMJs to real PMJs for scenarios PK17
to PK20.
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A.2 Additional PKN models estimated from
synthetic data and patient EAMs

In Appendix A.2 we include additional figures about estimated PKN struc-
tures for cases not included in Chapter 5.

Figure A.7: Complete views for estimated and real synthetic PK3.



appendix

Figure A.8: Estimated PKN for P1 LV EAM for different CVs. Colors correspond to
the LATs. PMJs (spheres) together with ∆PMJs and standard deviations (in ms) are
included for each velocity, together with the PMJs connected (εmax < 5ms).

Figure A.9: Estimated PKN for P1 RV EAM for different CVs. Colors correspond to
the LATs. PMJs (spheres) together with ∆PMJs and standard deviations (in ms) are
included for each velocity, together with the PMJs connected (εmax < 5ms).
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a.2. additional pkn models estimated from synthetic data and
patient eams

Figure A.10: Estimated PKN for P2 RV EAM for different CVs. Colors correspond to
the LATs. PMJs (spheres) together with ∆PMJs and standard deviations (in ms) are
included for each velocity, together with the PMJs connected (εmax < 5ms).
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