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Abstract / Resumen

Abstract Nowadays, cardiac arrhythmias are among the leading causes
of mortality in the world and impose a huge healthcare burden on society.
Ventricular tachy-arrhythmias are responsible for 80% of the 350 000 sud-
den cardiac deaths occurring each year in Europe. Over the last years, new
technologies are facilitating the patient-specific management of cardiac ar-
rhythmias such as high resolution clinical imaging (MRI, CT) that allows to
characterize the heart substrate in pathological regions; electro-anatomical
mapping (EAM), that provides invasive electrical information of the pa-
tient’s heart and enables real-time intracardiac navigation using catheters;
or radiofrequency ablation (RFA), which allows to eliminate pathological
tissue in the heart that is triggering or sustaining an arrhythmia.

However, due to the complexity of the disease, long-term treatment success
rates remain low (success rates in the range of 60 to 65%), even though well-
developed clinical guidelines for management of ventricular tachycardia have
been developed. Therefore, there is a compelling need to improve clinical
outcomes for the benefit of the patients and the healthcare system.

Computational models that reproduce the heart electrical behaviour have
proved to be a valuable instrument for better understanding the biophysics
of cardiac electrophysiology, and have the potential to improve patient man-
agement, therapy planning and delivery. Those models permit to integrate
disparate information from several clinical sources (MRI, EAM, ECGs) into
a single reference system to build a patient-specific model, that combined
with multi-scale biophysical models of the heart can produce realistic sim-
ulations of cardiac electrophysiology from cell to body level.

To date, computer-based personalised approaches have not penetrated into
clinical practice, which can be attributed to several reasons. One of the
major drawbacks that have prevented simulation-based technology to reach
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clinical environments has been the complexity inherent in the patient-specific
model building, which requires expertise in several areas such as imaging,
mathematics or computer science. In addition, running detailed simulations
of the heart is computationally demanding, and usually needs high perfor-
mance computing facilities. To overcome these limitations while integrating
all possible afore-mentioned imaging and signal information, we propose to
use advanced biophysical models and disparate clinical data as training tools
that can be used as an input to artificial intelligence systems. In that way
simulations can be carried out by engineers, off-line in specialized facilities,
with the supervision of medical doctors that have to check their accuracy.
This novel approach can take into account a large variety of scenarios, that
can help decision support systems to provide recommendations on therapy
planning of interventions such as RFA.

The main purpose of this thesis was to develop personalised cardiovascular
therapy guided by multimodal noninvasive imaging and simulations com-
bined with artificial intelligence tools for the management of idiopathic
ventricular tachycardias with origin in the ventricular outflow tracts. In
summary, the main contributions of this thesis are twofold:

• Pipeline for the simulation of cardiac arrhythmias: we propose a
pipeline to build computational models of the heart for simulation
of ventricular tachycardias, that incorporates a new specific rule-base
method to calculate the myocardial fiber orientation of the ventricles.
This method includes specific fiber orientation of the right ventricle,
the inter-ventricular septum and both outflow tracts. The pipeline
allows to carry out simulations from cell to body level, and therefore
obtain the virtual ECG of each patient for different scenarios. In ad-
dition, the methodology permits to perform in silico pace mapping in
patient-specific models in order to train machine learning based tools.

• System for predicting the site of origin of ventricular tachycardias:
we have developed a tool to exploit the results from in silico pace
mapping in the ventricles in two different ways. First, we can analyse
the patient’s ECG pre-operatively and compare it with the results of
our simulated data to analyse the most probable site of origin of the
tachycardia. In cases in which we do not have imaging data from the
patient, we classify the patient ECG by machine learning techniques
to predict the site of origin. The artificial intelligence models are
trained with all the previous available information which are mainly
simulations, but also previous clinical data from interventions.
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Resumen Las arritmias card́ıacas son unas de las principales causas de
mortalidad en el mundo y suponen un reto para el sistema sanitario actual.
Particularmente, las taquicardias ventriculares son responsables del 80% de
los 350000 casos de muerte súbita que se registran cada año en Europa.
En los últimos años el tratamiento de las arritmias se ha visto facilitado
con la aparición de nuevas tecnoloǵıas que usan datos espećıficos del pa-
ciente como pueden ser las imágenes cĺınicas de alta resolución (MRI,CT)
que nos permiten caracterizar el sustrato en regiones patológicas; los ma-
pas electro-anatómicos (EAM), que proporcionan información sobre la ac-
tivación eléctrica obtenida de manera invasiva y permiten la navegaćıon
intracard́ıaca usando catéteres o la ablación por radiofrecuencia (RFA) que
nos permite eliminar el sustrato patológico del corazón que desencadena
o mantiene la arritmia. Sin embargo, debido a la complejidad de la en-
fermedad, las tasas de éxito del tratamiento a largo plazo siguen siendo
bajas (tasas de éxito en el rango de 60 a 65 %), a pesar del desarrollo de
gúıas cĺınicas detalladas para el tratamiento de la taquicardia ventricular.
Por lo tanto, existe una alta necesidad de mejorar los resultados cĺınicos en
beneficio de los pacientes y el sistema sanitario.

Los modelos computacionales de electrofisioloǵıa card́ıaca han demostrado
ser una herramienta útil para comprender mejor los principios biof́ısicos
de la electrofisioloǵıa card́ıaca y tienen el potencial de mejorar el manejo
del paciente y la planificación y optimización de la terapia. Estos mode-
los permiten integrar información diversa de varias fuentes cĺınicas (MRI,
EAM, ECG) en un solo sistema de referencia para construir un modelo es-
pećıfico para el paciente, que combinado con modelos biof́ısicos del corazón
a múltiples escalas permiten realizar simulaciones realistas de la electrofisi-
oloǵıa card́ıaca teniendo en cuenta la fisioloǵıa desde el nivel celular a nivel
de órgano y cuerpo completo.

Hasta la fecha, los enfoques basados en modelos personalizados basados por
computador no han penetrado en la práctica cĺınica, lo cual puede atribuirse
a varias razones. Uno de los principales inconvenientes que ha impedido que
la tecnoloǵıa basada en simulación llegue a entornos cĺınicos ha sido la com-
plejidad inherente a la construcción de modelos espećıficos del paciente,
que requiere experiencia en varias áreas de conocimiento, como la imagen
médica, las matemáticas o la informática. Además, ejecutar simulaciones
detalladas del corazón es computacionalmente costoso y, por lo general, re-
quiere instalaciones informáticas de alto rendimiento. Para superar estas
limitaciones e integrar todas las posibles modalidades de imágenes e infor-
mación de señales mencionadas anteriormente, proponemos utilizar modelos
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biof́ısicos avanzados y datos cĺınicos multimodales como datos de entrada
en sistemas de inteligencia artificial. De este modo, los ingenieros pueden
realizar simulaciones en instalaciones especializadas, con la supervisión de
médicos que deben verificar su precisión y desempeño. Este novedoso en-
foque tiene en cuenta una gran variedad de escenarios, que pueden servir
para ayudar a los sistemas de apoyo a la decisión a proporcionar recomen-
daciones sobre la planificación del tratamiento de distintas intervenciones
como la ablación por radiofrecuencia.

El objetivo principal de esta tesis es desarrollar una terapia cardiovascu-
lar personalizada guiada por información multimodal no invasiva y sim-
ulaciones, combinadas con herramientas de inteligencia artificial, para el
manejo de taquicardias ventriculares idiopáticas originadas en los tractos
de salida del ventŕıculo. En resumen, las principales contribuciones de esta
tesis son dos:

• Un flujo de trabajo para la simulación de arritmias card́ıacas: pro-
ponemos un procedimiento para construir modelos computacionales
del corazón con el fin de simular taquicardias ventriculares, que in-
cluye un nuevo modelo espećıfico (basado en reglas) para calcular la
orientación de fibras en el miocardio y en los tractos de salida de
los ventŕıculos. Este flujo de trabajo permite realizar simulaciones
desde la escala celular hasta la escala de cuerpo completo y, por lo
tanto, obtener el ECG virtual de cada paciente en diferentes escenar-
ios. Además, la metodoloǵıa permite realizar mapas de estimulación
in silico en modelos card́ıacos personalizados a paciente para poder
entrenar herramientas basadas en aprendizaje automático.

• Un sistema para predecir el lugar de origen de las taquicardias ventric-
ulares: hemos desarrollado una herramienta para explotar los resul-
tados de los mapas de estimulación in silico en los ventŕıculos de dos
maneras diferentes. Primero, analizando el ECG del paciente antes de
la operación y comparándolo con los resultados de nuestros datos sim-
ulados para estudiar el sitio de origen más probable de la taquicardia.
En los casos en los que no tenemos datos de imágenes del paciente,
clasificamos el ECG del paciente mediante técnicas de aprendizaje au-
tomático para predecir el sitio de origen. Los modelos de inteligencia
artificial están entrenados con toda la información previa disponible,
que son principalmente ECGs simulados, pero también datos cĺınicos
previos de las intervenciones.
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1.1 The heart

1.1.1 Anatomy and function

The heart is a muscular organ located in the central region of the thorax,
in the middle and lower mediastinum, between the two lungs. The primary
function of the heart is to pump a continuous flow of blood through the
blood vessels to provide the body with oxygen and nutrients. The pump
rate is determined by the pacemaking cells located at the sinoatrial node,
that generate autonomously the initial impulse that travels at fast speeds
across the cardiac conduction system. From there the electrical impulse
spreads through the heart triggering and coordinating the contraction of
the cardiac cells that pump blood to the body. The heart is a complex
organ in which three main different physics interact: electrophysiology, me-
chanics and hemodynamics. Any alteration of those physics that hampers
the pumping efficiency of the heart will have large negative effects for the
whole body, which eventually can lead to death.

As depicted in Figure 1.1, the heart is divided into four chambers or cavities:
two superior, called the right atrium (RA) and left atrium (LA); and two
lower, called right ventricle (RV) and left ventricle (LV). The atria receive
blood from the venous system and transfer it to the ventricles, from where
it is propelled into the arterial circulation.

The RA and the RV form the right heart. The RA receives the blood that
comes from the entire body through the superior vena cava and inferior
vena cava. The RV drives non-oxygenated blood into the lungs through the
pulmonary artery. The LA and the LV form the left heart, that receive
oxygenated blood from the lungs that flows through the four pulmonary
veins in the left atrium. The LV drives oxygenated blood through the aortic
artery to distribute throughout the body.

The ventricles present a more regular and simpler morphology than the atria
in general terms. The RV anatomy is considerable different from that of the
LV, although both ventricles share the same pumping principles. The LV
has the shape of a cone with the RV hugging it. The wall that separates the
ventricles is called the interventricular septum, while the wall opposing the
septum is the so-called lateral or free wall. The lowest area of the ventricles
is named the apex, and the area that is in contact to the atria is the base.
When the heart is viewed from the anterior view, most of the LV is hidden
by the RV. The atria and the ventricles are separated by the atrioventricular
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Figure 1.1: Schematic representation of the heart anatomy that shows the valves, arteries
and veins distribution. The white arrows represent the normal direction of blood flow.
Source: https://commons.wikimedia.org/

septum, which is formed by fibrous rings that serve as bases for the four
heart valves. Valves are passive structures that prevent the circulation of
blood in the opposite direction. There are four main valves in the human
heart. Two atrioventricular valves that connect the atria and ventricles
(mitral valve in the LV and tricuspid valve in the RV) and two semilunar
valves that connect the ventricles with the arteries ( aortic valve in the LV
and pulmonary valve in the RV).

The RV can be divided into three anatomically different components: an
inflow tract, which extends from the atrioventricular junction to the inser-
tion in the ventricular wall of the papillary muscles of the tricuspid valve;
an apical component, which occupies the region of the apex; and finally, an
outflow tract, also called pulmonary infundibulum or arterial cone, which
extends up to the pulmonary trunk. The RV is characterized by an irreg-
ular endocardium with abundant trabeculae carneae. Trabeculae carneae
are irregular muscular tissue blocks with tubular shape which project from
the ventricular inner surfaces. The trabeculae, together with the grooves
that exist between them, provide a great variability to the wall thickness of
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the RV, which usually ranges between 3 and 5 mm. Other muscular pro-
tuberance existing on the walls of the RV are the papillary muscles, which
are inserted at one end into the ventricular wall and continue with the so-
called chordae tendineae, which are cordons of connective tissue that are
inserted into the veils of the triscupid valve. A protrusion especially promi-
nent present in the RV is the septomarginal trabecula, a muscle that has
a body that divides into anterior and posterior branches. One of them is
the anterior papillary muscle, and the other crosses the ventricular cavity,
forming the moderator band.

The RV outflow tract (RVOT) or infundibulum shows a smooth wall that
ascends to the left, superiorly to the trabeculae and above the arch of the
supraventricular crest to the pulmonary orifice. An important morphologi-
cal characteristic that differentiates the ventricles is that in the LV there is
a continuity between the input and output components (mitral-aortic con-
tinuity), however, in the RV there is a muscle flange, which separates both
components, called supraventricular ridge [1].

The LV receives blood from the left atrium and pumps it through the aortic
artery to all the tissues of the body. As the RV, it can be divided into
an inflow region that comprises the mitral valve, an outflow region that in-
cludes the aortic valve, and an apical portion composed by the trabeculated
endocardium. LV walls are thicker than those of the RV. This is due to the
fact that LV must generate enough pressure to overcome the systemic vas-
cular resistance, which is greater than the pulmonary vascular resistance.
In addition, the lateral wall of the LV (opposing the septal wall) is more
muscular at the base than at the apex of the ventricle. The muscular septal
wall is curved, which gives the LV an ellipsoidal shape.

The LV endocardium is characterized by a complex network of thin trabec-
ulae, that includes in more than 50% of cases strands (false tendons) that
connect the septum and the papillary muscles.

1.1.2 Cardiac tissue organization

The cardiomyocyte is the working unit of the myocardium. These individual
muscle cells are connected together in chains, supported by a matrix of
connective tissue, to create a complex three-dimensional and cross-linked
network [2].
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a) b) c)

Figure 1.2: Fibres parallel to the long axis of the ventricular mass are described as
longitudinal (a), whereas fibres parallel to the short axis are described as circumferential
(b). Fibres at an angle to these major axes are described as oblique (c). Image courtesy
of Damián Sánchez-Quintana.

The cardiomyocytes that make up the heart walls show a complex organi-
zation, that is far from homogeneous along its structures or regions. The
term fibers describes the macroscopic appearance of strands of cardiomy-
ocytes. Their alignment defines the longitudinal axis along which the elec-
trical impulse is favored, since depolarization signals travel faster in some
preferential directions than others. Only histological techniques can reveal
with enough detail the arrangement of those cardiomyocytes, although some
promising imaging techniques such as diffusion-tensor magnetic resonance
imaging (MRI) or micro Computed Tomography (CT) can provide very
good approximations from ex vivo atria and ventricles. Modelers that want
to take into account the myofiber architecture need to analyse ex vivo sam-
ples and impose those fiber orientations learn from a few cases into their
three-dimensional models.

In general, the macroscopic appearance of muscle bundles in the ventricles
is described by anatomists using three main orientations: longitudinal (par-
allel to the long axis of the heart), circumferential (parallel to the sort axis)
and oblique (any other angle)[1]. These orientations are shown in Figure
1.2.

The LV wall comprises three transmural layers or regions if we attend to
the longitudinal orientation of the myocardial strands: subepicardial, mid-
myocardial, and subendocardial. In the RV, the mid-myocardial region is
not present. In each layer, the arrangement of the muscle fibers is different,
what allows to distinguish one layer from the other. Therefore, the orienta-
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Figure 1.3: Different myofiber layers found in the ventricles. Subepicardial (red points),
mid-myocardial (green points) and subendocardial (blue points) layers are shown. Note
the continuity of the subepicardial layers between ventricles and the nonexistence of the
mid-myocardial layer in the RV. Image courtesy of Damián Sanchez-Quintana.

tion of the myocardial strands varies transmurally in a continuous fashion,
since there are not cleavage planes or sheets of fibrous tissue between layers.
The subepicardial layer of the ventricles can be observed simply removing
the visceral epicardium. Strands originate at the base of the heart and di-
rect towards the apex, extending from one ventricle to the other. In the RV,
the muscle fibers run more horizontally than in the LV. The subendocardial
or deep layer consists mainly of longitudinal fibers that follow three differ-
ent directions, towards the papillary muscles, toward the atrioventricular
and arterial orifices, and towards the interventricular septum. This layer is
very thin in the LV, although it is reinforced at the level of the papillary
muscles [3]. The fibers that form the trabeculae run longitudinally, that is
along the long axis of the trabeculae. The middle layer, only present in the
LV, shows strands arranged in circular orientation. This is the layer that
generates the necessary force to pump blood through the aorta artery. All
these layers can be visualized in Figure 1.3.

Although there are small variations in the arrangement of fibers between
individuals, the organization of the myocardium in three layers depending
on the orientation of myocytes is a widely accepted theory and has been also
corroborated by means of MRI [2]. It has been observed that the orientation
of the major axis of the muscle fibers changes from an organization parallel
to the equator in the surface, to a longitudinal orientation in deeper layers,
with the myocytes mostly oriented parallel to the endocardial surfaces and
epicardial. Streeter et al. [4] in several studies that involved hearts from

6



1.1. the heart
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Figure 1.4: Definition of the helix angle (αh) and the imbrication angle (αt) in a 3D slab
of tissue from a human heart model.

different species, measured the changing angles of the longitudinal axis of
the strands of myocytes across the LV wall. The measured angle, known
as helical angle, was defined by the long axis of the fiber relative to the
ventricular equator plane. This angle presents a continuous gradual change
in all the walls of the left and right ventricles. In addition to the helical
angle, it has also been described a second angle that is the oblique or im-
brication angle. This angle defines the deviation of the longitudinal axis
direction with respect to the endocardial-epicardial plane. Therefore, the
helical angle defines the deviation in the longitudinal axis of the ventricle,
that is apex-base, and the imbrication angle the deviation endocardium-
epicardium. While the helical angle can range between +90 to -90, the
imbrication angle shows a little deviation. A graphic definition of these
angles can be seen in Figure 1.4

1.1.3 Cardiac electrophysiology

Cardiac electrophysiology is the science of elucidating, diagnosing, and
treating the electrical activities of the heart. One of its clinical goals is
to study complex arrhythmias, analyse abnormal electrocardiograms, elu-
cidate symptoms, evaluate the risk of developing future arrhythmic events
and plan the patient treatment.
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Figure 1.5: Action potential of a cardiomyocyte, showing the main ion currents of each
phase.

Cardiac cells can build an electrical potential difference, known as the rest-
ing membrane potential, between the inside and outside of the cell through
the action of ion pumps and ion channels (sodium (Na+), potassium (K+),
and calcium (Ca2+)), see Figure 1.5. When the cell is at a resting state, the
cell maintains a resting potential (Figure 1.5, phase 4). During the resting
potential phase, the interior of the cell has a negative charge compared to
the exterior of the cell. A current movement through the gap junctions
that increases the transmembrane potential above a critical point known
as threshold potential will trigger the action potential initiation (voltage-
dependent Na+ channels open), which starts the depolarization of the cell
(Figure 1.5, phase 0). Action potential initiation will affect other cell ion
channels, in particular it will activate voltage-gated Ca2+ and K+ channels
(Figure 1.5, phase 1). An important channel is the voltage-gated L-type
calcium channel that allows calcium to enter the cell, sustaining the depo-
larized state when sodium channels close (Figure 1.5, phase 2). Finally, the
voltage-gated K+ channels open after some delay to move potassium ions
down its concentration gradient, that is from intracellular to extracellular
space. This drives the cell again toward the negative resting state, and is
called repolarization (Figure 1.5, phase 3). From the initiation of the ac-
tion potential through approximately half of the repolarization, the cell is
considered refractory, and cannot respond to a new depolarization signal
[5].
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There have been described different spatial variations of the action poten-
tial waveform in the ventricles. Measurements performed in isolated cells,
sometime in animals, are difficult to measure in vivo, where the electrotonic
currents exchanged between neighboring cells tend to mask the individual
differences in action potential. All these differences in action potential du-
ration (APD) can be arrhythmogenic, since spatial dispersion of the APD
can lead to temporal dispersion of repolarization, and a premature stimulus
(ectopic focus) can result in a functional block initiating electrical reentry
[5, 6] .

The contraction of the atria and the ventricles is carefully regulated by
the transmission of electrical impulses that result from the propagation of
the action potential throughout the heart. The cardiac conduction system
synchronizes the activation of remote areas, and ensures the proper tim-
ing of the transfer of activity between the atrial and ventricular chambers.
After pacemaker cells (sino-atrial node) trigger the initial depolarization,
the electrical impulse travels very fast within the cardiac conduction sys-
tem in a coordinated fashion. In the ventricles, following atrioventricular
nodal excitation, impulses continue down to the His bundle. The His bun-
dle conducts the electrical impulse and branches off into the left and right
bundle branches that spread the impulse in the left and right ventricles by
means of the Purkinje network. All the specialized conduction tissues in the
ventricles are insulated electrically from the surrounding myocardial tissue,
with exception of the terminal connection points. From those points the
electrical impulse reaches the myocardium depolarizing the whole ventricles
[7].

1.1.4 The electrocardiogram

Despite the great technological advances that allow to monitor with a great
level of detail the heart, the electrocardiogram (ECG) remains the most
widely used tool to assess patients cardiovascular status. The electrical cur-
rents generated in the heart are also spread to other tissues in the body.
This electrical activity can be recorded on the torso surface, which provides
noninvasive information about cardiac electrical function. Basically, the
electrocardiogram measures the changes in the resultant electrical field dur-
ing the electrical activation and repolarization of the heart in each cardiac
cycle by means of electrodes placed on the torso. Therefore, the ECG can
be seen as a global measurement of the cardiac electrical activity in each
time point along the cardiac cycle, since the signal recorded is the sum of
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the contribution of all the cardiac cells at a given instant. Although the
ECG is a very useful tool, it is also imprecise, since many different internal
heart events can give rise to the same recordings.

There are different configurations used to study the electrical activity of the
heart, being one of the most standard the 12-lead electrocardiogram. The
leads are: 3 bipolar limb leads (I, II, III), 3 augmented unipolar leads (aVR,
aVL, aVF) and 6 precordial unipolar leads (V1, V2, V3, V4, V5, V6).

Electrode placement is chosen according to specific anatomical guidelines,
in that way information about the magnitude and direction of the heart
electrical activity can be recorded and replicated between recordings. The
standard electrode placement is shown in Figure 1.6. Limb leads and aug-
mented leads are calculated from three electrodes attached to the left arm,
right arm and left leg. Sometimes a fourth lead is placed in the right leg as
a ground. All of them provide information of the heart activity in the verti-
cal plane, describing the direction of the depolarization and repolarization
(leftwards, rightwards, superior or inferior) Precordial leads give informa-
tion in the horizontal plane (anterior, posterior, leftwards, rightwards), and
can describe more accurately the electrical activity in different regions of
the heart [8]. A correct placement of the electrode positioning is crucial
in order not to obtain false interpretations of the ECG, since minor varia-
tions of the electrodes position can considerably modify the recorded wave
[9, 10]. As the ECG is recorded, signals of voltage (mV) over time (seconds)
are produced and usually displayed in the electrocardiograph. The signal
waveform at each lead has a typical known signature, with peaks and waves
that correspond to depolarization and repolarization phases.

Currently, the 12-lead ECG is the main tool for the diagnosis of most ar-
rhythmia.

1.2 Cardiac arrhythmias

Cardiac arrhythmias are alterations of the normal cardiac rhythm, and the
sequence of activation. During an arrhythmia episode, the heart rate can
increase (tachycardia, above 100 beats/min), decrease (bradycardia, below
60 beats/min) or became irregular. Of particular interest for this thesis are
idiopathic ventricular tachycardias (VTs) which are tachycardias originated
in ventricles with the absence of any significant structural disease. The most
common way to diagnose an arrhythmia is by evaluating the patients ECG,
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a) b)

Figure 1.6: a) Bipolar limb leads and augmented unipolar leads. Electrode location is
also shown. b) Precordial leads electrode placement. Reproduced, adapted an modified
from [11].

which can be complemented by an echocardiographic study, and in specific
cases by the use of electro-anatomical mapping (EAM).

The most common treatments for arrhythmia include, the use of drugs
(beta blockers, blood thinners), implantation of pacemakers and intracar-
diac defibrillators (cardiac resynchronization therapy), and surgery (radio-
frequency ablation) [12].

Apart from the classification as a function of the heart rate in tachycardia
and bradycardia, arrhythmia can be analysed by mechanism: automaticity,
re-entry, triggered; duration: paroxysmal, sustained, permanent; site of
origin: atria, ventricles, conduction system.

There are three basic mechanisms that can elicit heart tachycardia: auto-
maticity produced by ectopic focus, re-entrant activity produced by rotors
and spiral waves, and triggered activity produced by cell afterdepolariza-
tions [5]. All these mechanisms happen in both atria and ventricles. Tachy-
cardia might degrade into fibrillation due to the electrical changes at ionic
level produced by sustained fast heart rhythms. Heart tachycardia can be
classified as non-sustained, if the fast rhythm self-terminates within 30 sec-
onds, or sustained if it lasts more than 30 second.

The most common type of idiopathic ventricular tachycardias are the ones
originating from the LV and RV outflow tracts (OT). OTVAs manifest in
3 forms: as isolated premature ventricular contractions, repetitive non-
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sustained VT and sustained VT and can be treated by drugs or using
radiofrequency ablation (RFA) [13].

1.2.1 Outflow tract ventricular arrhythmias (OTVAs)

Although RVOT has been considered as the most probable focus of OTVAs
(80%) [14, 15] recent studies show that a LV outflow tract (LVOT) site of
origin (SOO) can be identified in 50% of cases [16, 17]. Therefore, a thor-
ough analysis of OTVA characteristics and the current diagnosis tools, like
ECG, are essential for identifying the SOO and applying a proper treatment.

The cause of OTVA origin remains unclear, although the main mechanisms
for the initiation are related with the calcium-dependent triggered activity
in delayed afterdepolarizations [18]. As a results, OTVAs are always focal
arrhythmias that can be effectively ablated using RFA. This approach is
the recommended due to its success rate an low complication risk in the
procedure [12]. Nonetheless, OTs present a particular 3D structure with
complex anatomical relationships between the two ventricles, that makes
it difficult to identify the SOO. An image of the OT region is shown in
Figure 1.7. Since RVOT presents a different embryonic development than
the LVOT, their structure presents significant differences [19]. RVOT is
formed by a tubular structure, the infundibulum, and is located anteriorly
and at the left of the LVOT. The infundibulum is divided from the rest
of the RV by the supraventricular crest and ends in the pulmonary valve
(PV). LVOT has less size than the RVOT and is located anteriorly at the
aortic valve (AV) level. It contains the aortic root, which is divided in the
left coronary aortic sinus (LCAS), right coronary aortic sinus (RCAS) and
the noncoronary aortic sinus (NCAS). Each of these sinuses respectively
support a leaflet or cusp: the left coronary cups (LCC), the right coronary
cusp (RCC) and the noncoronary cups (NCC). These names of the cusps are
also commonly used by electrophysiologist to describe the different aortic
sinuses. The LCAS and RCAS are located next to the RVOT while the
NCAS lies next to the interventricular septum. Between the aortic valve and
the mitral valve there is a fibrous region named the aorto-mitral continuity
(AMC) [20]. PV and AV are perpendicular to each other, being the level of
the PV superior to the AV.

A great number of RVOT arrhythmias are originated in the septal, anterior
and superior areas of the infundibulum, just inferior to the PV. Less com-
mon origins can be found in the RV free wall, or in the septum [13, 21]. In
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Figure 1.7: Image shows a sagital section of the ventricles viewed posteriorly. Note the
central location of the aortic valve and its position in relation to the pulmonary valve
and the RVOT. LCAS and RCAS lie adjacent to the septal part of the RVOT whereas
the NCAS has a more posterior location. AMC: Aortic-Mitral continuity, MV: Mitral
Valve, NCAS: Noncoronary aortic sinus, LCAS: left coronary aortic sinus, RCAS: right
coronary aortic sinus, TV: tricuspid valve, PV: pulmonary valve, RVOT:right ventricle
outflow tract ; LV:left ventricle

LVOT, arrhytmias commonly emanate from the LCAS and RCAS. NCAS
is rarely a source of tachycardias, [22]. OTVAs can also have an epicardial
origin. It is estimated that 15 % of OTVAs have their origin in the left ven-
tricular summit [22]. This region correspond to a triangular region in the
highest part of the LVOT epicardium, bounded by the bifurcation between
the left anterior descending and left circumflex coronary arteries.

13



introduction

1.2.2 Diagnosis of OTVAs

OTVAs have a focal origin, therefore characteristic ECG patterns can be
observed among patients and used for determining the SOO [13, 15, 23].
As a general observations, wide QRS complexes in the inferior leads (II, III
and aVF) that present notching are an indicator of SOO in the anterior
wall of the RV. When the activation is in the septal wall (RV or LV) QRS
are narrower. Lead I is generally used for determining if the SOO has an
anterior or posterior location (negative or positive polarity of lead I, respec-
tivley). An essential indicator for determining the origin is the precordial
transition, which is the lead where the QRS changes from predominately
negative to predominately positive, i.e. with a R/S ratio >1. Late precor-
dial transition (V3 and V4) is characteristic of RVOT arrhythmias. On the
other hand, early precordial transition (V1 and V2) is mainly seen in LVOT
tachycardias. Note that the 12-lead ECG can also be used as a template
in pace-mapping procedures, in cases where the VT is not inducible during
the ablation procedure.

Unfortunately, in a large number of patients the ECGs do not allow to
predict accurately the SOO. This is due to the complex geometry and the
close proximity of the OTs that complicates the diagnosis and the location
of the SOO [15]. Although during the ablation intervention electrophysiol-
ogists will apply more effective and accurate techniques to find the SOO,
it is necessary to have an estimation of the SOO previously to the abla-
tion intervention since it affects the planning and timing of the ablation,
the risk evaluation and the catheter approach. Depending the estimation
of the SOO, electrophysiologist will have to map complex structures such
as the distal coronary sinus, the aortic root or the epicardium. Moreover,
when the SOO is estimated at the RVOT, the intracardiac catheter is intro-
duced via the right femoral vein whereas in the LVOT cases, the catheter
reaches the LV through the femoral artery. Finally, in cases where there
is a LV epicardial SOO the region is accessed through the coronary venous
system [13]. Several studies have proposed algorithms to predict the SOO
based on the standard ECG recordings of the patient, which are mainly
based on the existence of transitions in the precordial leads and the am-
plitude of the QRS [23]. Some of these algorithms derived indices such as
the R-wave duration index and R/S amplitude ratio index [24], V2 transi-
tional ratio [14], the V2S/V3R index [25] and the transition zone index [26].
Other studies [9, 27, 28] proposed to modify some of the standard precordial
lead positions to improve the accuracy of the ECG-based predictions. In
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particular, moving leads V5 and V6 to more posterior locations (V7, V8,
V9) [27, 28], or modifying leads V1 and V2 [9], which seems to provide more
information of the wave propagation and increase the effectiveness of the
prediction. Finally, some not ECG-based approaches have also shown rela-
tively good accuracy in differentiating RVOT vs LVOT origin using indices
such as the aorto-pulmonary valvular planar angulation [17] or the area and
ratio of the 10 ms isochronal activation pattern [29, 30].

All these ECG-based algorithms present good results in their original publi-
cation, but their accuracy decrease when tested with different populations,
especially when they are applied to patients with V3 transition which are
approximately the 40 % of OTVA patients [16]. In addition, measurement
of the parameters highly depends on the clinician ECG analysis skills and
presents high inter-observer dependence/variability. Furthermore, applica-
tion is restricted in patients with paced rhythms or intraventricular con-
duction disorders [17]. Therefore, new approaches capable of predicting the
SOO and further study the OTVAs are still needed.

1.2.3 Radiofrequency ablation treatment of OTVAs

Radiofrequency ablation technique applies to the cardiac tissue high tem-
peratures resulting from high-frequency alternating currents. Heat is gener-
ated at the tip of a catheter that is introduced to the heart and monitored
using fluoroscopic imaging. Once heat is applied to an arrhythmic SOO,
it destroys the cells responsible to generate the undesired electrical activity
and ends the arrhythmia. However, before applying RFA, SOO needs to be
located with precision.

EAMs and pace mapping are the two principal methods for determining the
SOO. Before the ablation is performed the electrophysiologist constructs a
chamber EAM, that guides him towards the regions that need to be ab-
lated. EAM measures the intracardiac electrical activation that is related
to a certain anatomical location of the heart. It provides information used
in different approaches such us activation mapping and/or the voltage map-
ping. In addition to that, EAM systems monitor the position of the ablation
catheter without using fluoroscopic imaging and integrate all this informa-
tion in 3D images [31]. Activation mapping consist in the analysis of the
electrical activation sequence during a certain rhythm. This is the most
reliable method for finding the earliest activation site and therefore the
SOO of the VT. Voltage mapping evaluates the amplitude (voltage) of the
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electrogram signal and allows to identify heart structures involved in the
generation of OTVAs such as the PV [29, 31]. On the other hand, pace-
mapping is used in non inducible tachycardia and in rare cases of ectopic
foci. The method consists in pacing different points of the heart and record-
ing the morphology of the obtained ECG. If the pacing reproduces the same
ECG morphology observed in the 12-lead ECG during the clinical VT, the
SOO of the arrhythmia is supposed to be in that location [21, 32]. This
technique requires no induction of the VT, and has a better performance in
the localization of focal tachycardias like OTVAs. Their main disadvantages
are the resolution, which is lower than the provided by activation mapping
and the subjectivity in the 12-lead ECG comparison, although some studies
have shown different methods for an objective comparison [21, 33, 34].

1.3 Biophysical models of the heart

Over the last years, new medical imaging technologies have allowed ob-
taining clinical information with a high level of detail, and specific to each
patient. The amount of data currently available represents an important
opportunity to transform the diagnostic model of cardiovascular diseases
through a greater degree of personalization of therapies. However, to im-
prove the understanding of cardiovascular diseases, not only geometric and
mechanical information is required, but also a thorough knowledge of the
different physics present in the heart (electrophysiology, mechanics, haemo-
dynamics) and physiological information. In this context, a huge amount
of information has been generated in recent years at different levels: sub-
cellular, cellular, tissue, organs and systems [35]. Nonetheless, knowledge
of each element is not enough to understand its behavior as an organ. An
integrative approach is therefore necessary, which must consider all the el-
ement interactions in order to study the origin and maintenance of cardiac
arrhythmias and improve its prevention [36, 37]. For all these reasons, to
continue improving our knowledge about the origin and maintenance of car-
diac arrhythmias, and to advance therapeutic methods, it is of great impor-
tance to develop predictive models that integrate information from different
levels or spatial scales. These personalized electrophysiological simulations
have already shown promising results to support clinical decisions in cardi-
ology [38, 39].

In the last years, an extensive number of mathematical models have been
built to reproduce the electrical (cardiac electrophysiology) and mechanical
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(tissue deformation) dynamics of cardiac cells and tissues. Although models
are by definition simplifications of a real object or phenomenon, they can
serve the important purpose of helping researchers in gaining knowledge
about a given process or function, and avoid at the same time unnecessary
animal experiments.

The biophysical models of the heart are also starting to be embraced in clin-
ical research environments to assess their predictive capacity for treatment
delivery and optimization. The applications are countless, and although
they will require a long validation process and acceptance from the clini-
cal community, the initial results are promising. Some of the therapies that
could potentially benefit from biophysical models are cardiac resynchroniza-
tion therapy or radiofrequency ablation, among others.

In addition, last years advances in computing resources and imaging tech-
nologies, have led to the development of patient-specific models. These
models, generated using in vivo imaging, accurately represent the cardiac
anatomy of the subject and incorporate material properties and cardiac
features of the patient.

A cardiac 3D model is composed of a 3D geometry, myocardial structure,
electrophysiology models at different scales (cell to whole organ models),
and specialized structures (e.g. the cardiac conduction system). Depend-
ing on the final application of the model, modelling a particular pathology
(mutation, alteration of tissue properties, ...) might be also required.

1.3.1 Cardiac and thoracic anatomical representations

The geometry of a patient heart is usually represented by a 3D mesh made
up of tetrahedral or hexahedral elements. The mesh is generated after the
segmentation (manual or automatic) of medical images, being the most
common MRI [38, 40, 41, 42] and CT [43, 44, 45].

The 3D cardiac models and, especially, the methods and sources of infor-
mation used in its construction, have evolved greatly since its inception.
The first models, created using geometric figures (ellipsoids), CAD mod-
els, or constructed by observations, have nothing to do with current de-
tailed models updated by merging different modalities of high resolution
medical imaging or modern atlas statistics for cardiac medical image seg-
mentation [46, 47, 48]. The specific geometry of the patient’s atria and
ventricles can be accurately reconstructed from a wide variety of image se-
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quences using advanced segmentation tools [49, 50]. For example, radiologi-
cal imaging sequences can be processed and segmented using semi-automatic
storytelling techniques such as active appearance models or active shape
models [46, 47, 51]. This allows the construction of personalized geometric
models to the patient that describes the anatomy of the heart and, in some
cases, if data is available, include scar regions or the patient’s coronary
tree. In addition to the geometry of the organ, the relevance of characteriz-
ing and delimiting the pathological substrates of the myocardium has been
highlighted, in particular, regions with fibrosis in the atrium or areas of scar
and edge in the ventricle [52]. These substrates are highly pro-arrhythmic,
and therefore are the target of radio-frequency ablation complications in
clinical practice [53, 54].

In order to properly simulate OTVAs, a biventricular geometry that includes
the OTs up to the PV and AV level is needed. It can be obtained using
either MRI or CT image sequences. There is no need to have information
above the PV and the AV since there are no myofibers located in these areas
and therefore no electrical conduction [1].

Three-dimensional models of the heart can be incorporated into an electrical
model of the human torso in order to reconstruct the changes in the electric
field generated by the surface electrocardiogram (BSPM and ECG). The
first anatomical models of the thorax were very simplified [55, 56], and
considered the thorax as a homogeneous isotropic medium, without taking
into account the effect of the different organs. Later studies began to include
some of the electrical conduction properties of tissues such as skin, bones,
muscles and lungs [57, 58]. The model developed by [59] was among the
first to take into account the electrical properties of organs and tissues. It
included the heterogeneity of some tissues such as skin, fat, muscle, bone
or blood vessels, as well as organs such as the lungs and the heart, each of
these regions presenting a different electrical conductivity value. The model
of [58] also presented anatomical detail and was designed to validate the
influence of the different organs of the thorax in the formation of the ECG.
Recent torso models developed for the study of atrial arrhythmias [60] and
arrhythmia generating foci still show unrealistic geometries and a limited
number of organs. More recently, the heterogeneous models proposed by [61]
and [62] were personalized to the patient. These models were developed
manually by segmentation by an expert. The final objective of these models
is to numerically address the direct problem and the inverse problem of
electrophysiology and, to determine what is the mechanism associated with
changes in pathological heart rate and activation.
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1.3.2 Myocardial structure

Acquisition of medical imaging sequences is not sufficient for the construc-
tion of detailed biophysical computational models due to the importance of
cardiac microstructure, which can only be obtained from invasive invasive
studies (for example, histological data or DTI diffusion tensor image DT-
MRI). The heart shows a high degree of organization and specialization of
the different tissues at the structural level and at the cellular level [4, 63].
The in vivo data of a patient is very valuable, however they must be comple-
mented with ex vivo population data in order to build complete multi-scale
models [64]. These population-based data refer to common known charac-
teristics that are not directly observable in the individual through clinical
imaging techniques, but that are present and should be considered. Micro-
structural level data is essential for a correct representation and simulation
of cardiac electrophysiology. Given the need to include this information,
mathematical models have been developed that allow modeling the struc-
tures according to average observations in a given population [7, 65, 66].
For example, the arrangement of myocardial fibers in the ventricles and
atria can be characterized by histological techniques for each region of the
heart [67, 68]. These descriptions are then adapted to a segmented car-
diac model of a specific patient, using rule-based mathematical models.
Another common approach is based on the creation of statistical atlases
constructed from exuberant information of the microstructure of the heart
that can be adjusted to subsequently segmented models [48]. Recently,
mathematical approaches to modeling tissue orientation in ventricle have
been published [69, 70].

As described in previous works [71, 72, 73, 74, 75, 76, 77], cardiomyocyte
orientation determines the preferential electrical wave propagation and tis-
sue contraction in the heart. Hence, a proper orientation of the myofibers
(aggregations of cardiomyocytes) is crucial for having accurate simulations
results. There are two main options for incorporating myocyte orientation
into 3D computational models of the heart: fitting of a map of fibers ex-
tracted from ex-vivo data; or using rule-based methods (RBM). RBMs are
based on mathematical descriptions of myofiber data acquired from experi-
mental observations and have become the most common strategy to incor-
porate fiber information in cardiac computational models. More detailed
description of these methods will be explained in Chapter 3.

The cardiac conduction system (CCS) is the specialized cardiac tissue re-
sponsible for the fast transmission of the electrical impulse. The distribution
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of the CCS in the ventricles will affect the depolarization of the wave [7].
CCS structure is mainly obtained from histological data and is incorporated
to cardiac models either by automatic methods that build the Purkinje
trees [78] or by estimating the Purkinje-myocardial junctions (connections
between the CCS and the myocardium) from EAMs [40]. The involvement
of the CCS in OTVAs is very marginal, and therefore, it is not a critical
component in biophysical models aimed to study the origin of arrhythmia
in those patients.

1.3.3 Electrophysiological simulations

The application of different experimental methodologies has allowed us to
understand and quantify the biophysical and biochemical properties of the
cardiac cells and the architecture of the heart both at the cellular and tis-
sue levels. This knowledge has allowed the development of a considerable
number of computational models of individual myocytes, myocardial tis-
sue or the entire heart. The use of these electrophysiological models has
contributed to establish new methods of studying the mechanisms that are
behind cardiac arrhythmias. In general, myocyte models are based on the
mathematical formalism of Hodgkin-Huxley [79, 80], and have increased
their degree of complexity in parallel with the improvements in experimen-
tal techniques that allow measuring and characterizing the ionic currents
responsible for the action potential [81]. Several computational models of
cellular cardiac electrical activity have been developed, including ventricu-
lar myocytes [81, 82], atrial myocytes [83, 84], of the sinus node [85] and
Purkinje fibers [86, 87].

At this point it is important to differentiate between the so-called phe-
nomenological models and the predictive models. Phenomenological mod-
els are often macroscopic representations of a given phenomenon that can
reproduce experimental results but do not have a reference to the physical
system. On the other hand, predictive models can provide new findings, al-
lowing insights into underlying mechanisms, outside the set of experimental
conditions used to fit the model. Those latter models rely on anatomical
and biophysical definitions of the phenomena under study.

• Biophysical models [88, 89]. These models include formulation for
each transmembrane ionic channel and the ionic concentrations at the
cellular level. Although they precisely describe the electrical activ-
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ity of the cell, these models are computational demanding and often
require the use of high performance computing.

• Phenomenological models [90, 91]. Models that are able to repro-
duce the action potential behaviour with simpler equations. However,
they struggle to accurately reproduce complex physiological patterns
such as rapid pacing or reentrant activities.

The propagation of the action potential in the heart, responsible for the
contraction, has been studied both in normal situations and in arrhythmias
through the use of finite element-based models that represent discrete tis-
sues. These tissue models (1-D, 2-D or 3-D) can include the heterogeneous
structure of cardiac tissue and heterogeneous expression at the cellular level,
giving them a high level of realism [92]. Commonly used tissue propagation
models are the two-domain model and the monodomain model [93], which
are coupled to cellular models to form a multi-scale model. The mathe-
matical problem associated with the resolution of the differential equations
that govern the propagation of the electrical signal in a three-dimensional
heart model is highly non-linear and has no analytical solution. Therefore,
these models must be solved using numerical methods, such as the finite
difference method or the finite element method. A 15 cm3 tissue block
(approximate volume of a rabbit heart) will have more than 15 million ele-
ments. In the problem of the electrical modeling of the heart each of these
elements must be associated with a system of about 20-30 differential equa-
tions that must be solved with order time steps of milliseconds. Thus, the
dimensions of the matrix for a human heart are enormous. Under these
conditions, it is clear that the complexity of cardiac models implies the
use of high performance computers (HPC, High Performance Computing)
or GPU (Graphics Processing Unit) systems and software specifically de-
signed to solve them [94, 95]. An alternative is the use of Eikonal models
[44], where propagation and activation time are modelled by simple non-
linear partial differential equations. However, they are not able to reproduce
complex physiological states.

Since there is no presence of pathological tissue reported in OTVAs, all the
electrophysiology models used in this Thesis will describe healthy tissue.
Nonetheless, tissue heterogeneity (e.g endocardial cell vs epicardial cells)
will be incorporated.
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1.3.4 Electrocardiogram simulations

ECG is still the most widely used diagnostic technique in cardiology. How-
ever, it is an unreliable indicator of the potential for arrhythmogenesis, since
the changes observed in the QT interval and the T wave of the electrocardio-
gram can be induced by very different molecular and cellular effects, both
benign and malignant. The use of torso computational models in electro-
physiology commonly attempts to solve the direct problem [96], that is, res-
olution of the equations of electrical propagation from the heart to the torso
modeling certain pathologies such as ischemia [97, 98, 99, 100], re-incoming
electrical circuits [101, 100], or ectopic beats [102]. The application of the
torso models is twofold, since they can be used to solve the direct problem
in electrophysiology and become validation tools for the biophysical models
of the heart, since much information is available on the associated exter-
nal ECG signals [103]. By having a 3D model it is possible to obtain the
potential at all points that form the outer surface of the torso, giving rise
to the BSPM, or Body Surface Potential Map. Some studies [104] already
developed torso models to assess the influence of the conductivities of the
different organs on the ECG.

Since we need to compare simulation results with patient non-invasive data
(ECG) to validate our results, we have to include a framework to simulate
body surface potential maps and ECGs. Work will be oriented to study
the relationship between the OTVA electrophysiological activity and the
electrocardiogram. Previous studies have shown successful results in us-
ing high detailed multi-scale heart-torso model to analyse the activation
patterns [40, 45, 97, 105, 106].

In order to have a proper ECG simulation, a detailed generic torso model
is required. The effect of torso organs and structures (lungs, liver, bones,
...) should be taken into account. Heart orientation respect to the torso has
to be considered. BSPM can be calculated after a passive propagation of
the extracellular potentials through all these regions. Finally, 12-lead ECG
can be extracted from the torso surface by calculating the potential in the
recommended points.

1.4 Machine Learning in Healthcare

In the last years, artificial intelligence has become one of the most extraordi-
nary breakthroughs in medical research, thanks to the irruption of machine

22



1.4. machine learning in healthcare

learning (ML) and deep learning (DL). ML is a field of artificial intelligence
whose aim is the generation of algorithms that are able to learn directly
from observations in order to make predictions about future ones. The use
of ML in healthcare applications has been increased due to the increment of
the available digitalized medical data, the advances in software techniques
and the generalized use of high performance computers [107]. ML can be
applied to different task such as segmentation, registration or pattern recog-
nition. However, the main application where ML techniques are used is data
classification, usually after applying feature extraction and dimensionality
reduction to the input data [108, 109, 110, 111].

ML algorithms can be categorized into supervised and unsupervised ap-
proaches. Supervised ML techniques are trained using labelled data and
are used mainly in classification and regression tasks. On the other and,
unsupervised ML techniques are used to find unknown patterns in the input
dataset and are applied mainly in classification problems.

DL is a branch of ML that imitates how the human brain works and how the
neurons are connected. DL uses multiple layers of nodes (neurons) to au-
tomatically extract features and patterns that will be used in different task
such as classification or regression, although they require a large amount of
input data. It is important to point out, that systems based on DL have as
a limitation the complexity to explain how they arrive to particular predic-
tions. Therefore, they become a black-box, that even though can be correct
in their predictions, are difficult to be trusted by doctors that might not
want to make life-and-death decisions based on systems that they do not
understand.

However, machine recommendations, based on understandable machine learn-
ing algorithms might help physicians make the right choices in diagnosis and
treatment, acting as an extension of medical knowledge. The idea is to be
able to advance in the direction of personalized medicine in which everyones
health recommendations and disease treatments can be tailored based on
their medical history, anatomical constitution or environment conditions.

ECG is one of the most used clinical signals, and the application of ML
to ECG can expand our knowledge about different pathologies. However,
ECG databases are still not large enough to cover all the possible medical
conditions with enough detail. Generation of ground truth is one of the
principal limitations, since it requires electrophysiologists to annotate a big
number of the recorded ECGs. Computer simulations can arise as an alter-
native to increase the number of ECG signals available for different patholo-
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gies, enabling the training of ML systems. In addition, simulated signals
will remove the errors associated with bad annotation of data or excessive
noise. Some studies have already used simulated ECG signals [105, 112]
for training a ML-based system. Among the most used techniques in ML
for learning and classification are: support vector machines (SVM), random
forest (RF). More sophisticated techniques include recent developments on
Self-Organizing Maps (SOM) and Multiple Kernel Learning (MKL).
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2.1 Motivation

Cardiac arrhythmias are one of the leading causes of mortality in Europe
and impose a huge healthcare burden on society. Despite well-developed
clinical guidelines for management of atrial fibrillation (AF) or ventricular
tachycardia (VT), long-term treatment success rates remain unacceptably
low due to complexity of the disease [12]. This economical and epidemiolog-
ical burden demands new methodologies and tools that can improve patient
management, therapy planning and delivery. Most of previous research on
arrhythmias has been devoted to genetic, vascular, metabolic or myocardial
function, since it has been only recently when more advanced systems have
allowed to explore cardiac electrical function in vivo. Among them, electro-
anatomical mapping systems, introduced over the last decade, have become
a primary tool to treat complex arrhythmias. These tools can be comple-
mented with non-invasive advanced imaging techniques such as computed
tomography (CT), magnetic resonance imaging (MRI) or 3D echocardio-
graphy, which can help to characterize cardiac diseases. The anatomy of
the heart can be precisely reconstructed in 3D from computed tomography
scans with high accuracy, and the cardiac function can be assessed by spe-
cific magnetic resonance imaging protocols. When these imaging techniques
are combined with contrast agents, they can provide more detailed infor-
mation about tissue status, such as amount of fibrosis present in a given
heart region. Therefore, advanced information on disease and its evolution
is within clinicians reach, who could apply novel therapeutic strategies to
treat patients. All these tools and novel electrical therapies have proved
to be cost effective and are now part of medical recommendations. How-
ever, the amount of data that has to be considered by electrophysiologists is
overwhelming, and very difficult to integrate to stratify patients or optimize
therapy planning and delivery. As a consequence, the overall clinical out-
come in such therapies is still perceived as sub-optimal, with success rates
in the range of 60 to 65%. It is necessary to develop novel methodologies
and tools that help us to gain understanding in the pathophysiology of the
heart, and at the same time serve to improve patient treatment. Computa-
tional models that simulate the electrical activity of the heart have proved
to be a useful tool for better understanding the mechanisms that are be-
hind the cardiac electrophysiology, and therefore are beginning to be used
to evaluate and improve cardiac arrhythmia treatment.
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2.2 Objectives

In current clinical practice, the measures adopted for the treatment of a
large number of cardiac arrhythmias are decided mainly within the surgery,
which prevents carrying out a detailed and personalized planning tailored
to the patient. Usually the available data for the electrophysiologist are:
the electrocardiogram, intra-cavitary electrical measurements of the patient
(during the intervention), the experience of the doctor and the reference val-
ues for a normal population. Radio-frequency ablation (RFA) techniques
are widely used in procedures for the treatment of arrhythmias, although
they show a large number of ”non-responders” for complex cases, that re-
quire recurrent interventions. A more robust pre-intervention evaluation of
the patient would be of great benefit to the outcome of the procedure. The
improvement could be achieved by incorporating new technologies from the
area of computational physiology, combined with machine learning tech-
niques to help infer the location of pro-arrhythmic electrical substrates and
rotors. Having such information pre-operatively can have an impact in RFA
techniques, improving the success of the intervention and reducing the total
time. Nowadays, simulations are much faster, more cost-effective and less
invasive than building and testing physical prototypes, or carrying large
clinical trials, which makes this technology an interesting alternative.

The global aim of this thesis is to develop personalized computational mod-
els for the in silico study of outflow tract ventricular arrhythmias (OTVAs)
and the evaluation of new strategies for their treatment with RFA therapy.
After applying this technology, we expect to reach a better understanding
of the mechanisms that are involved in OTVAs and to support clinicians in
the planning of the ablation intervention.

This overall objective can be divided in the following steps:

• To build patient-specific models for OTVA simulations. Study the OT
myocyte orientation and develop a RBM to reproduce this information
in patient-specific models.

• To replicate, using electrophysiological simulations, the 12-lead ECG
behaviour that is described in the OTVA clinical guidelines.

• To use all the information derived from the simulations to support
clinicians to predict the SOO of OTVAs prior to the ablation inter-
vention.
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The clinical problems tackled in this thesis are challenging and are of great
interest among electrophysiologists. In the last years several works have
proposed different solutions, mainly based on ECG analysis, but they still
present various limitations [13, 15, 16, 23, 25]. This work will propose a
different approach to predict the SOO using patient-specific simulations.

2.3 Contributions

The thesis presents the following contributions:

• The OT-RBM. A novel rule-based method for assigning myofiber
orientation specific to the RV, interventricular septum, and both OT
of the ventricles, to replicate histological observations. These parts of
the heart anatomy are often ignored by other RBM or imaging tech-
niques. Thanks to the OT-RBM new electrophysiological and me-
chanical cardiac simulations can be performed where these parts have
a crucial role. Works studying the outflow tract ventricular arrhyth-
mias or the effect of trabeculae in the electrophysiology have been
done thanks to the fiber generated with the OT-RBM while other
works investigating the mechanics of the RV or the role of complex
structures such as the false tendons are in the process of being carried
out.

• Simulation of outflow tract ventricular arrhythmias. A full
pipeline for OTVAs electrophysiological simulations on complete patient-
specific biventricular geometries was developed. Results were properly
validated using EAM data. In addition, OTVA patients 12-lead ECGs
were also modelled and validated. To the best of our knowledge this
is the first study to simulate this type of arrhythmias.

• Combination of simulated and real data in training machine
learning models The use of simulations to train ML algorithms
achieved groundbreaking predictions of SOO compared to current
state-of-the-art. In addition, the use of advanced interpretable ML
techniques improved the understanding of the relation between elec-
trophysiological models of the heart and real ECG and electrogram
data.
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• Clinical contributions The in silico pace-mapping method pro-
posed in this thesis represent a valid tool for pre-procedural ablation
planning with potential for clinical translation in the future.

2.4 Outline of the thesis

After this chapter, the rest of the thesis is organised as follows.

Chapter 3. In this chapter, we describe the OT-RBM. We show the re-
sulting myofiber orientation and compare it with the results obtained
from other RBM and imaging techniques.

Chapter 4. This chapter presents a clinical application of the simulations
of OTVA. We develop a pipeline for simulating ECGs from patient-
specific geometries and compare the results with real patients ECG.
The described methodology tries to in silico reproduce the pace map-
ping technique used by electrophysiologist during ablation interven-
tions.

Chapter 5. In this chapter, ML techniques are used to classify resulting
ECGs obtained from OTVA simulations and to train different super-
vised and unsupervised ML algorithms to predict the OTVA origin
using ECGs.

Chapter 6. This chapter summarizes the most important ideas and contri-
butions of this thesis. We highlight the strengths and propose future
research directions.
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A rule-based method to
model cardiomyocyte
orientation in cardiac
biventricular geometries
with outflow tracts
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Abstract – Rule-based methods are often used for assigning fiber ori-
entation to cardiac anatomical models. However, existing methods have
been developed using data mostly from the left ventricle (LV). As a con-
sequence, fiber information obtained from rule-based methods often does
not match histological data in other areas of the heart such as the right
ventricle (RV), having a negative impact in cardiac simulations beyond the
LV. In this work, we present a rule-based method where fiber orientation is
separately modeled in each ventricle following observations from histology.
This allows to create detailed fiber orientation in specific regions such as
the endocardium of the RV, the interventricular septum and the outflow
tracts. We also carried out electrophysiological simulations involving these
structures and with different fiber configurations. In particular, we built a
modelling pipeline for creating patient-specific volumetric meshes of biven-
tricular geometries, including the outflow tracts, and subsequently simulate
the electrical wavefront propagation in outflow tract ventricular arrhyth-
mias with different origins for the ectopic focus. The resulting simulations
with the proposed rule-based method showed a very good agreement with
clinical parameters such as the 10 ms isochrone ratio in a cohort of nine
patients suffering from this type of arrhythmia. The developed modelling
pipeline confirms its potential for an in silico identification of the site of
origin in outflow tract ventricular arrhythmias before clinical intervention.

This chapter is adapted from: Ruben Doste, David Soto-Iglesias, Gabriel Bernardino,
Alejandro Alcaine, Rafael Sebastian, Sophie Giffard-Roisin, Maxime Sermesant, Antonio
Berruezo, Damian Sanchez-Quintana, and Oscar Camara. A rule-based method to model
myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. In-
ternational Journal for Numerical Methods in Biomedical Engineering, 2019; 35:e3185.
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3.1 Introduction

Personalized electrophysiological simulations have shown promising results
to support clinical decisions in cardiology [38, 39]. One important fac-
tor that affects these simulations is how myocardial fiber orientation is
established in the heart model. As described in previous works [71, 72,
73, 74, 75, 76, 77], cardiomyocyte orientation determines the preferential
electrical wave propagation and tissue contraction in the heart. There-
fore, a proper orientation of the myofibers (aggregations of cardiomyocytes)
is needed to obtain valid and accurate simulation results. However, de-
termination of the 3D architecture of myofibers has been a challenge for
anatomists among centuries. Only in the last 30 years, due to recent ad-
vances in microscopy and medical imaging, fully detailed descriptions have
been obtained [113, 114, 115, 116, 117, 118]. Imaging techniques such as dif-
fusion tensor magnetic resonance imaging (DT-MRI), micro-CT or X-ray
phase-contrast imaging, make possible to acquire information about my-
ofiber distribution. Unfortunately, most of these imaging techniques can
only be applied on ex-vivo specimens since they need long acquisition and
reconstruction times to collect accurate myofiber information. Researchers
are currently developing in vivo DT-MRI sequences [119, 120, 121], showing
very promising results. Yet these advanced imaging techniques cannot easily
be applied to patients nowadays and are still limited to a reduced number of
2D slices followed by 3D interpolation techniques, providing coarse spatial
resolution and low signal-to-noise ratios.

Due to the difficulties to acquire patient-specific data, there are two main
options for incorporating myofiber orientation into 3D computational mod-
els of the heart: fitting of a map of fibers extracted from ex-vivo data; or
using rule-based methods (RBM). Fitting of fiber maps can be achieved us-
ing atlas-based methods, which warp a template or an average atlas of fibers
obtained by imaging techniques into a new heart geometry [122, 123, 124]
or using statistics-based predictive techniques for assigning the fibers [125].
However, these methods require complex registration algorithms to estab-
lish correspondences between different heart geometries and are highly de-
pendent on the quality of the original data. The second option involves
rule-based methods. RBMs are based on mathematical descriptions of my-
ofiber data acquired from experimental observations and have become the
most common strategy to incorporate fiber information in cardiac compu-
tational models. Since the study by Streeter [4], where fiber orientation was
studied in canine hearts, a high number of RBMs have been developed and
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Figure 3.1: Histological data of the heart. a) Fiber configuration in the RV sub- en-
docardium, with longitudinal directions to the pulmonary and tricuspid valves (dashed
blue and yellow lines, respectively). b) Epicardial fiber configuration of both ventricles
(top view). The dashed green line represent circumferential fibers of the OT. c) Apical
view of the fiber epicardial layer d) Short axis slice of the heart showing transmural fiber
orientation. ∇Ψbasal: apico-basal direction; ∇ΨOT : apico-OT direction; RVOT: Right
Ventricle Outflow Tract; LV: Left Ventricle

used by the scientific community due to their relatively easy adaptation to
any geometrical model [70, 126, 127, 128].

The two described strategies have the common issue of being mainly focused
on the LV. This is due to the complexity of obtaining accurate data of the
RV, especially on fiber orientation. For instance, according to histological
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data, fiber orientation in the RV sub-endocardium has a longitudinal di-
rection from apex towards pulmonary and tricuspid valves, as illustrated
in Figure 3.1, which is not the case in LV-based RBM. The outflow tract
(OT) of the ventricles is a structure that plays a key role in some patholo-
gies like outflow tract ventricular arrhythmia (OTVA). It has a particular
fiber configuration with longitudinal and circumferential directions in the
sub-endocardium and sub-epicardium, respectively. Unfortunately, most
biventricular computational models include an artificial basal plane well
below the valves rather than a complete biventricular geometry, thus not
including the outflow tracts.

To overcome these issues, we have developed a RBM that includes specific
fiber orientation in different cardiac regions such as the RV endocardium,
the interventricular septum, trabeculae and the outflow tracts, following
observations from histological data. This outflow tract extended RBM
(OT-RBM) allows running in silico simulations modelling pathologies where
these regions are relevant such as OTVAs and Tetralogy of Fallot, among
others. The OT-RBM processes both ventricles independently, which gives
more flexibility to generate different fiber configurations. Therefore, septal
fiber orientation can also be independently modified, allowing the study of
its discontinuity, which is still under debate [129, 130, 131]. Furthermore,
the OT-RBM can also be adapted to model myofiber orientation of complex
structures such as trabeculae, papillary muscles, moderator band or false
tendons. These structures have a crucial role in the mechanics and electro-
physiology of the heart and present a fiber orientation different from the rest
of the ventricular muscle [132]. In this work, the introduced RBM is com-
pared with state-of-the-art fiber generation models such as the ones based
on Streeter observations [4] and Bayer et al. [70], as well as with DT-MRI
data. Additionally, electrophysiological simulations with fiber orientation
provided by the OT-RBM are performed in a set of nine patient-specific
OTVA biventricular geometries. Simulation results are then compared to
clinical observations from EAMs of these patients for different sites of origin
of the ectopic focus.
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Figure 3.2: Scheme showing the different steps of the OT-RBM. ∇Ψ: longitudinal gradi-
ent; ∇Ψbasal: apico-basal gradient; ∇ΨOT : apico-OT gradient; ∇Φ: transmural gradient;
êl: longitudinal axis; êt: transmural axis; êc: circumferential axis.

3.2 Methods

3.2.1 General overview

The OT-RBM uses the Laplace-Dirichlet method introduced in the work of
Bayer et al. [70] (which is mainly based on LV fiber observations) to create
a new local coordinate system in each point of the mesh. This coordinate
system allows assigning specific fiber information in the RV according to
histological data and extending it to the outflow tracts of both ventricles.
Additionally, the proposed RBM allows, if necessary, septal fiber discon-
tinuities between the LV and RV. The whole pipeline to develop the new
RBM is summarized in Figure 3.2. It starts with the generation of volumet-
ric labeled biventricular meshes, representing cardiac structures including
outflow tracts from both ventricles up to the valve planes. Subsequently,
the Laplace equation is solved with different boundary conditions to define
the directions (i.e. transmural and longitudinal) required for the local co-
ordinate system that will guide fiber assignment at each point of the mesh.
The longitudinal direction in both ventricles is defined as a combination of
the vector fields resulting from the Laplace equation between the apex and
the two valves. Once the directions are computed, a local coordinate system
is generated at each point of the mesh. Fiber orientation is finally estimated
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for each cardiac structure after finding the most appropriate angles of the
coordinate system to match histological observations.

3.2.2 Volumetric labeled mesh generation

Biventricular geometries used in this work were represented by patient-
specific tetrahedral meshes built from the processing of computed tomog-
raphy (CT) images. These images corresponded to nine patients with id-
iopathic OTVAs submitted for ablation procedure at Hospital Cĺınic de
Barcelona. A multidetector CT ECG-gated study was performed on a 128
x 2 -slice CT scanner (Somatom Definition Flash, Siemens Healthcare, Er-
langen, Germany). Images were acquired during an inspiratory breath-hold
using retrospective ECG-gating technique with tube current modulation set
between 50% and 100% of the cardiac cycle. The isotropic spatial resolution
was 0.4 x 0.4 x 0.4 mm.

The biventricular geometries, including the outflow tracts and valve planes,
were obtained from CT images using a semi-automatic segmentation pro-
cedure with region growing techniques available in the 3DSlicer 1 software.
Subsequently, surface meshes were generated from the obtained binary seg-
mentations applying the classical Marching Cubes method, which was fol-
lowed by some post-processing steps (e.g. smoothing, labelling) performed
in Blender 2. Finally, tetrahedral meshes (∼80000 nodes and ∼400000 ele-
ments) were created using the iso2mesh 3 tool.

The next step of the methodology was mesh labelling, where different car-
diac geometrical surfaces were identified to apply the Dirichlet conditions
and construct the local reference system. These surfaces were the epi-
cardium, the RV and LV endocardial walls, RV and LV apices and the
four heart valves. These regions were easy to identify in the studied CT
images, enabling the application of the OT-RBM in a wide variety of heart
geometries. Mesh labelling is usually performed either manually, by tagging
surfaces during the segmentation process [133], or using semi-automatic
techniques [70, 134]. We used a semi-automatic approach where the apices
and valve position were manually selected in CT images and endocardial
and epicardial surfaces were automatically identified using ray/triangle in-
tersection algorithms [135]. Rays were traced from the normal of every face
of the surface mesh and intersections with other faces were computed. If
intersections were found, the face was classified as endocardium; the rest

1https://www.slicer.org
2https://www.blender.org
3http://iso2mesh.sourceforge.net
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were set as epicardium. Figure 3.2 (Step 1) shows the resulting mesh la-
belling for one of the processed biventricular geometries. Each mesh region
is identified by a different color.

3.2.3 Local coordinate system

Cardiac fibers in finite-element meshes are represented in each node by an
unitary 3D vector that is oriented in the preferential direction of the elec-
trical propagation and mechanical contraction of the myofiber. Therefore,
a local orthonormal coordinate system is needed to define the myofiber vec-
tor in all mesh nodes. The orthotropic axes of the reference system are
the longitudinal (êl), transmural (êt) and local circumferential (êc) direc-
tions. Transmural and longitudinal directions can be defined by solving
the Laplace equation using the corresponding surfaces as Dirichlet bound-
ary conditions and computing the gradient of the solution, as in Bayer et
al. [70]. In the OT-RBM these geometrical surfaces were the RV and LV en-
docardial walls, the whole biventricular epicardium, the RV and LV apices
and the four cardiac valves (the tricuspid and pulmonary valves for the
RV and the mitral and aortic valves for the LV). The local circumferential
direction was defined as the cross product of transmural and longitudinal
directions. Fiber orientation was then obtained by rotating the obtained
vector êc by a given angle α and β to match histological observations.

Transmural direction (∇Φ) was obtained by solving the Laplace equation
between the endocardium of each ventricle and the epicardium; subse-
quently the gradient of the Laplace solution (Figure 3.3a) was computed.
Negative and positive values were correspondingly assigned to the LV and
RV endocardium (Φ = −2 and Φ = 1, respectively) as Dirichlet boundary
conditions. The epicardium was assigned to a zero value (Φ = 0), thus
allowing a discrimination between the two ventricles: positive and nega-
tive values were assigned to the RV and LV, respectively. These boundary
conditions allowed to replicate findings from histological studies that af-
firm that two thirds of the septum belong to the LV and one third to the
RV [1, 116, 130, 136]. Laplace equations and its gradients were solved using
Elmer software 4.

The longitudinal direction (∇Ψ) was defined separately for each ventri-
cle. This direction was the result of the weighted sum of the apico-basal
(∇Ψbasal) and apico-OT (∇ΨOT ) gradients, defined individually in both

4https://www.csc.fi/web/elmer
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φ 

   σ 

a. 

b. 

Figure 3.3: a) Example of a transmural map obtained by solving Laplace equation. b)
Solution of solving the Laplace equation between the interventricular septal surface and
the RV and LV endocardium
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ventricles: ∇Ψbasal considered the apex-mitral valve and the apex-tricuspid
valve directions in the LV and the RV, respectively; ∇ΨOT followed the
apex-aortic valve and the apex-pulmonary valve directions in the LV and
RV, respectively. These directions were already described by Greenbaum
et al. [3] and can be visualized in Figure 3.1 (dashed lines). The resulting
longitudinal fiber direction for each ventricle was set as follows:

∇Ψ = ∇Ψbasal · w +∇ΨOT · (1− w) (3.1)

The sum of the apico-basal and apico-OT gradients was weighted by an
intraventricular interpolation function w, which was computed in the RV
by solving the Laplace equation between the apex (w = 1), tricuspid valve
(w = 1) and pulmonary valve (w = 0), as shown in Figure 3.4. In the
LV, the equation was solved involving the apex (w = 1), the mitral valve
(w = 1) and the aortic valve (w = 0). In this way, we obtained a smooth
distribution of values following the cardiac surface allowing to properly de-
fine the OTs and control the smoothness in fiber changes near the OT in
different geometries.

w 

w=0 

w=1 

w=1 

Figure 3.4: Example of intraventricular interpolation function w in the RV. The obtained
values will guide the fiber interpolation between the apico-basal and apico-OT longitudinal
directions within the ventricle.

Using the previously calculated gradients (∇Ψ,∇Φ), the local coordinate
system was set up for each mesh node, which is fully described with the
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following vectors:

êl =
∇Ψ

‖ ∇Ψ ‖
êt =

∇Φ− (êl · ∇Φ) êl
‖ ∇Φ− (êl · ∇Φ) êl ‖

êc = êl × êt (3.2)

3.2.3.1 Rotation of local coordinate system to match
histological observations

Fiber orientation was finally obtained in every mesh node by rotating the
local coordinate system to better match histological observations, as follows:
1) Vector êc was rotated counterclockwise around êt by an angle α; and 2)
subsequently, vector êc was again rotated counterclockwise around êl by a
transverse angle β . Note that the definition of angle α (angle with respect
to the local circumferential direction) is not equivalent to the α helix angle
defined in other histological studies or RBMs. The main reason is that
our longitudinal direction is not always oriented in the apico-basal direction
since it also has a component pointing in the apex-OT direction, which is
the predominant one in the OTs. Far from the OTs, where the apex-OT
component is negligible, the longitudinal direction only points towards the
atrioventricular valves and therefore, our angle α and the helix angle match.

The first rotation was defined in each ventricle as a counterclockwise rota-
tion of the vector êc around êt with an angle α:

α = αendo(w) · (1− d) + αepi(w) · d (3.3)

where d is the transmural depth normalized from 0 to 1. The different
values of αendo and αepi were chosen to replicate the following observations
from several histological studies [1, 3, 113, 137]:

• Left ventricle (based on Greenbaum’s observations [3]): αendo(w =
1) = −60◦; αepi(w = 1) = 60◦

• Right ventricle (based on Greenbaum [3], Ho [137] and Sanchez-Quintana [1]):
αendo(w = 1) = 90◦ (same as longitudinal direction); αepi(w = 1) =
−25◦

• Outflow tracts (based on Sanchez-Quintana [1]): αepi(w = 0) = 0◦

(circumferential direction);αendo(w = 0) = 90◦ (longitudinal direc-
tion)
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The expression for the transverse angle, β, was the following:

β = βendo(w) · (1− d) + βepi(w) · d (3.4)

Values of the transverse angle were derived from several studies [2, 3, 138]
as follows:

• Left ventricle:

βendo(w = 1) = −20◦ and βepi(w = 1) = 20◦

• Right ventricle:

βendo(w = 1) = 0◦ and βepi(w = 1) = 20◦

• Outflow tracts:

βendo(w = 0) = 0◦ and βepi(w = 0) = 0◦

3.2.3.2 Septal configuration

The OT-RBM allowed to control fiber angles in the septum, since we pre-
viously divided our septal geometry into RV and LV using the transmural
direction. Therefore, the intersection surface between both ventricles (i.e.
interventricular septal surface) can be used to guide the interpolation of
fiber angles in the septum. This is done by solving the Laplace equation be-
tween the interventricular septal surface and the RV and LV endocardium
(Figure 3.3, b). The obtained values (σ) were used for forcing a smooth
transition in both ventricles from the initial fibers in the septal surface
(αseptal). Hence, the final expression for assigning the fiber angle in the
septum, which could easily be modified to enforce continuity or a certain
angle of discontinuity, was the following:

αfinal = α · (1− σ) + αseptal · σ (3.5)

3.2.3.3 Complex structures

The OT-RBM is capable of dealing with cumplex structures such as tra-
beculae, papillary muscles, moderator band or false tendons. Myofibers
belonging to these structures present a longitudinal orientation along the
long axis [3]. Since trabeculae information is not included in most of the
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RVOT 

RV 

LV 

RVOT 

LV 

RVOT 

LV RV LV 

RVOT 

RV 

a. b. c. 

d. e. 

Figure 3.5: Fiber orientation obtained with the OT-RBM for different biventricular ge-
ometries and regions of the heart. LV: left ventricle; RV: right ventricle; RVOT: right
ventricular outflow tract.

geometries obtained from CT or MRI imaging, we applied the OT-RBM to
a detailed human heart geometry reconstructed from high-resolution MR
images obtained by The Visible Heart R© Lab. The volumetric mesh was cre-
ated using an in-house mesher developed at the Barcelona Supercomputing
Center (BSC). The OT-RBM assign the myofiber orientation to trabeculae
by performing two extra steps. First, trabeculae are detected and then the
specific fiber orientation is assigned in these structures. Trabeculae detec-
tion is done by calculating the parameter t using the previously obtained
transmural gradient following the expression in Equation 3.6.

t =

{ ‖∇Φ‖
T‖∇Φ‖

, if ‖ ∇Φ ‖< T‖∇Φ‖

1, if ‖ ∇Φ ‖≥ T‖∇Φ‖.
(3.6)

Where T‖∇Φ‖ is a threshold value set as 0.1. An example of the detection
of the trabeculae in two different patient geometries can be seen in Figure
3.6.
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Figure 3.6: Example of trabeculae detection in two different geometries. Function t
present low values in the trabeculae and a smooth transition towards the endocardium.

After detecting the trabeculae, fiber orientation is assigned to the trabecula-
tion by means of the Equation 3.7. The expression guarantees a longitudinal
direction of the fiber orientation along the trabecula and a smooth transition
in the endocardium-trabeculation junction.

αtrab = 90 · (1− t) + αendo · t (3.7)

βtrab = 0 (3.8)

3.3 Experimental results

Results of applying the developed method to different geometries can be
seen in Figure 3.5. They show a good agreement with histological data
presented in Figure 3.1, especially in certain areas: RVOT fiber orientation
(Figure 3.1a and Figure 3.5a, b, d); epicardial fiber configuration (Fig-
ure 3.1b, c and Figure 3.5b, c); and the transmural variation in LV fibers
(Figure 3.1d and Figure 3.5e). The myofiber behaviour in trabeculae can
be observed in Figure 3.7. The smooth transition between the trabeculae
(red) and the endocardium (blue) can be appreciated in Figure 3.7a. Figure
3.7b shows a general view of the fibers in the LV trabeculae, especially in
the false tendon. Figure Figure 3.7c compares the fiber generated in a high
detailed geometry versus the obtained in a smooth one. A more exhaus-
tive and quantitative evaluation of OT-RBM performance was conducted
by means of three experiments, described below.
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RVOT 

RV 

L 

RVOT 

1 

a. b. 

c. 

Figure 3.7: Obtained fiber orientation in different complex geometries. a) fiber orienta-
tion in the trabecula-endocardium junction. b) General view of fiber orientation in LV
trabeculae. c) Comaparison of fiber orientation obtained in a high detailed geometry
versus the fiber orientation of a geometry with smooth endocardium.

3.3.1 Experiments

Three experiments were designed and conducted to analyse the performance
of the proposed RBM. In the first experiment we estimated the differences
between fiber configurations provided by the OT-RBM and existing ones
in the literature. Magnetic resonance imaging data from an ex-vivo hu-
man heart available at the Johns Hopkins database 5, which also includes
fiber information from DT-MRI was used for this experiment. Differences
were computed as the angle between fibers in each point of the mesh. Fur-
thermore, mean angle differences were evaluated in different regions of the
heart, dividing the LV into the 17 AHA regions according to the well-known
description of Cerqueira et al. [139]. For the RV, a division in 15 regions
based on the model proposed by Zhong et al. [140] was performed.

Since the previous geometry did not include detailed fiber information in
the OTs, we performed a second experiment where OT fibers are indirectly

5http://cvrgrid.org/data/ex-vivo
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compared. This experiment involved running electrophysiological simula-
tions, including fiber orientation patterns computed with the OT-RBM and
the Streeter-based one, on heart geometries from nine idiopathic OTVA
patients. The simulated electrical propagation waves were then compared
with clinical data from the OTVA patients, acquired during the ablation
procedure at Hospital Cĺınic de Barcelona, Spain. Clinical data consisted
of EAMs acquired by the CARTO 3 system (Biosense Webster, Inc., Di-
amond Bar, CA, USA). Early activation sites were manually identified by
clinicians during the intervention. Characteristics of the isochrones (area,
axis ratio) around the earliest activated point in the RV endocardium were
also manually measured by clinicians after the intervention. Isochronal char-
acteristics provide useful information to predict the site of origin (SOO) of
the ectopic focus [29, 30]: if the longitudinal axis of the isochrones follows
the apico-basal axis, the SOO should be in the RVOT (following the fibers
in the OT); LVOT origins create more isotropic isochrones or with a larger
perpendicular axis.

To simulate cardiac electrophysiology on patient-specific biventricular ge-
ometries we made use of the Mitchell-Schaeffer’s electrophysiological model
[141]. This model describes the transmembrane potential as the sum of a
passive diffusive current and active reactive currents. It has two variables;
the transmembrane potential u and a gating variable z that controls the
depolarization and repolarization phases. Their evolution can be described
by the following equations:

∂tu = div(D∇u) +
zu2(1− u)

τin
−

u

τout
+ Jstim(t)

∂tz =


1− z
τopen

if v < vgate

− z
τclose

if v > vgate

(3.9)

Where the parameters τin and τout define the repolarization phase and τopen
and τclose define the gate opening or closing depending on the change-over
voltage vgate. The term D = d · diag(1, r, r) is the anisotropic diffusion ten-
sor, where d is the diffusion coefficient and r is the anisotropy ratio. This
ratio produces a conduction velocity 2.5 larger along the fiber direction
than in the transverse plane (r = 1/2.52). The tissue electrical diffusivity
was adapted to obtain a longitudinal conduction velocity of 0.68 m/s. Fi-
nally, the term Jstim(t) is the stimulation current at the SOO. Values of the
parameters used in our models are summarized in Table 3.1
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Table 3.1: Simulation Parameter Values

Parameter Value

τin[ms] 0.3
τout[ms] 6
τclose[ms] 150
τopen[ms] 120
ugate 0.13
Jstim[s−1] 2000

Simulations were performed using the Mitchell-Schaeffer model implemen-
tation [142] in the SOFA framework6 with a time step of 0.01 ms. The
SOO was placed in different parts of the OTs, including the one found by
the clinicians during the intervention. The isochronal area, i.e. the surface
occupied by mesh elements in the RV endocardium that has been activated
at a given time (10 ms in our case) after the earliest activated point, and the
clinical ratio of the simulated isochrones were calculated in each case follow-
ing the same protocol than clinicians when analyzing isochrones from the
EAM data [29, 30]. The protocol implemented by the clinicians measures
the longitudinal diameter of the isochronal map area, which was defined by a
line parallel to the septal projection of the RVOT longitudinal axis (perpen-
dicular to the plane of the pulmonary valve). The defined longitudinal axis
specified the perpendicular axis of the early activated area (perpendicular
direction of the longitudinal axis).

Finally, in order to demonstrate the influence of fiber orientation in electro-
physiological simulations we carried out a sensitivity analysis by changing
RVOT fiber orientation by different angles and performing simulations from
two different SOO (RVOT and right coronary cusp). Resulting isochrones
were evaluated and compared with clinical observations.

3.3.2 Comparison with other RBM and DT-MRI

Figure 3.8 shows the comparison of fiber distribution maps provided by the
OT-RBM, the one based on Streeter (ST-RBM) [143], Bayer et al. [70] (BY-
RBM) and DT-MRI on the ex-vivo human heart from the Johns Hopkins
database. The top row of the figure shows the fiber configurations provided
by the OT-RBM, ST-RBM and BY-RBM models (a, b, c, respectively).
The bottom row shows the comparison between DT-MRI fibers and the

6http://www.sofa-framework.org
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a) b) c) 

e) d) f) 

angle difference (º) 

OT-RBM ST-RBM vs OT-RBM BY-RBM vs OT-RBM 

DTI  vs OT-RBM DTI vs ST-RBM DTI vs BY-RBM 

Figure 3.8: Top row: Fibers obtained using the OT-RBM (a) and angle differences (in
degrees) with the ones obtained using ST-RBM (b) and BY-RBM (c). Bottom row:
Angle differences between DT-MRI human fibers and OT-RBM (d), ST-RBM (e) and
BY-RBM (f). Angle differences are shown in each case in a 3D mesh view and in a AHA
plot with regional mean angle differences. For each geometry, name in bold indicates the
represented fibers.
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Table 3.2: Quantitative comparison of the angle differences presented in Figure 3.8 (b-
f). Mean angle difference and standard deviation are presented for each region of the
biventricular bulls’ eye plot shown in Figure 3.8.

angle ± sd (◦)

ST-RBM vs BY-RBM vs DTI vs DTI vs DTI vs
Region OT-RBM OT-RBM OT-RBM ST-RBM BY-RBM

1 23,0 ± 14,0 19,8 ± 12,9 26,6 ± 16,0 23,0 ± 15,0 16,3 ± 12,8
2 26,4 ± 18,6 18,3 ± 19,5 25,5 ± 14,8 32,9 ± 17,3 25,3 ± 15,4
3 31,6 ± 19,8 23,0 ± 24,5 22,0 ± 19,2 31,5 ± 17,9 17,0 ± 15,1
4 21,5 ± 12,2 15,3 ± 14,3 29,1 ± 13,4 25,8 ± 13,3 20,6 ± 14,0
5 28,6 ± 10,8 17,3 ± 14,4 29,5 ± 14,8 26,2 ± 10,8 19,6 ± 11,7
6 28,8 ± 11,1 18,8 ± 14,1 25,1 ± 12,2 20,0 ± 11,2 15,0 ± 10,9
7 39,0 ± 10,0 18,5 ± 10,0 33,1 ± 16,5 33,9 ± 10,0 17,6 ± 14,3
8 43,3 ± 16,8 23,4 ± 18,5 40,8 ± 17,3 37,5 ± 12,6 26,6 ± 14,6
9 38,8 ± 13,6 12,5 ± 12,1 32,7 ± 21,1 44,2 ± 13,0 28,5 ± 22,5
10 39,5 ± 12,7 11,0 ± 7,1 22,9 ± 15,2 41,4 ± 8,3 17,9 ± 17,1
11 48,9 ± 12,2 11,1 ± 7,8 27,2 ± 15,0 46,2 ± 9,1 18,7 ± 12,3
12 46,0 ± 11,3 14,1 ± 10,2 25,2 ± 12,9 43,9 ± 10,8 14,2 ± 10,5
13 57,6 ± 11,1 16,0 ± 9,5 44,3 ± 22,1 57,6 ± 13,8 30,3 ± 16,9
14 58,7 ± 14,7 27,7 ± 18,3 36,4 ± 20,2 55,4 ± 12,1 28,2 ± 20,1
15 59,9 ± 11,9 14,4 ± 10,8 30,5 ± 20,6 56,7 ± 7,8 23,1 ± 17,4
16 69,6 ± 10,4 13,3 ± 10,9 46,7 ± 21,4 66,5 ± 9,0 36,8 ± 16,1
17 72,5 ± 10,1 28,7 ± 24,0 33,5 ± 20,8 62,6 ± 10,4 39,1 ± 22,8
18 15,9 ± 8,1 12,5 ± 8,4 13,4 ± 10,6 16,0 ± 8,3 14,6 ± 8,8
19 15,1 ± 5,5 15,1 ± 11,7 21,6 ± 14,0 20,0 ± 11,6 16,9 ± 13,2
20 23,6 ± 7,4 33,0 ± 13,3 19,7 ± 18,3 29,5 ± 14,6 34,5 ± 16,5
21 41,2 ± 16,0 43,4 ± 22,9 36,4 ± 25,3 43,6 ± 17,9 42,7 ± 23,7
22 45,7 ± 25,6 44,6 ± 29,2 27,4 ± 17,2 28,8 ± 13,8 23,3 ± 14,0
23 20,4 ± 6,5 13,0 ± 6,4 24,8 ± 13,8 21,6 ± 13,6 24,9 ± 16,3
24 23,4 ± 5,3 13,0 ± 9,5 25,1 ± 16,3 26,9 ± 11,6 21,0 ± 13,6
25 29,0 ± 8,2 34,8 ± 15,2 21,2 ± 11,5 34,6 ± 7,7 35,3 ± 12,3
26 52,9 ± 17,2 51,9 ± 26,0 38,3 ± 25,0 47,0 ± 13,2 47,3 ± 21,3
27 45,3 ± 26,5 39,4 ± 28,5 40,4 ± 17,7 28,7 ± 15,9 34,0 ± 21,2
28 39,1 ± 15,1 22,2 ± 17,1 37,3 ± 20,5 34,7 ± 13,9 28,0 ± 14,1
29 52,0 ± 18,9 42,1 ± 27,6 48,0 ± 25,0 35,1 ± 7,4 25,5 ± 11,3
30 56,0 ± 21,3 40,8 ± 26,0 47,6 ± 22,9 42,0 ± 19,3 48,3 ± 21,4
31 31,9 ± 20,6 31,5 ± 21,2 23,4 ± 19,7 28,0 ± 20,8 24,5 ± 19,8
32 28,7 ± 19,2 30,7 ± 20,0 18,8 ± 15,7 26,0 ± 17,9 23,4 ± 17,9

different RBMs: OT-RBM (d), ST-RBM (e) and BY-RBM (f). Information
about the mean angle difference projected into a 2D visualization of different
regions of the heart is also included in the figure.

A quantitative analysis of these regional average angle differences is sum-
marized in Table 3.2. As expected, the main angle differences (red colors
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in Figure 3.8) between our model and the other RBMs are found in the RV
endocardium, where we defined longitudinal directions from the apex to-
wards the pulmonary and tricuspid valves. Fibers are more circumferential
when generated with the other RBMs, when compared to histological data
in this region. Low differences were found in the LV, especially comparing
to BY-RBM (< 20◦). The comparison with BY-RBM also presented low
differences in the free wall of the RV (< 15◦). Differences between OT-RBM
and DT-MRI fibers are slightly larger in the LV (∼30◦) but there is only
one region, close to the apex, with high angle differences (> 45◦, region
number 16). The ST-RBM and BY-RBM methods, especially the former,
also present difficulties for generating fibers close to DT-MRI data in the
LV apex (> 60◦ and ∼38◦ for ST-RBM and BY-RBM, respectively).

3.3.3 Electrophysiological simulations on OTVA
biventricular geometries

Isochrone ratios and areas were estimated for the electrophysiological simu-
lations with RVOT and LVOT sites of origin using fiber directions computed
with the OT-RBM and the ST-RBM. A quantitative analysis of isochrone
ratios provided by electrophysiological simulations with the OT-RBM and
the ST-RBM with different SOO in nine different patient-specific biventric-
ular geometries is shown in Table 3.3. It also includes the SOO identified by
the clinician and the manually measured isochrone ratio during the inter-
vention. For each origin, mean of isochrone ratios were the following (mean
± SD): 1.86 ± 0.22 and 0.57 ± 0.16 for RVOT-SOO using OT-RBM and
ST-RBM, respectively; and 0.88 ± 0.3 and 0.9 ± 0.4 for LVOT-SOO, using
OT-RBM and ST-RBM respectively. We can observe that the largest differ-
ences correspond to RVOT-SOO, where the OT-RBM successfully predicted
a larger longitudinal direction than the transversal one, unlike ST-RBM.

The obtained isochrone areas were the following (mean ± SD): 1.5 ± 0.4
cm2 and 1.4 ± 0.4 cm2 for RVOT-SOO using OT-RBM and ST-RBM,
respectively; and 5.5 ± 2.3 cm2 and 5.6 ± 2.1 cm2 for LVOT-SOO using OT-
RBM and ST-RBM, respectively. Therefore, both RBM provided similar
results in terms of isochrone areas, independently of the site of origin.

We also evaluated the potential of the OT-RBM as a tool to predict the
SOO in OTVAs. An example of differences between isochrones obtained in
the RV endocardium around the earliest activated point from the electro-
physiological simulations with different SOO can be seen in the first column
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of Figure 3.9. For LVOT origin we generated simulations from the right and
left coronary cusps (RCC and LCC, respectively). Substantial differences
were found in the isochrone characteristics depending on the site of origin,
mainly a higher degree of isochronal isotropy with a LVOT origin (RCC in
the figure) than with a RVOT origin, where the longitudinal direction along
the fibers is preferential.

We can observe that the OT-RBM contributes to simulate isochrone ratios
well differentiated depending on the RV or LV site of origin. A dependent t-
test between results in statistically significant differences between isochrone
ratios from RVOT-SOO and RCC-SOO (p < 0.001) and from RVOT-SOO
and LCC-SOO (p < 0.001), but not from RCC-SOO and LCC-SOO. Ad-
ditionally, the OT-RBM successfully replicated clinical findings such as the
preferential longitudinal direction in RVOT origins (isochrone ratios larger
than 1.5 in P7 and P9), unlike the Streeter-based one (isochrone ratios
around 0.6 in P7 and P9).

3.3.4 Sensitivity analysis

A sensitivity analysis was carried out to assess the influence of RVOT fiber
orientation in the simulated RV isochrones, with different ectopic focus in
the RVOT and LVOT (RCC origin). Fibers were changed as follows: 90◦

(chosen value in the OT-RBM), 0◦, 45◦ and -45◦. We also included fiber con-
figurations provided randomly, with ST-RBM and BY-RBM; we extended
ST-RBM and BY-RBM to work in heart geometries with OT, placing the
basal plane boundary condition in the mitral and tricuspid valves. Fig-
ure 3.9 shows the simulated 10 ms isochrones in the RV and their corre-
sponding clinical isochrone ratio, obtained with the different fiber configu-
rations. Longitudinal and perpendicular ratios are displayed in yellow and
green arrows, respectively. Only simulations guided by OT-RBM gener-
ated fibers were able to replicate the high clinical ratio (1.78) and correct
isochronal orientation obtained with a RVOT site of origin. The simulated
isochrones with a LVOT-RCC origin did not present large differences with
respect to the chosen fiber configuration.

3.4 Discussion

The aim of this work was to develop a novel rule-based method (OT-RBM)
for assigning myofiber orientation in heart geometries including specific in-
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formation of the RV and OTs. This new method will allow performing
in silico studies to better understand and predict the behaviour of cardiac
pathologies where the RV and OTs have an important role. The developed
OT-RBM is based on myocyte aggregate configuration observed on histo-
logical data. It includes the following novel features that were not available
before: 1) treatment of each ventricle separately, which improves the in-
dividual fitting of fiber angles; 2) new definition of longitudinal direction
(∇Ψ) based on histological descriptions [3, 137], which generate a new co-
ordinate system allowing simple angle assignation to different regions of the
heart; 3) fiber angles specific to the LV, RV, septum and OTs; and 4) ad-
dition of septal interpolation between the ventricles. These novelties make
the OT-RBM flexible enough to assimilate fiber information from multi-
modal imaging (DT-MRI, histology, synchrotron data) and to work in a
wide variety of heart geometries.

The proposed OT-RBM was compared with state-of-the-art RBMs, namely
Streeter-based RBM (ST-RBM) and Bayer’s RBM (BY-RBM). Differences
on fiber configuration provided by the different RBMs can be visualized
in Figure 3.8. As expected, the largest differences appear mainly near the
RVOT, the RV endocardium and closer to the septum. For instance, ST-
RBM and BY-RBM fibers are more circumferential that when generated
with the OT-RBM, when compared to histological data in the RV. Interest-
ingly, there were small differences (< 20◦) observed between OT-RBM and
BY-RBM fiber configurations in the LV. This suggests that longitudinal
directions obtained with the apex-mitral and apex-aortic valve boundary
conditions in OT-RBM are equivalent to the apex-base ones in BY-RBM in
the LV. The LV valve geometrical configuration, where the mitral and aortic
valves are quite close together is probably the main reason for the OT-RBM
and BY-RBM similarities in the LV. Over all the studied regions OT-RBM
fibers were closer to BY-RBM ones, comparing to ST-RBM results.

The different RBMs were indirectly compared running electrophysiological
simulations involving the outflow tracts guided by the different RBM-based
fiber configurations. Results of this comparison can be seen in Figure 3.9.
One of the major contributions of the OT-RBM is that it greatly improved
OTVA simulations when compared to clinical observations. The simulated
longitudinal/perpendicular clinical ratios of the isochrones (Table 3.3 and
first column of Figure 3.9) were in agreement with measurements made by
clinicians during the intervention [29]. According to this study, clinical ra-
tios for RVOT isochrones are 1.9 ± 1.2 (n = 14) and 0.79 ± 0.4 (n = 23) for
LVOT isochrones. The OT-RBM isochrone clinical ratio for RVOT cases
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in our simulation study (1.86 ± 0.22; see Table 3.3) was very close to the
value measured by electrophysiologists. This agreement was possible due to
the new distribution of fibers, especially in the RV and OTs, following his-
tological observations. Other RBMs use simpler rules for generating fibers
in these regions, obtaining unrealistic fiber configuration and, therefore, in-
correct electric wave propagation and resulting isochrones (a ratio of 0.57
± 0.16).

The influence of the cardiomyocyte orientation in electrophysiological simu-
lations was further analysed in a sensitivity analysis (Figure 3.9). Isochrones
obtained using the OT-RBM (90◦) were the only ones showing good agree-
ment with clinical observations from EAM [29, 30]. When the origin of the
arrhythmia is in the RVOT (top row of Figure 3.9), the longest axis is in
the longitudinal direction of the RVOT, which corresponds to axis ratios
larger than 1.5. By contrast, the remaining fiber configurations showed
an isochronal principal direction opposite to clinical observations, as ob-
served in Figure 3.9. Obtaining simulated isochrones similar to clinical
ones by only following histological observations, while being blind to any
other patient-specific electrophysiological data, is a strong feature of the
proposed method.

Finally, we also compared the RBMs with fibers obtained from DT-MRI
data. An ex-vivo human heart geometry from Johns Hopkins database was
used for the comparison. Unfortunately, fiber orientation data was only
available below a certain basal plane, substantially below the outflow tracts
and the valves, preventing a detailed evaluation of the OT-RBM. Despite
this limitation, the comparison showed relatively small fiber angle differ-
ences in the LV (∼30◦; Figure 3.8,d), except close to the apex, which is a
complex region for all RBMs when compared to DT-MRI data. The small
fiber angle differences between OT-RBM, BY-RBM and DT-MRI data sug-
gests that they will have a similar behavior in simulations involving the
LV [38, 70, 144]. In the RV, differences to DT-MRI fibers obtained with the
OT-RBM are slightly lower than the ones obtained with other RBMs, espe-
cially in the septum, which has high relevance in the OTVAs. It is important
to highlight that the OT-RBM is not designed to strictly follow DT-MRI
data (neither in the LV nor in the RV), but guided by histology-derived in-
formation. As can be seen in histological pictures shown in Figure 3.1, fibers
in the RV endocardium and the OTs present a different orientation com-
pared to those obtained by DT-MRI. The OT-RBM has been parameterized
to match as much as possible fiber orientation observed in histological data
and based on cardiac anatomist observations; by design, RV and OT fiber
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configuration from our RBM will necessarily differ from DT-MRI. There-
fore, we cannot consider fiber angle differences between them as a conclusive
index to assess the accuracy of the OT-RBM.

Another major outcome of our study is the improved realism of OTVA
electrophysiological simulations when guided by OT-RBM fiber configura-
tions since it could support electrophysiologists in the prediction of the
SOO in OTVA patients. Frequently, LVOT vs RVOT prediction of SOO
in OTVAs is a challenging task for electrophysiologists, especially in diffi-
cult cases where the LVOT and RVOT geometries are spatially close and
their electrophysiological signals from the electrocardiogram cannot be dis-
tinguished. Several works [25, 27, 29, 30] proposed several indices to predict
the SOO of ectopic focus and then reduce the time of and improve the suc-
cess rate of interventions. Using OT-RBM based electrophysiological simu-
lations on patient-specific geometries, we have been able to differentiate the
SOO by measuring the longitudinal/perpendicular clinical ratio of the 10
ms isochrones. According to Table 3.3 there are statistical significant dif-
ferences between RVOT and LVOT (LCC or RCC) origin isochrone ratios.
Isochronal areas can also be used to predict the SOO in simulations (larger
in LVOT cases) but cannot be consistently be measured in clinical routine.
The previous findings show the potential of our modelling pipeline to be
used as an additional pre-operative source of information to the clinician to
predict the site of origin of ectopic foci.
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In silico pace-mapping:
prediction of left vs right
outflow tract origin in
idiopathic ventricular
arrhythmias with multi-scale
electrophysiological
simulations
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Abstract – The pre-operative identification of the site of origin (SOO)
of outflow tract ventricular arrhythmias (OTVAs) is important to plan ra-
diofrequency ablation procedures. Depending on the SOO, a different ap-
proach is needed. Although clinicians have developed several algorithms
to predict left versus right ventricular origins based on electrocardiograms
(ECG), their accuracy is still limited, especially in complex anatomies. The
aim of this work is to predict the SOO using electrophysiological simulations
on personalized geometries from OTVA patients. An in silico pace-mapping
procedure was simulated in eleven patient-specific geometries, generating
simulated ECGs from twelve clinically plausible SOO. Subsequently, the
simulated ECGs were compared with patient ECG data obtained during
the clinical tachycardia using a 12-lead correlation coefficient (12- lead ρ).
The obtained simulations showed higher correlation coefficients in virtual
sites close to the ablation points that stopped the arrhythmia. Addition-
ally, the LV/RV ratio was calculated from simulations, which allowed to
differentiate LV vs LV SOO (1.07 vs 0.93 p < 0.05 for 12-lead ρ). A more
precise anatomical location of the SOO within a given outflow tract was
also predicted, although accuracy was reduced. As a conclusion, the devel-
oped pipeline based on OTVA simulations demonstrates potential to become
a useful pre-procedure tool complementary to standard ECG and support
electrophysiologists in finding the SOO of complex ventricular arrhythmias.

This chapter is adapted from: Ruben Doste, Rafael Sebastian, Juan Francisco
Gomez, David Soto-Iglesias, Alejandro Alcaine, Llúıs Mont, Antonio Berruezo, Diego
Penela and Oscar Camara. In silico pace-mapping: prediction of left vs right outflow
tract origin in idiopathic ventricular arrhythmias with patient-specific electrophysiologi-
cal simulations. Submitted.
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4.1 Introduction

Outflow tract ventricular arrhythmias (OTVAs) are a type of idiopathic ar-
rhythmia in which the site of origin (SOO) of the ectopic beat is located
near the RV or LV outflow tracts (RVOT and LVOT, respectively). Pa-
tients with OTVAs can be managed with pharmacological treatment or by
applying Radio-Frequency Ablation (RFA) at the SOO, which is the most
common and effective treatment [12]. The estimation of the SOO location
is an important step before RFA procedure since it affects the planning
and timing of the ablation, the risk evaluation, and the catheter approach.
When the SOO is estimated at the RVOT, the intra-cardiac catheter is in-
troduced via the right femoral vein whereas in the LVOT cases the catheter
reaches the LV through the femoral artery. Finally, in cases where there is
a LV epicardial site of origin the region is accessed through the coronary
venous system [13].

In clinical practice, electrophysiologists usually estimate the SOO after vi-
sual inspection of the 12-lead electrocardiogram. ECGs are composed by
four main components: a P-wave, a QRS-complex, a T-wave and a U-wave.
Each component is related with different electrophysiological stages of the
heart, being the QRS-complex the most important since a great number of
ventricular arrhythmias are detected by changes of the morphology on the
QRS-complex.

To localize the SOO, pace-mapping is a common technique being used by
electrophysiologists [31, 145]. It is possible to reproduce the clinical tachy-
cardia characteristics by stimulating at different places of the heart. There-
fore, if the obtained QRS morphology by pacing at a site matches well with
the observed on the 12-lead ECG, the site is considered to be a potential
ablation site.

RVOT origin has been reported to be the most common site (∼75%) [15,
146, 147], although recent studies suggest that LVOT has an incidence in
nearly 50% of the OTVA cases [17]. Epicardial SOO are 15% of the LVOT
arrhythmias and usually come from the left ventricular summit [148]. Other
anatomical structures where LVOT arrhythmias can emerge are the distal
coronary sinus, the aortic root or the aorto-mitral continuity [13].

Unfortunately, estimating the SOO from the ECG pre-operatively is often
a difficult task due to the complex anatomy of the outflow tracts, which
leads to ECG patterns that may not provide enough information to discern
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between left and right origins. Several studies have proposed algorithms
to predict the SOO based on the standard ECG recordings of the patient,
which are mainly based on the existence of transitions in the precordial
leads and the amplitude of the QRS [23]. Some of these algorithm-derived
indices include the R-wave duration index and R/S amplitude ratio in-
dex [24], the V2 transitional ratio [14], the V2S/V3R index [25] and the
transition zone index [26]. These studies particularly stressed the relevance
of having incorrect ECG lead placement since it would affect the morphol-
ogy of the ECG signal and therefore the performance of the algorithms.
Other studies [9, 27, 28] proposed to modify some of the standard precor-
dial lead positions to improve the accuracy of the ECG-based predictions.
In particular, moving leads V5 and V6 to more posterior locations (V7,
V8, V9) [27, 28], or modifying leads V1 and V2 [9], seems to provide more
information about the wave propagation and increases the effectiveness of
the prediction. Some not ECG-based approaches have also shown rela-
tively good accuracy in differentiating RVOT vs LVOT origin using indices
such as the aorto-pulmonary valvular planar angulation [17] or the area
and ratio of the 10 ms isochronal activation pattern [29, 30] obtained from
the patient’s EAM. However, these algorithms present several drawbacks.
All the ECG-based algorithms show good results in their original publica-
tion, but their accuracy decrease when tested with different populations,
especially when applied to patients with V3 transition, which are approxi-
mately the 40 % of OTVA patients [16]. A possible explanation for study
discrepancies is that the measurement of these parameters highly depends
on the clinician ECG analysis skills and presents high inter-observer depen-
dence/variability; some QRS characteristics are easy to determine, however,
calculation of other features where pattern recognition is involved becomes
subjective and requires long-term expertise; some algorithms require nu-
merous steps and can be severely affected by measuring errors during the
index calculation. In addition, medications, preferential conduction of the
depolarization wave or changes in heart morphology, among other factors,
will affect the recorded ECGs [15]. Furthermore, the application of these
algorithms is restricted in patients with paced rhythms or intra-ventricular
conduction disorders [17] for which ECG morphology has been less analysed
due to the limited amount of data available.

We hypothesized that personalized multi-scale electrophysiological simu-
lations of the heart could provide added value to the electrophysiologists
for the pre-operative non-invasive localization of the SOO in OTVA pa-
tients. We showed preliminary simulation results in Chapter 3, as part of
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the validation performed for the developed OT-RBM [149]. Personalized
electrophysiological simulations have already shown promising results to
support clinical decision-making in cardiology [38, 39, 150, 151]. In order to
achieve relevant clinical use, simulation of the ECG arises as a fundamen-
tal step since ECG is the most common non-invasive signal used in clinical
practice. Although several works have been focused on performing ECG
electrophysiological simulations, very few have tried to simulate and com-
pare patient-specific ECGs [40, 106, 152, 153, 154]. Moreover, simulations
where RV or OT have a crucial role are scarce due to the difficulties to get
good anatomical and functional data in these regions, including myofiber
orientation and EAM characterization.

In this work, we propose a novel framework to predict the SOO of OTVA
by performing patient-specific electrophysiological simulations. The 3D
anatomical model is constructed by segmentation and volumetric mesh-
ing the patient’s CT images, together with regional tissue characterization
(fiber orientation, tissue conductivity). Following, multi-scale biophysical
models of cardiac electrophysiology are used to simulate the electrical activ-
ity from cell level to organ level. All the models include the heart and the
torso, which allows to solve the forward problem of electrophysiology, and
obtain the in silico patient ECG. With our computational model we can
perform the pace-mapping procedure which is often used during ablation
interventions by simulating surface ECGs from different ectopic foci and
comparing them with the patient clinical ECG to identify the most likely
site of origin. Beyond our research, only two recent works [155, 156] have
attempted a similar simulation approach for the same clinical application,
but it was applied to very few geometries (three and one, respectively) and
without specific OT and RV-based RBM.

4.2 Methods

The methodology to simulate the in silico pace-mapping process is illus-
trated in Figure 4.1. All the simulations were run using the data of eleven
OTVA patients obtained during a previous ablation procedure. Patient-
specific biventricular geometrical models were created and the OT-RBM
was used to assign proper myocyte direction in the OTs. A total of 12 elec-
trophysiological simulations were carried out in each geometry by chang-
ing the SOO according to clinical reports [21]. Resulting potentials were
propagated to the torso surface where ECG was calculated. Finally, after
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CT imaging 
ECG 

Model 
construction and 
SOO simulation Torso propagation Simulated ECGs 

Ablation  site 

Figure 4.1: Scheme of the proposed methodology. Patient-specific geometries were created
from medical computed tomography scans. Fibers were assigned using the OT-RBM
algorithm (see Chapter 3). Electrophysiological simulations were run from different sites
of origin (SOO) and electrocardiograms (ECGs) were calculated after the propagation to
the torso surface. Finally, simulated ECGs were compared with the patient ECG in order
to find the most similar pattern and therefore the best candidate for the SOO. Suggested
SOO were then validated against the ablation site.

simulations were validated, simulated ECGs were compared with patient
ECG in order to find the SOO that gave place to the most similar ECG.

4.2.1 Clinical Data

Patient-specific biventricular geometries were reconstructed from the pro-
cessing of CT images that corresponded to eleven patients with idiopathic
OTVAs submitted for ablation procedure at Hospital Cĺınic de Barcelona. A
multidetector CT ECG-gated study was performed on a 128 x 2 -slice CT
scanner (Somatom Definition Flash, Siemens Healthcare, Erlangen, Ger-
many). Images were acquired during an inspiration breath-hold using a
retrospective ECG-gating technique with tube current modulation set be-
tween 50% and 100% of the cardiac cycle. The isotropic spatial resolution
was 0.4 x 0.4 x 0.4 mm.
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All patients underwent a RFA procedure. The study was approved by the
local ethics committee and written informed consent was obtained from all
participants. EAM was acquired by CARTO 3 navigation system (Biosense
Webster, Diamond Bar, CA) with a 3.5 mm irrigated tip catheter (Nav-
iStar, Biosense Webster). Anti-arrhythmic drugs and beta-blockers were
discontinued for 5 half-lives prior to the procedure. No patient received
isoproterenol during mapping. During the procedure, 12-surface ECG and
intracardiac recordings were obtained and displayed by an electrophysiol-
ogy data acquisition system (Bard LabSystem, CR Bard Inc, Lowell, MA;
or EP-Tracer, CardioTek, Maastricht, The Netherlands).

4.2.2 Biventricular model

The biventricular geometries were extracted from CT images using a semi-
automatic segmentation procedure with the region growing techniques avail-
able in the 3DSlicer7 and medInria8 softwares. Surface meshes were gen-
erated from the binary segmentations using the Marching Cubes method
[157]. After that, some mesh post-processing steps such as smoothing or
face repairing were performed using Blender software9 . Finally, an hexa-
hedral volume mesh was generated with MeshGems-hexa software (Distene
S.A.S., Bruyeres-le-Chatel, France)10. The generated meshes had an aver-
age of 3.5 million nodes and 4 million elements, with an average edge length
of 0.38 mm.

Geometrical surfaces of the meshes were labelled in order to assign different
tissue properties and cardiomyocyte orientation: the epicardium, the LV
and RV endocardium, RV/LV apices and the four heart valves. We used a
semi-automatic approach in which the apices and valve position were man-
ually identified according to the CT images; the endocardial and epicardial
surfaces were labelled using ray/triangle intersection algorithms [135]. Rays
were traced from the normal of every face of the surface mesh and intersec-
tions with other faces were computed. If any intersection was found, the face
was classified as endocardium; the rest were set as epicardium. Figure 4.2
(a) shows the resulting mesh labelling for one of the processed biventricular
geometries. Each mesh region is identified by a different color.

Cardiomyocyte orientation was included in the model using the Outflow
Tract extended Rule Based Method (OT-RBM) [149] detailed in Chap-
ter 3. This RBM created detailed cardiomyocyte orientation in specific

7https://www.slicer.org
8http://med.inria.fr
9https://www.blender.org

10http://www.meshgems.com 63
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a) b)
c)

d)

Aortic
Valve

Figure 4.2: a) Labels assigned to the mesh surface (aortic, pulmonary, mitral and tricuspid
valves, both apices, epicardium and right and LV endocardium). The different surfaces
will be used to obtain the cardiomyocyte orientation with the OT-RBM algorithm (see
Chapter 3). b) Streamlines showing the cardiomyocyte orientation created with the OT-
RBM in one patient geometry. c) and d) Detail of fiber orientation near the pulmonary
and aortic valves, respectively.

regions such as the outflow tracts, RV and the inter-ventricular septum ac-
cording to histological information [1, 3, 29]. These regions play a key role
in the OTVA simulations. In particular, OT cardiomyocyte configuration
has longitudinal and circumferential directions in the sub-endocardium and
sub-epicardium, respectively. This orientation highly differ from the my-
ocyte orientation that is present in rest of the ventricle. Furthermore, there
are also substantial differences between the RV and LV cardiomyocyte ar-
rangement that need to be modelled individually. [1, 137]. An example of
the obtained cardiomyocyte orientation in the epicardium as well as in the
RV and LV OTs can be seen in Figure 4.2. The OT-RBM also provided
some interesting labels in the geometrical interface between the two ven-
tricles, automatically dividing the septum between RV and LV replicating
some anatomical findings such as the myofiber transmural angle behaviour
in the LV or the orientation in the septum [116, 136].

4.2.3 Torso model

A 3D torso model developed in previous works [40, 97, 105] was used to
simulate Body Surface Potential Maps (BSPMs) that represent the electrical
activity at the torso after the propagation of the electrical wave generated at
the heart. The model was originally created from the data available at the
online repository of the Scientific Computing and Imaging Institute (SCI)
from the University of Utah [59]. The surface mesh can be found and freely
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a) b)

c)

d)

Figure 4.3: a) Anterior view of the surface mesh of the torso. The location of the electro-
cardiogram leads is represented by the black spheres. b) Resulting tetrahedral mesh of
the torso. Each organ has a different conductivity and label: bones (blue), lungs (yellow),
liver (cyan) and the ventricles (red). c) Anterior and lateral views of the heart placement
in two different patients.

downloaded at the CoMMLab repository11.

The torso mesh was conformed by the different surface meshes of the most
relevant organs and structures for the electrical wave propagation from the
heart (bones, lungs, liver, ventricles, blood pools of the ventricles, blood
vessels and body contour), as can be seen in Figure 4.3. For each patient,
the ventricle was replaced by the own patient-specific geometry. Finally, the
tetrahedral torso volume mesh was generated with TetGen [158]. Surface
mesh nodes were preserved during the meshing process, which included the
surface of the inner organs such as the heart. In this way, the comparison
between simulated BSPMs for different patients can be done point by point.

4.2.4 Electrophysiological Modeling

The electrophysiological behaviour of the myocardium was modelled using
the human ventricular ionic model formulated by ten Tusscher et al. [88].
Transmural heterogeneity was added by defining three different action po-
tential models for three different myocardial layers; endocardium, mid-
myocardium and epicardium. Electrical propagation in tissue was modelled
using the monodomain formulation and solved using ELVIRA software [95],
which uses the finite element method to solve the monodomain equations
of the electric propagation. Time step was set to 0.02 ms.

11https://commlab.uv.es/repository

65



in silico pace-mapping simulations

Conduction velocity was obtained by tuning the longitudinal and traversal
conductivities, considering axisymmetric anisotropy. Several simulations
were performed on a tissue slab geometry (20 x 7 x 3 mm) composed of
hexahedral elements with an edge length of ∼0.38 mm. A longitudinal con-
ductivity value of 0.24 S/m and a anisotropic ratio of 0.19 resulted in a
conduction velocity of 0.68 m/s along the cardiomyocyte orientation direc-
tion, which is consistent with values obtained experimentally in different
works [159].

Electric propagation in the torso was considered isotropic; the different
conductivity values assigned to each organ were extracted from the liter-
ature [59, 97]: lungs (0.039 S/m), blood (0.700 S/m), liver (0.028 S/m),
bones (0.020 S/m) and the rest of the torso, conformed mainly by flesh and
fat (0.239 S/m).

4.2.5 Simulation experiments

A total of twelve simulations were performed in each of the eleven patient-
specific geometries. In each simulation the origin of the ectopic focus was
changed according to the most common SOOs according to clinical studies
[13, 21]. OTVAs were first simulated at the organ level (biventricular model)
from which resulting transmembrane potentials were used to calculate the
BSPM and ECGs.

4.2.5.1 Simulation of OTVA with different origins

Before simulating the OTVA, all models were stabilized by simulating 4
beats at sinus rhythm with a basic cycle length of 1000 ms. This stabiliza-
tion was needed to homogenize the coupling of all the different cell models.
Sinus activation pattern was obtained by stimulating 128 endocardial points
in each geometry at specific times according to the activation pattern ex-
tracted from an EAM of a biventricular model previously developed [40]. In
that model, sinus rhythm was generated by stimulating each point accord-
ing to its associated local activation time of the EAM. A tailored adaptation
of the Universal Ventricular Coordinates algorithm [160], which takes into
account the outflow tracts, was used to map these 128 points to each of the
eleven patient geometries.

Once the model was stabilized, a mesh node placed in the ectopic focus
was stimulated, obtaining a 300 ms OTVA simulation of the ventricular
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depolarization. For each patient, 7 SOO were placed in the LV and 5 were
in the RV, as can be observed in Figure 4.5. The number and location of
these points were chosen according clinical observations [13, 21]. A more
detailed distribution of different SOO reported in these works can be seen in
Figure 4.4. The seven LV-SOO (blue and green colours in Figure 4.5) were
distributed as follows: 2 in the LCC and 2 in the RCC, 1 in the LCC-RCC
commissure, 1 in the AMC (yellow-green point in Figure 4.5) and 1 in the
LV summit (at the epicardium; turquoise-green point in Figure 4.5). The
five RV-SOO (red, orange and yellow colours in Figure 4.5) were distributed
as follows: 4 in the septal side of the RV, including two close (orange and
yellow colours in Figure 4.5) and two away (red colours in Figure 4.5) from
the pulmonary valve, as well as one in the free-wall (dark red colour in the
top panel of Figure 4.5). In the end, a total of 132 simulations were carried
out.

Figure 4.4: Reported sites of origin for left and right ventricular arrhythmias. Image
adapted from Kamakura et al. [21]
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Figure 4.5: Top row: little spheres show the 12 different locations used as site of origin
(SOO) in the simulations on a patient geometry (Patient 11). Seven SOO were located
in the LV (blue and green colours): 2 in the LCC and 2 in the RCC (left and right
coronary cusps, respectively), 1 in the LCC-RCC commissure, 1 in the AMC (aorto-
mitral continuity) and 1 in the LV summit (at the epicardium, EPI). The five RV SOO
were distributed as follows: 4 in the septal side of the RV, including two close (orange
and yellow colours) and two distant (red colours) from the pulmonary valve, as well as
1 in the free-wall (RFW). Second and third rows: Simulated 12-lead electrocardiogram.
Each signal color matches with the color of the point that represents the SOO.
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4.2.5.2 Simulation of electrocardiograms

Body surface potential maps were obtained by computing the extracellular
potential at the torso surface mesh nodes. ECGs were obtained by selecting
the closest nine torso mesh nodes to the standard 12-lead ECG electrode lo-
cation, as depicted in Figure 4.3. The electrical potential in each torso point
was calculated as in [40, 97, 161], starting from the potentials simulated in
the biventricular geometries with the ELVIRA software. First, potentials
simulated in the the biventricular tetrahedral mesh were interpolated to the
corresponding ventricular nodes in the hexahedral torso-based mesh. Sub-
sequently, extracellular potentials were estimated in the ventricular nodes
of the torso mesh by solving the diffusion term of the bidomain equation.
Extracellular potentials were finally computed in the torso nodes using the
finite element method to solve the Laplace equation, while applying Dirich-
let and Neumann boundary conditions at the biventricular geometry-torso
interface and the torso surface, respectively.

In addition, in order to include variability to the results and replicate pos-
sible lead misplacement [162], 13 different lead configurations were used for
each simulation scenario, slightly varying each lead position between the
different configurations within a range of 2 cm. A 12-lead ECG with a
duration of 300 ms was then obtained for each SOO (12) and lead config-
uration (13) for each geometry (11), resulting in a total of 1716 simulated
12-lead ECGs.

4.2.6 Metrics and experiments for the validation of
simulated ECGs

Simulated ECGs were quantitatively compared with patient-specific ECGs
with the correlation coefficient (ρ) metric to assess the quality of the devel-
oped modelling pipeline. The expression of the ρ metric for two signals X
and Y is given by:

ρ =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )√√√√ n∑
i=1

(Xi − X̄)2
n∑

i=1

(Yi − Ȳ )2

(4.1)
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where signals are equally sampled with n points and X̄ represents the aver-
age of all X samples. In our application, ρ was independently computed for
each one of the 12-lead ECG signals. Additionally, we also estimated the
12-lead correlation coefficient (12-lead ρ) metric by averaging each individ-
ual lead-based ρ values using the Fisher Z-transformation [163]. This score,
that has been previously proposed for ECG signal comparison [33, 34, 152],
will return a number for every two 12-lead ECG comparison, being 1 when
the waveforms are identical.

Signal processing was carried out using the MATLAB software (MathWorks,
Natick, MA). All (simulated and patient-specific) ECGs were normalized
in amplitude between -1 to 1, which corresponded to the minimum and
maximum values of the 12-lead ECGs, respectively. Prior to calculating the
12-lead ρ metric, QRS complexes were manually extracted for each lead of
the real patient ECGs. Then, signals were aligned by maximizing the value
of the cross-correlation between the real patient signal and the simulated
ones. Next, the 12-lead ρ metric was calculated for each simulation case.
Since our simulations were carried out using 13 different lead configurations,
only the maximum 12-lead ρ score was chosen among the (13) possible ones
in each case. We also derived a LV/RV ratio in order to determine the LVOT
vs RVOT origin in each patient: it was calculated by dividing the mean of
the ρ values of all the LV-SOO simulations by the one corresponding to the
RV-SOO simulations. A LV/RV ratio larger and smaller than 1 will indicate
a LVOT and RVOT origins, respectively.

For validation purposes, the simulated 12-lead ECGs were initially quali-
tatively compared with patterns found in the literature for different SOO.
We then used the correlation coefficient ρ to quantitatively compare all the
simulated 12-lead ECGs against the real recorded ECGs. LV/RV ratio was
derived from the 156 calculated 12-lead ρ in each patient (since 12 SOO
and 13 lead configurations). Classification, i.e. an in silico based SOO as-
signment to each patient, was performed using the LV/RV ratio for LV vs
RV SOO classification and the maximum 12-lead ECG ρ value for a more
detailed location of the SOO. The assigned simulation-based SOO label was
finally evaluated against the clinically found SOO, which was determined
during the RFA intervention. The EAM acquired during the ablation treat-
ment for each patient were used to analyse the local activation time (LAT)
isochrones at different cardiac cycle time points and visually compared them
with simulated ones. Statistical comparisons were made using a Student t-
test; a p value ≤ 0.05 was considered statistically significant.
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4.3 Results

In this section, the most significant results after applying the developed
modelling pipeline on 11 patient-specific geometries described above are
shown. First, we illustrate the variability present in the simulated ECG
traces for different hearts (and a subset of SOO) and all SOO (and a subset
of heart models). Then, some examples of simulated ECGs, representing
the various SOO found in the studied database (i.e. RVOT, LCC and
RCC of LVOT) are qualitatively compared with knowledge from clinical
literature [13, 15, 23] that summarize the most relevant ECG features for
SOO identification. Finally, recorded ECGs and LAT maps from EAM
acquired during the RFA intervention of some patients are used to assess
the accuracy of the simulated ECGs and electrical wave propagation, thus
evaluating the whole modelling pipeline. All the simulations results for the
eleven patients can be found in Appendix A.

4.3.1 Variability from different sites of origins and
geometries

Figure 4.5 shows the simulated signals for each one of the 12-leads of the
ECG that correspond to the 12 studied SOO (different colour for each SOO)
in one of the analysed cases. It can easily be observed the variability of the
simulated signals when having different SOO for the same biventricular
geometry, in particular when qualitatively comparing signal patterns of LV
vs RV origins (cold and hot colours, respectively). At the same time, some
characteristics of the simulated signals that fit with clinical knowledge can
be appreciated. The reader is referred to the excellent reviews of Anderson
et al. [15], Enriquez et al. [23] and Lerman [13] for a summary of the existing
knowledge on OTVAs that we use to compare our simulation results with.
For instance, all leads of the RVOT RFW site of origin (red-brown colour
in Figure 4.5) have a wider QRS complex compared to other SOOs, which
has been extensively reported in the literature. Additionally, while some
leads have polarity concordance (e.g. II, III, aVR, aVL, aVF), others are
more heterogeneous, especially from V1 to V4, where precordial transitions
differ depending on the SOO.

To better appreciate LV vs RV sites of origin, Figure 4.6 shows the same
simulation results on the same case (Patient 11) but with simulated signals
uniformly coloured according to ventricular origin: red and blue colours for
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Figure 4.6: Influence of site of origin (SOO) on simulated ECG signals (fixed biventricular
geometry). Twelve-lead simulated ECG signals with the 12 different SOO for the same
patient (Patient 11) displayed in Figure 4.5. Red and blue colours represent right and
left ventricular SOO, respectively.

RV and LV origin, respectively. In this figure, it is more evident the dif-
ferences found in some key ECG leads that are precisely the ones targeted
in clinical routine and in ECG-based algorithms to detect features helping
distinguishing the ventricular origin of OTVAs, i.e. lead I to define ante-
rior/posterior location and V1-V4 for precordial transition. For instance, it
is straightforward to observe in Figure 4.6 that in V2 several LV-SOO sig-
nals (in blue) are already predominantly positive, which a clear sign of early
transition in LV-based SOO, while most RV-SOO signals are still mainly
negative. It is in V3 where some RV-SOO signals change polarity and in
V4 where all transitions have already made the transition, matching the
expected late transition of RV-SOO signals.

Figure 4.7 illustrates the variability of the simulated ECG signals for the
SOO approximately located in the same locations but in two different biven-
tricular geometries (Patient 5 and Patient 10). The results shown in this
figure demonstrate the large impact of the heart geometry on the simulated
ECG signals. For instance, we can observe different polarity in V1 lead for
LV-SOO signals (Panel A in Figure 4.7), being mainly negative and posi-
tive for Patient 5 (blue colour) and Patient 10 (orange colour), respectively.
In addition, one can notice that Patient 5 generally has a later precordial
transition (V3) than Patient 10 (V2). On the other hand, the visual inspec-
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A. 

B. 

Figure 4.7: Influence of biventricular geometry on simulated ECG signals (fixed Site of
origin, SOO). Twelve-lead simulated ECG signals with for two different biventricular
geometries. A and B panels show right and left ventricular SOO, respectively. Blue and
green ECG signals correspond to Patient 5 while orange and red are from Patient 10.
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Figure 4.8: Twelve-lead simulated signals for the 12 different sites of origin of Patient 11.
This type of visualization is inspired by artwork presented in Anderson et al. [15].

tion of RV-SOO signals (Panel B in Figure 4.7) shows several SOO with
precordial transition in V3 for Patient 10 (red colour) but mainly in V4 for
Patient 5 (green colour). Finally, we can observe a wider QRS complex in
the RV free wall SOO for Patient 5 than for Patient 10.

4.3.2 Qualitative comparison of simulated ECGs with
clinical literature

Figure 4.8 shows the 12-lead simulated ECG signals with the 12 different
SOO corresponding to Patient 11, which will be used to assess the similarity
with typical ECG features characteristic for each SOO described in the
literature. Reader is referred to Appendix A for the complete visualization
of simulated ECG signals for the 11 biventricular geometries studied in this
work.

LCC: The simulated ECG signals with LCC SOO (columns 1 and 5 in
Figure 4.8) present a multi-phasic (or notched M- or W-shaped) V1 lead,
which is the main key morphological ECG feature for this SOO; moreover,
they have narrower QRS complexes than RCC-SOO; other good character-
istics according to literature include a large R wave amplitude, a negative
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lead I and aVR/aVR waves as well as an early precordial transition in V1-
V2.

LCC-RCC: This type of SOO is usually characterized by a QS notch in
the downward deflection in V1, which is not easy to seen in the simulation
of Patient 11 (second column in Figure 4.8)); clearer examples of this ECG
feature can be found in other studied cases in Appendix A (i.e. Patient
2, Patient 4, Patient 5, Patient 9, among others); on the other hand, it
correctly shows a transition in V2-V3 and a Rs wave in lead I.

RCC: The simulated ECG signals with RCC SOO (columns 3 and 4 in
Figure 4.8) correctly have a precordial transition in V2-V3, slightly later
than LCC-SOO in the same case; they also present a positive lead I, with
tall R waves in II and III, a rS pattern in V1 and a broad R-wave in V2.

AMC: An AMC SOO is usually identified with a positive precordial con-
cordance and no S wave in V6 as well as with a qR pattern V1, charac-
teristics than appear in the simulated signal with this SOO in column 6 of
in Figure 4.8; however, we need to be cautious on any ECG feature from
the V1-V2 leads in this particular case since they are a bit noisy and thus
difficult to interpret; it is then not very clear if we can confirm a V1 (or
none) precordial transition in this simulated case, even if it seems so; finally
a R or Rs pattern is seen in lead I, as expected.

Epi / LV summit: This type of SOO should present a V2 lead pattern
break according to literature, i.e. an abrupt loss of R wave in V2 that cannot
be appreciated in our simulations (column 7 in Figure 4.8); moreover, the
expected rS/QS pattern is not found in V1; on the other hand, lead I is
rightly negative, aVL is more negative than aVL and we can observe a
larger R-wave in lead III compared to II, as described in the literature.

RV, anteroseptal RVOT: As expected, the precordial transition in this
RV-based origin, occurs later than in LV-based SOO, in this case in V3;
the obtained simulations for lead I for this particular SOO (columns 8 and
10 in Figure 4.8) are in agreement with the descriptions of Lerman [13]
and Anderson et al. [15], showing a negative S pattern; in addition, we can
appreciate a larger Q-wave aVL/aVR ratio, as suggested by Anderson et
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al. [15]. A negative QS pattern in the aVR and positive R wave in the
inferior leads are also obtained.

RV, posteroseptal RVOT: according to Anderson et al. [15], posterosep-
tal locations produce ECGs that are very similar to the ones that have an
anteroseptal RVOT origin. The main morphological ECG feature to iden-
tify a posteroseptal RVOT origin, is a positive R wave in lead I, which is
correctly captured in our simulations (columns 9 and 11 in Figure 4.8). In
addition, as described by Enriquez et al. [23], posteroseptal RVOT ECG
signals show a later precordial transition ( ≥ V3 ).

RV free wall, anterior: Finally, the simulated 12-lead ECG signals cor-
responding to this SOO, shown in the last column of Figure 4.8, rightly
present a late precordial transition in V4 and a wide QRS with inferior
notching, as expected; inferior leads also have a smaller amplitude than the
presented in other RVOT septal origins. It is a more unclear to confirm
that in our simulations we can find other secondary ECG patterns some-
times found in this SOO such as having a negative lead I or a rS pattern in
V1.

4.3.3 Comparison of simulated and recorded ECGs and
EAM

The 156 simulated 12-lead ECG signals available for each one of the eleven
patient geometries studied in our work were qualitatively and quantita-
tively compared with each patient-specific recorded ECG and EAM data.
Figure 4.9 shows a visual comparison of the simulated and recorded ECGs
for a couple of patients with clinically confirmed LV (Patient 2) and RV
(Patient 7) site of origins, respectively. As in previous figures, ECG signals
corresponding to RV and LV sites of origin are uniformly coloured in red
and blue, respectively.

The visual inspection of recorded ECG data of Patient 2 in Figure 4.9
confirms the multi-phasic waveform in the V1 lead that is characteristic
of LCC SOO. The LV SOO simulated (blue) curves also present negative
and positive polarity curves in this lead when compared with RV SOO
signals that are predominantly negative. The recorded ECG data clearly
shows a V3 transition. The obtained simulations also provided a precordial
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Patient 2 (LCC origin) 

Patient 7 (RV origin) 

                    Patient ECG                    LV SOO                       RV SOO 

Figure 4.9: Comparison between the measured patient 12-lead ECG of the patient ectopic
focus (black) and the simulated ECGs. Curves simulated with the origin in the LV are
represented in blue color whereas RV SOO curves are in red. Two patients (Patient 2
and Patient 7) with different ablation sites are shown. Represented curves are not aligned
temporally.

transition on LV SOO of V3 (blue colour), whereas RV-based ones (red
colour) definitively changed polarity in V4.
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Figure 4.10: Comparison of measured and simulated Local Activation Times (LATs)
isochrones in Patient 2, who had a LV site of origin (SOO) since it was ablated in the left
coronary cusp (LCC). Red and pink colours indicate the earliest and the latest activated
points, respectively. First column (1) shows the 60 ms isochrones whereas the second
column represents the 120 ms isochrones. A) LATs measured with the electro-anatomical
system during the ablation intervention. B)C) Isochronal map from electrophysiological
simulations with a LCC and a RV SOO, respectively. It can be seen that LCC-SOO
simulated isochrones are more similar to the measured ones during the intervention than
the ones with RV-SOO.

The same conclusions can be drawn from the visual comparison of measured
and simulated Local Activation Times (LATs) isochronal maps for Patient
2, which are shown in Figure 4.10. The figure depicts the 60 ms and 120
ms isochronal maps (left and right column, respectively) to represent the
electrical wave propagation in the biventricular geometry obtained from the
EAM acquired during the ablation treatment (top panel A) as well as the
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equivalent simulations with a LV and RV SOO (middle B and bottom C
panels in Figure 4.10, respectively. Red and pink colours indicate the earliest
and the latest activated points, respectively. It can be seen that LCC-SOO
simulated isochrones have more similar morphological characteristics than
RV-SOO ones, notably the latter showing a more anisotropic behaviour due
to longitudinal cardiomyocyte orientation in the RV pointing to the outflow
tract.

The equivalent analysis of results obtained for Patient 7 (RV origin), also
shown in Figure 4.9, confirms that the simulated ECG signals from the cor-
rect ventricular origin are more similar to the recorded ECGs than from
the wrong ventricle. For instance, a better matching of RV-based curves
(in red) with real ECG (black curve) can clearly be seen in lead 1 (negative
polarity) than with LV-based ones. Moreover, the real ECG data suggest
a precordial transition in V4 while simulated LV-SOO curves (in blue) are
already predominantly positive in V3; several simulated RV-SOO curves
correctly have significant negative polarity in V3, also suggestion a transi-
tion in V4. Finally, it can easily be appreciated a better matching of real
data with RV curves (red colour), compared to LV ones (blue colour) in
other leads such as V2.

The validation metrics presented in Section 4.2.6 help to quantify the accu-
racy of the developed modelling pipeline for the prediction of the ventricular
origin of the ectopic foci in OTVAs. Table 4.1 shows the average and stan-
dard deviation of the 12-lead ρ between the recorded and the simulated
ECGs for LV and RV SOO (Sim LV SOO and Sim RV SOO in the table)
for each patient. Additionally, the LV/RV ratio that indicates the pre-
dicted ventricular origin (> 1 from the LV; RV otherwise) is also included.
As the clinically-found SOO is shown in Table 4.1, it is straightforward to
notice that the modelling pipeline correctly predicted the ventricular ori-
gin in 10/11 cases (91%). Only Patient 6 was incorrectly labelled from the
simulations as RV-SOO when clinically it was found with a RCC-LV SOO.
It needs to be pointed out that distinction between RV-SOO and RCC-LV
SOO is one of the most challenging cases, also with real data. All patients
presented significant differences between the average 12-lead correlation co-
efficient for RV origin vs LV origin (p < 0.05). In general, the LV/RV ratio
of clinically-determined LV SOO was higher than those originated from the
RV: 1.07 vs 0.93, respectively, p < 0.05).

In order to achieve a more precise location of the SOO, results of the max-
imum 12-lead ρ in each simulation were computed and are shown in Ta-
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Table 4.1: Average and standard deviation of correlation coefficient (ρ) and LV/RV ratios
from the simulated ECGs in each patient (P). Sim LV and RV SOO indicate left and right
ventricular site of origin in the simulations, respectively. RCC-LV and LCC-LV indicate
left and right coronary cusp ectopic foci, i.e. LV SOO. Highest values for simulated SOO
of each patient are marked in bold. Bold values for the simulated LV/RV ratio indicate
agreement between the predicted SOO from simulations and the clinical SOO.

Clinical RCC-LV SOO
P1 P5 P6 P8 P9

Sim LV SOO 0.83±0.02 0.81±0.04 0.78±0.02 0.87±0.07 0.91±0.02
Sim RV SOO 0.75±0.02 0.71±0.02 0.82±0.04 0.84±0.05 0.89±0.02
LV/RV ratio 1.11 1.15 0.95 1.03 1.03

Clinical LCC-LV SOO Clinical RV SOO
P2 P3 P4 P7 P10 P11

Sim LV SOO 0.88±0.02 0.88±0.03 0.86±0.03 0.82±0.04 0.80±0.04 0.77±0.05
Sim RV SOO 0.84±0.04 0.85±0.03 0.72±0.03 0.88±0.03 0.84±0.04 0.85±0.05

LV/RV ratio 1.05 1.04 1.19 0.93 0.96 0.91

ble 4.2. Highest score per patient represent the most similar signal com-
pared to the patient ECG and his marked in bold. Using a straightforward
approach for classification based on the correlation coefficient values, i.e.
labelling each cases only based on the highest ρ value per SOO, the mod-
elling pipeline correctly predicts the clinical SOO in 6/11 cases (55%). More
specifically, the 3 RV-SOO cases were rightly predicted (100%), while labels
for the LCC and RCC SOO get somewhat confused: right prediction of
LCC-SOO in only 1/3 cases (33%) and in 2/5 for RCC-SOO (40%). How-
ever, further analysis of the LV SOO, we can observe that the incorrect
predictions are labelled from simulations as the closest possible anatomical
SOO to what it was found clinically:

• Patient 1, labelled as LCC based on simulations but with a RCC SOO
clinically;

• the opposite case for Patient 2;

• simulations suggest an AMC origin for Patient 3, which is anatomi-
cally very close to the clinically found LCC;

• we considered Patient 5 as wrongly predicted by simulations (LCC-
RCC) since it clinically had a RCC origin, but it could arguably be
classified as a correct case, due to real measurement uncertainties;

• very interestingly, Patient 6 (the only one missed with the LV/RV
ratio) was tagged as posteroseptal RV from simulations, which is the
closest possibility to the clinically determined LV-RCC SOO.
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It needs to be pointed out that the incorrectly classified cases could have
been better predicted with only a bit less näıf strategy looking also at the
second best ρ value in each case. For instance, Patient 2 ρ values are
practically the same (0.92) for LCC and RCC origins, while for Patient 4
(and for Patient 6), there is only a 0.01 difference between the AMC and
LCC simulated SOOs (0.94 for AMC and 0.93 for LCC, which was the
correct one).

Table 4.2: 12-lead Correlation Coefficient (ρ) values calculated for each patient (P) and
each one of the 12 simulated (Sim) sites of origin (SOO) when compared to the recorded
ECG. There are seven left ventricular (LV) SOO located in the left and right coronary
cusps (LCC and RCC, respectively) as well as one in their commisure (LCC-RCC), the
Aorto-Mitral Continuity (AMC) and in the LVOT epicardium. Additionally there are
five right ventricular SOO : two in the antero and posteroseptal RVOT (RVA and RVP ,
respectively) as well as one in the anterior right free wall (RWF). Highest coefficient ρ of
each patient is marked in bold. Sim refers to simulation.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Clinical SOO RCC LCC LCC LCC RCC RCC RV RCC RCC RV RV

Sim LCC 0.91 0.92 0.94 0.93 0.85 0.81 0.83 0.85 0.90 0.87 0.82
Sim LCC-RCC 0.87 0.89 0.93 0.92 0.86 0.82 0.87 0.94 0.90 0.88 0.85

Sim RCC 0.86 0.87 0.88 0.91 0.79 0.82 0.88 0.94 0.91 0.91 0.88
Sim RCC 0.89 0.92 0.91 0.91 0.83 0.84 0.91 0.95 0.93 0.89 0.88
Sim LCC 0.90 0.92 0.93 0.93 0.85 0.84 0.88 0.88 0.92 0.87 0.82
Sim AMC 0.83 0.88 0.94 0.94 0.82 0.76 0.84 0.84 0.88 0.88 0.83
Sim EPI 0.85 0.91 0.92 0.90 0.83 0.79 0.81 0.85 0.84 0.84 0.81
Sim RVA 0.88 0.91 0.90 0.81 0.76 0.76 0.88 0.80 0.88 0.88 0.87
Sim RVP 0.82 0.81 0.90 0.85 0.73 0.81 0.88 0.86 0.89 0.89 0.88
Sim RVA 0.87 0.87 0.88 0.82 0.72 0.80 0.89 0.84 0.88 0.92 0.91
Sim RVP 0.84 0.83 0.88 0.85 0.73 0.85 0.92 0.89 0.88 0.90 0.93
Sim RFW 0.81 0.83 0.82 0.81 0.69 0.79 0.89 0.69 0.86 0.86 0.75

Predicted No No Yes No No No Yes Yes Yes Yes Yes

4.4 Discussion

The modelling pipeline presented in this chapter for the in silico determina-
tion of the site of origin in OTVAs has demonstrated a good performance.
It has potential to be used in the future, in combination with other compu-
tational techniques and indices, to support clinical decisions in this type of
patients, in particular for preoperative planning of radiofrequency ablation
treatment.

The obtained simulation results, thoroughly described for some illustrative
cases in Section 4.3 and listed for all the studied patients in Appendix A, are
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in close agreement with clinical descriptions reported in recent reviews in the
literature [13, 15, 23] in most scenarios, which is quite noteworthy consider-
ing the complexity of the task, geometrical variability and necessary simpli-
fications in the model. Performing the electrophysiological and electrocar-
diogram simulation study on eleven different patient-specific biventricular
geometries and with 12 different SOOs, covering the most frequent OTVA
anatomical locations, has never been done before since it is not obvious to
obtain the necessary clinical data for model validation and the appropriate
tools and knowledge to create realistic enough simulations. To get to this
point, we needed to develop a modelling pipeline to process patient-specific
data and generate the required finite-element meshes. More importantly,
the good performance of the simulation results was only possible due to the
development of the OT-RBM method presented in Chapter 3 to include
realistic cardiomyocyte orientation in the RVOT and guiding the electrical
wave propagation and thus, the ECG simulation. Some authors [10, 164]
have confirmed good quality patient-specific geometry and OT fibers as key
aspects for realistic electrophysiological and electrocardiogram simulations

Most key morphological ECG features for each SOO were well captured
in the simulations, especially the correct SOO-dependent precordial transi-
tion. Still, some complicated and less well-defined SOO such as the AMC
and the LV summit could be better simulated with our pipeline. Further-
more, in some cases certain leads presented artifacts preventing a reliable
identification of ECG features (e.g. lead V1 in Patient 11, as it can be seen
in Figure 4.8).

However, even with current limitations of the modelling pipeline, the pro-
posed evaluation metrics such as the correlation coefficient ρ quantifying the
similarity between simulated and recorded ECG signals showed a very good
agreement between them. As a consequence, a simple index such as the
LV/RV ratio proved its usefulness to determine the ventricular origin, with
predictive values similar to state-of-the-art ECG-based algorithms available
in the literature (see review in Anderson et al. [15], most of them around
80% - 90% of sensitivity). Obviously, to be properly compared with these
algorithms, we need to apply the developed modelling pipeline to a larger
database since we have tested in only 11 cases. If comparable, the proposed
modelling pipeline should theoretically be more reproducible and robust to
different inter-observer criteria than the current ECG-based morphological
features that are mainly measured manually and prone to various interpre-
tations.
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4.4. discussion

The use of a simple approach to classify the simulated ECG signals for spe-
cific SOO resulted in poor prediction results (55%) due to misclassifications
in LV-based SOO. Nevertheless, when carefully analysed, one can observe
that wrong SOO labels corresponded to neighbouring, anatomically close,
structures. Also, using only a slightly more sophisticated classification al-
gorithm, considering beyond the largest percentage value, would already
correctly re-classify most of the found errors. We should also be aware that
there might be errors in clinically-defined labels due to uncertainty and
current spatiotemporal resolution in electrophysiological measurements.
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Abstract – Identifying the site of origin (SOO) of outflow tract ventric-
ular arrhythmias (OTVAs) is a key step to plan radiofrequency ablation
procedures. Currently, electrophysiologists try to infer that information
pre-operatively from the ECG, and intra-operatively from EAMs. In this
work, we studied whether machine learning techniques can be used to pre-
dict the SOO. To cope with the lack of enough data for training such models,
we studied the inclusion of biophysical simulations as training data. There-
fore, we used simulated ECGs to train different machine learning algorithms
and classify the different SOO between RV SOO and LV SOO. According to
our results, the V3 lead is the precordial lead that provides more informa-
tion for SOO localization, when combined with other leads; the combination
of (V2,V3,V4,V5) leads provides the highest accuracy, 89%, when a k-NN
model is used for classification. The obtained classification rates show that
virtual databases with large number of simulated ECGs can be used as part
of training of machine learning algorithms aiming at determining RV versus
LV outflow tract origin.

This chapter is adapted from: Ruben Doste, Miguel Lozano, Guillermo Jimenez-
Perez, Gabriel Bernardino, Alejandro Alcaine, Lluis Mont, Antonio Berruezo, Diego
Penela, Oscar Camara and Rafael Sebastian. Predicting the Origin of Outflow Tract Ven-
tricular Arrhythmias Using Machine Learning Techniques Trained with Patient-Specific
Electrophysiological Simulations. In preparation.
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5.1 Introduction

Machine Learning (ML) is a field of artificial intelligence that uses algo-
rithms that learn from data and make predictions based on these data.
Recently, the use of these algorithms in medical applications has increased
considerably. One particular application where several successful cases have
been reported is in the use of ML for ECG analysis, as recently reviewed
in [107, 108]. In particular, machine learning techniques have been suc-
cessfully applied to classify different ventricular arrhythmias [109, 110], to
distinguish between normal heart beat and arrhythmias [111] or among all
types of arrhythmias [165].

One of the main limitations for generalising the use of ML techniques on
ECGs is the absence of large databases with good quality labelling for train-
ing. As a consequence, the number of investigated heart pathologies is
substantially reduced. This problem has been overcome in other fields by
generating large virtual populations of fully-controlled synthetic data us-
ing realistic simulations. Examples of this strategy can be found in the
medical domain such as in Alessandrini et al. [166] to generate simulated
ultrasound images to validate image processing algorithms. The same prin-
ciple is also being used in non-medical domains for AI algorithm train-
ing such as the recent Open Source AI Habitat of Facebook12. Therefore,
the generation of synthetic ECGs, properly validated with real data, can
help to increase the number of data available. Electrophysiological simu-
lations arise as one of the main techniques for carrying out these process,
since several studies have reported successful simulations of patient-specific
ECGs [40, 45, 97, 106, 154].

We propose the use of ML techniques on ECGs from outflow tract ventric-
ular arrhythmia (OTVA) patients to guide their treatment. OTVAs are a
type of tachycardia in which the site of origin (SOO) of the ectopic beat is
located near the RV or LV outflow tracts (RVOT and LVOT, respectively).
Radiofrequency ablation is the standard treatment and is usually performed
guided by EAM data. However, the determination of the SOO before the
ablation procedure is necessary to better plan the intervention, the risk
evaluation and the catheter approach. In order to overcome this challeng-
ing step, clinicians have developed several algorithms based on manual fea-
ture detection from ECGs [13, 15], although they present several drawbacks:
when they are tested in populations different from the one of the study their

12https://aihabitat.org
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accuracy decreases; they require high skills in ECG analysis; and are sensi-
ble to the interobserver measurement variability. In addition, they cannot
be applied to patients that present paced rhythms, intraventricular conduc-
tion disorders or structural heart disease [16]. The use of ML techniques for
classification of the SOO between RV and LV SOO could overcome these
constraints, specially at the tasks of quantifying the variations of the ECG
leads or locating certain shapes or lead transitions in the ECG. In addition,
identifying the area towards which more detailed pace-mapping should be
directed would decrease the intervention time and the radiation exposure,
facilitating a successful ablation procedure.

As shown in Chapter 4, simulated ECGs can be used to predict the SOO
(RV vs LV). However, the modelling pipeline usually involves long compu-
tational times (image segmentation, model generation, use of finite element
method simulations with heavy meshes, validation, among others) making
them difficult to use in clinical practice. As a solution, new automatic
pipelines and fast simulations procedures [167, 168] are being developed
to accelerate this process. Another benefit of electrophysiological simula-
tions is their ability to generate realistic simulated ECGs that can increase
the OTVA ECGs databases. In clinical practice, datasets that contain a
great number of OTVA cases, including the ECG and the ablated SOO,
are scarce. Furthermore, creating these large datasets is a demanding task
since collected data during intervention is rarely shared between clinical in-
stitutions and most of the obtained ECGs are recorded in paper. Finally,
there are very few recordings for rare cases where ablation was performed
in unusual SOO. For all these reasons, the training of ML algorithms using
these data is a challenging process. Electrophysiological simulations that
reproduce the behaviour of the OTVA patients ECG arise as a solution
to overcome these limitations. We can train ML algorithms with a high
number of simulated data that includes the variability among patient ge-
ometries, SOO location and lead placement variability. Similar approaches
for training ML algorithms applied to premature ventricular contractions
have recently reported successful results [155, 169].

In this work, we study the feasibility of building ML models that predict
the SOO using simulated data for training. Data used in this study was
obtained and evaluated in Chapter 4. Several supervised and unsupervised
ML techniques such as self organizing maps (SOM), k-nearest neighbors
(k-NN), support vector machine (SVM), random forest (RF) and multiple
kernel learning (MKL) were used to evaluate the simulated and recorded
clinical ECGs and their ability to predict the SOO (RV vs LV).
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5.2 Methodology

We developed some experiments to evaluate the accuracy of a ML-based
methodology to predict the ventricular origin in OTVA patients from their
ECGs. Several ML techniques were tested for classification purposes and to
better understand the relation between simulation results and real data.
These techniques include supervised algorithms such as the classical k-
nearest neighbors, random forest or support vector machine algorithms.
When data are unlabelled is not possible to apply supervised learning, and
an unsupervised learning technique is required. This method tries to find
unknown patterns in the data to perform a clustering of these data to
groups, and map new input data to these groups. Among the different
unsupervised techniques we have used self-organizing maps and multiple
kernel learning. In the following, a brief description of the employed ML
algorithms and the set-up of experiments is given.

5.2.1 k-nearest neighbors (k-NN)

The k-NN algorithm is a supervised learning method that finds a predefined
number (k) of training samples closest in distance to the new sample, and
predict the new label by assigning the most frequent label. Distance can
be determined by any metric, being Euclidean distance the most common.
In this work, we used the algorithm implemented in the Scikit learn pack-
age [170, 171]. The parameter k was arbitrarily set to k = 1, i.e. effectively
being the nearest neighbor algorithm.

5.2.2 Random forests

Random forests are an ensemble learning method for classification and re-
gression that operates by creating a high number of decision trees at training
time and returning the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees [172]. Random forests
correct for decision trees’ problems of over-fitting to their training set [173].
Decision trees are a popular method for various machine learning tasks.
They have been extensively used for classification of ECGs [174], e.g. re-
ducing false arrhythmia alarms [175], for detection of premature ventricular
contractions (PVCs) in patients [176], and for assessing the probability of
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arrhythmia recurrence and mortality in patients after ventricular tachycar-
dia (VT) ablation [177]. The random forest algorithm employed in this
thesis was again the one implemented in the Scikit learn package, with 100
defined trees.

5.2.3 Support vector machine (SVM)

SVMs are supervised ML methods that use learning algorithms to perform
data classification and regression. SVM algorithms use labelled training
samples to build a model that assigns the new input data to different cat-
egories. The objective of the SVM algorithm is to construct a hyperplane
or a set of hyperplanes in a high- or infinite-dimensional space that can
be used for classification, regression, or other tasks like outlier detection.
SVMs have successfully been used to classify ECGs of patients into different
types of arrhythmia [178, 179], or to improve the detection of RFA targets
by using model-based augment features to train classifiers [180]. In general,
the performance of the classifier mostly depends in the features extracted
from the signals that are used to train the SVM model [181]. In this work
the SVM implementation available in the Scikit learn package wa used, with
a Gaussian radial basis function as kernel and a parameter nu = 0.25. This
parameter is both an upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors.

5.2.4 Self-organizing maps (SOM)

A SOM is a type of artificial neural network that is trained using unsuper-
vised learning (i.e. samples are not labeled) to create a low-dimensional,
discretized representation of the input space of the training samples, called
a feature map [182]. SOMs apply competitive learning, as opposed to
the error-correction learning that is used in other types of artificial neu-
ral networks. In addition, they use a topological neighborhood function to
maintain the topological relations of the input space, as can be appreci-
ated in Figure 5.1. They have been used for obtaining visual information
among four important groups of patients: ventricular fibrillation, ventric-
ular tachycardia, healthy patients and other anomalous heart rates and
noise using as input features extracted from ECGs [183]. Other studies
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have also used SOM to discriminate premature ventricular contraction ar-
rhythmias [184], or to detecting fatal cardiac arrhythmia in implantable
cardioverter-defibrillators [185].

In this thesis, two different SOM were trained with all the simulated sam-
ples of one class: one SOM with all the RV SOO signals and the other
with all the LV SOO signals. All signals were previously temporally aligned
using as reference their absolute max value. An example of the structure
of the SOM used in the work can be seen in Figure 5.1. The SOMs were
implemented usign the MiniSom package 13. The output layer of the SOMs
were conformed by a grid of 8×8 neurons, the initial spread was defined by
a Gaussian as neighborhood function with σ = 0.48 and an initial learning
rate (parameter that controls the size of the weights during the learning
process) of 0.25. These values were obtained after a sensitivity analysis on
these parameters, testing the SOMs with different values to make sure that
the algorithm reached sufficient resolution and accuracy. A quantization
error (QE), which is a measure of variance associated with the final weights
of the neurons after the training process, was calculated in each SOM. Since
both SOMs were defined with the same parameters, the resulting QE rep-
resents the average distance between each test data and the best matching
signal, which can be used to determine the best classification [186]. The
best match of the two SOMs that had the smallest QE with respect to the
input signal was set as the winner class.

5.2.5 Multiple kernel learning (MKL)

The unsupervised version of the MKL algorithm is able to handle heteroge-
neous descriptors and reduce their complexity into a low-dimensional space
that has one less dimension that the total number of evaluated signals. How-
ever, only the first few dimensions, which generally capture the most signif-
icant characteristics of the data are usually evaluated. The MKL algorithm
that we used in this work was validated in previous works [187], to detect
phenotypes of patients prone to a better response to cardiac resynchroniza-
tion therapy. In our application, the MKL was used to better explore and
understand the differences between the simulated and the real signals as
well as their ability to differentiate between RV and LV SOO. The MKL
algorithm was trained using a combination of both the simulated and the
real patient QRS-complex portions of the 12-lead ECG signals.

13https://github.com/JustGlowing/minisom
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Figure 5.1: Structure of the self-organization map used in this work. Image adapted from
Kinoshita et al. [185].

5.2.6 Experiments

ML training was performed using some of the simulated data described in
Chapter 4. We initially simulated 132 OTVA ECGs in 11 patient geome-
tries, which were augmented by calculating the ECGs with slightly different
lead placements. After validation with real data (see Chapter 4), we dis-
carded simulated ECG signals corresponding to the patient that was not
correctly predicted with the modelling pipeline (Patient 6). Therefore, con-
sidering the 13 different lead configurations generated for each patient, a
total of 1560 simulated 12-lead ECG signals (120 without data augmenta-
tion) were finally introduced to the algorithm training.

The classification test dataset was constituted by 35 × 12-lead ECG signals
from OTVA patients that underwent ablation in different SOO. The QRS
complex of these signals was extracted manually in order to improve the
comparison against simulated data. The clinical SOO was determined by
an expert electrophysiologist from the inspection of EAM data available
for each patient, evaluating the final ablation points that terminated the
arrhyhthmia.

The accuracy of the different algorithms to correctly classify the 35 test
patients was evaluated. First, we studied the relevance of each individual
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lead in the classification and the combinations of leads giving the best re-
sults when applied on simulated (80 % training, 20 % validation) and real
data. Then, we studied and visualized the different relations between the
simulated and real signals as well as their ability to properly distinguish be-
tween RV and LV SOO by applying dimensionality reduction using MKL.
Finally, we analysed the benefit of using simulated data in the training of
ML algorithms for SOO-OTVA classification compared to when only using
real patient data.

Different ML algorithms described above (RF, SVM, k-NN and SOM) were
used for evaluating the best leads for classifying the training and the test
ECGs. An interesting characteristic of the SOM is that they allowed vi-
sualizing the most similar signals of the test data that were found in the
training data. Therefore, it facilitated finding the key factors that affected
the performance of the method. Once evaluated the performance of each
lead for classifying the test signals, we studied how the combinations of mul-
tiple leads could improve the overall accuracy. Therefore, an exhaustively
analysis with all possible 12 lead combinations was performed to estimate
the one reaching the best accuracy. In addition, we performed a ranking
of the leads that showed highest accuracy in their combinations. A total
of 4095 lead combinations were calculated applying the k-NN, SVM, RF
and SOM algorithms. We did each experiment twice, first using the raw
signal as input and then applying a feature extraction using principal com-
ponent analysis (PCA) on the input signals. PCA kept the 10 modes that
explained most of the signal variance. Raw signals were previously aligned
using cross-correlation.

5.3 Results

5.3.1 Single lead evaluation

For individually studying the best leads for SOO classification from the
ECG, the RF, SVM, k-NN and SOM algorithms were trained with a single
lead for each 12-lead ECG. Only raw 300 ms signals centred around the
maximum peak of the QRS complex were used. The obtained accuracy for
each lead is summarized in Table 5.1. Although the use of a single lead
seems to be insufficient to classify the SOO, results highlights the leads
that provide more information or are more discriminant. For the case of
classifying simulated ECGs, the accuracy was very high ( > 0.9 ) among
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Table 5.1: Accuracy in the real ECG signal classification using each lead of the ECG.
RF: Random Forest; SVM: Support Vector Machine; k-NN: k-Nearest Neighbor; SOM:
Self-Organizing Maps.

Simulated (n=1560) Real (n=35)

Lead RF SVM k-NN SOM RF SVM k-NN SOM

I 0.87 0.88 0.85 0.95 0.46 0.51 0.43 0.37
II 0.93 0.9 0.87 0.99 0.66 0.46 0.57 0.63
III 0.93 0.83 0.81 0.92 0.66 0.43 0.51 0.51

aVR 0.94 0.87 0.87 0.96 0.66 0.4 0.54 0.57
aVL 0.85 0.76 0.74 0.9 0.69 0.43 0.51 0.54
aVF 0.93 0.86 0.84 0.95 0.66 0.37 0.49 0.51
V1 0.95 0.88 0.89 0.97 0.4 0.37 0.49 0.51
V2 0.95 0.92 0.9 0.95 0.37 0.43 0.63 0.66
V3 0.91 0.93 0.86 0.93 0.37 0.54 0.4 0.54
V4 0.92 0.92 0.88 0.97 0.69 0.66 0.74 0.71
V5 0.9 0.91 0.87 0.94 0.66 0.69 0.54 0.57
V6 0.93 0.9 0.87 0.93 0.66 0.63 0.51 0.46

all leads, i.e. the ML algorithms could easily learn simulations. That was
expected since even though variability was introduced (different patients,
different lead placement on the torso), the simulated ECG morphology was
very consistent and not as noisy as real data. When classifying real cases
the accuracy decreased, indicating that some aspects of the precordial leads
were not faithfully reproduced by the biophysical solver, including potential
data uncertainties. In any case, the best accuracy in single lead evaluation
in almost all methods was shown by lead V4 (0.74 using k-NN, 0.71 using
SOM).

One additional advantage of the SOM approach is that it provides a graph-
ical representation of the results, as can be seen in Figure 5.2. In this figure
the test signal (green) of a recorded ECG of a patient (Patient 32) is com-
pared with the closest (neuron) simulated signals according to the SOM
results from each of the two classes (blue in the case of LV SOO and red
for RV SOO). The SOM that produces the lowest QE is the one finding the
most similar signal, and therefore is set as the winner. In this particular
case, the ectopic foci determined clinically had a right ventricular origin, as
correctly captured with the QE metric in leads V2 and V3, but not in lead
V1.
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Lead: V3 

QE = 1.83 QE = 1.05 

Lead: V2 

QE = 3.42 QE = 2.85 

Lead: V1 

QE = 2.31 QE = 2.67 

Figure 5.2: Visualization of SOM results for single ECG leads. As an example, three
different leads of a measured ECG of a test case (Patient 32) are shown. This patient had
a right ventricular origin according to clinical data. For each lead the test signal (green) is
compared against the LV SOO simulated signals (blue) and the RV SOO simulated signals
(red) that are the most similar signals of these leads according to SOM estimations. The
one that has less quantization error (QE) is set as the winner.

5.3.2 Multiple lead evaluation

We performed an exhaustive exploration of the best lead combinations that
produced the best accuracy results in classification. A ranking of each lead
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Table 5.2: Ranking of the best leads for ECG classification. Leads are ordered from the
most to the least relevant according to their calculated score.

k-NN SVM
Raw PCA Raw PCA

Lead Score Lead Score Lead Score Lead Score
V3 241.75 V3 242.89 V3 240.01 V3 242.57
V2 233.90 V2 233.59 V2 227.07 V2 235.91
V4 231.47 V4 231.11 V4 221.1 V4 226.77
II 227.66 II 227.40 II 220.60 III 224.6

aVR 225.27 aVR 226.44 aVF 219.41 V5 224.55
V5 225.25 aVF 226.35 aVR 218.41 aVF 224.24

aVF 225.20 I 224.94 III 217.99 aVL 224.03
I 223.88 aVL 224.74 I 216.80 II 223.91

III 223.64 III 224.71 aVL 216.43 I 223.29
V6 223.59 V5 224.41 V1 214.87 aVR 223.00

aVL 222.9 V6 223.41 V5 214.87 V1 216.57
V1 215.03 V1 217.51 V6 210.39 V6 216.47

RF SOM
Raw PCA Raw PCA

Lead Score Lead Score Lead Score Lead Score
V1 192.6 V2 231.42 V2 219.67 V3 224.68

aVF 182.66 V3 228.84 V3 217.44 V2 223.87
V2 181.67 V5 221.13 II 210.47 II 216.22
II 180.29 V4 220.51 V6 210.13 V4 215.2
III 179.08 aVR 217.34 aVF 209.69 aVF 214.62
V4 176.44 I 216.98 V4 208.96 V6 214.22
V6 176.27 V6 216.96 V5 208.94 V5 213.81

aVR 175.48 aVF 216.85 aVR 208.44 III 212.53
V5 175.43 aVL 216.65 III 208.28 aVR 212.52

aVL 172.82 II 216.5 aVL 206.1 aVL 211.07
I 172.8 III 216.3 I 205.54 I 210.84

V3 164.08 V1 209.81 V1 201.61 V1 207.28

according to their capacity of classifying properly the SOO considering all
possible combinations and ML algorithms is shown in Table 5.2. The total
ranking score for each lead is calculated by summing up all the weighted
accuracy scores obtained in each combination in which the lead participated.
The weighted accuracy score was the result of dividing the total accuracy
obtained in one combination by the total number of leads that participated
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Table 5.3: Accuracy and F1-score of the real ECG signal classification using different
combinations of ECG leads.

Raw
RF SVM kNN SOM

accuracy F1-score accuracy F1-score accuracy F1-score accuracy F1-score

All leads 0.74 0.66 0.54 0.55 0.74 0.66 0.74 0.69
Precordials 0.6 0.61 0.43 0.34 0.63 0.48 0.63 0.58
V2,V3,V4 0.4 0.52 0.54 0.1 0.83 0.72 0.77 0.71

V2,V3,V4,V5 0.4 0.51 0.6 0.3 0.89 0.82 0.69 0.6

PCA
RF SVM kNN SOM

accuracy F1-score accuracy F1-score accuracy F1-score accuracy F1-score

All leads 0.77 0.66 0.77 0.71 0.71 0.65 0.71 0.62
Precordials 0.69 0.62 0.66 0.60 0.63 0.52 0.66 0.63
V2,V3,V4 0.8 0.72 0.66 0.57 0.83 0.77 0.66 0.65

V2,V3,V4,V5 0.89 0.82 0.71 0.62 0.83 0.76 0.69 0.65

in that combination. Therefore, high scores are obtained by leads which
participate in combinations with a high classification score, and the number
of leads used is smaller. The score was calculated in two different ways: first
using the raw 300 ms data of the ECG as an input, and second by using
the principal 10 components obtained from a PCA.

We analysed the results for k-NN, SVM, RF and SOMs, obtaining the best
rankings for V3, closely followed by V2 and V4. The random forest algo-
rithm showed unexpected results when raw data was used, which could be
due to the type of training information used. The problem was solved when
only a few characteristics estimated with PCA were provided instead of the
raw signal. We observed good consistency between methods classified with
raw data versus the best 10 characteristics from PCA. However, when PCA
was applied before training the results improved in all cases, suggesting that
this is the best strategy.

Finally, Table 5.3 shows the classification accuracy and the F1-score (har-
monic mean of the precision and recall) obtained for different lead combi-
nations with clinical relevance. Using all leads or the precordial leads shows
an improvement in classification with respect to single leads, but differences
are not notable. Selecting the leads that showed the best ranks from Ta-
ble 5.2 (V2, V3, V4 and V5) the classification accuracy increased (up to
0.89 for RF), which was the best result obtained. As expected, RF and
SVM had a better performance when using PCA.
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5.3.3 Dimensionality reduction using MKL

Simulated and real ECG signals used for classification were evaluated using
MKL. A total number of 155 ECG signals were introduced as input in
the algorithm (120 simulated signals + 35 recorded signals). In order to
facilitate the MKL algorithm computation, no augmented data was used.
Results of using the 12-lead ECG as features vs the combination of the most
important leads (V2,V3,V4,V5; according to previous analysis) are shown
in Figure 5.3. This Figure shows the results of performing the training
using the 12 leads as descriptors (A) and the best leads obtained in the
previous ranking (B). Both figures clearly show two different groups that
correspond to the LV vs RV SOO. This difference is clear in figure B, where
only a few points were misclassified. We performed a classification (RV vs
LV SOO) from the low-dimensional representation of the data provided by
the MKL algorithm. For doing so, we used SVM with the same parameters
mentioned above. The classification results obtained when using all leads
as input (Figure 5.3 (A)) were the following (accuracy, F1-score): simulated
ECG signals (0.84, 0.87); real ECG signals (0.51, 0.48). When only data
from the most relevant leads (V2,V3,V4,V5) were used (Figure 5.3 (B)), the
results were substantially improved for real data: simulated ECG signals
(0.86, 0.88); real ECG signals (0.77, 0.80).

5.3.4 Classification performance with only real ECG data
for ML training

In order to have a better estimation of the results obtained using the sim-
ulated data as training, we performed a classification using only the 35
ECGs recorded from patients, without any simulated signal. We used the
ML methods that presented the best results in Table 5.3: RF, SVM, k-NN
and SOM after a previous dimensionality reduction by PCA. We used the
leave-one-out cross validation technique, since 35 ECGs is a low number for
training ML algorithms. Results are shown in Table 5.4. Accuracy values
were overall slightly inferior to the ones obtained by using simulated data
(Table 5.3), except when using the precordial leads, where the highest value
(0.8 using RF) was obtained. Calculated F1 scores were clearly inferior to
the ones obtained using simulated data.
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A. B.

Figure 5.3: Comparison of LV (blue) and RV (red) SOO signals in a low-dimensional rep-
resentation provided by the Multiple Kernel Learning (MKL) algorithm. The two panels
show the cluster distribution in the first two dimensions of the low-dimensional space
identified by MKL after using all leads as features (A) and only the most relevant leads
(V2,V3,V4,V5) according with previous results (B). Simulated signals are represented by
dots whereas real ECG signals are represented by asterisks.

Table 5.4: Accuracy and F1-score of the real ECG signal classification without using
simulated ECGs

RF SVM kNN SOM
accuracy F1-score accuracy F1-score accuracy F1-score accuracy F1-score

All leads 0.74 0.64 0.71 0.57 0.68 0.52 0.77 0.6
Precordials 0.8 0.69 0.65 0.37 0.65 0.5 0.71 0.6
V2,V3,V4 0.71 0.54 0.74 0.52 0.71 0.54 0.68 0.61

V2,V3,V4,V5 0.77 0.66 0.74 0.66 0.71 0.54 0.66 0.56

5.4 Discussion

This study shows the feasibility of utilizing simulated ECGs to train ML
algorithms that are able to localize the SOO in OTVA from 12-lead ECGs.
By applying different ML methods, we evaluated the role of the different
ECG leads in data classification and the ability of the simulations to mimic
the behaviour of the recorded ECGs. The role of the ECG leads was eval-
uated individually and by doing different combinations of leads. We used
raw ECG signal (300 ms) obtained from the simulations and extracted from
the ECG as an input. In order to have a good comparison of the differ-
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ent morphologies of the QRS complex, signals were previously aligned by
performing cross-correlation. This last step was important since little miss
alignments could have critical effects in the classification. For this reason,
we also performed a PCA on all the input signals. In that way, only the first
10 principal components were considered for the classification. There exist
previous studies in the literature that try to classify the SOO in ventricu-
lar tachycardias, although they never studied the effect of each component
individually, but the combination of all the signals in the 12-lead ECG.
For instance, in [169] they use convolutional neural networks (CNN) and
obtained and accuracy of 77.71% in the classification of the SOO. One of
the drawbacks of this type of methods is the difficulty to determine and
explain which characteristics were chosen by the CNN and why they work
well. In [188] they analyse the most important characteristics of each ECG
signal, and use them to train a SVM for classification of the SOO, obtain-
ing an accuracy of 88.4%. However, they pointed out that the groups most
difficult to classify were RVOT septum and aortic cusps, that showed an
accuracy of 42.86%. These two SOO were also considered in our study, and
can be the source of classification errors since they are anatomically close
to each other.

We evaluated the ability of each lead to classify properly the signals be-
tween RV vs LV, as it is shown in Table 5.1. As expected, simulated data
was classified properly showing high accuracy values, specially using SOM,
where all values were above 0.9. Regarding the test data, which was only
the recorded patients ECG, values were significantly lower, showing the in-
capability of classifying between RV vs LV SOO by using only one lead.
Thanks to the design of the SOM algorithm, we can visualize how the algo-
rithm learns from the input data since it shows the closest signal to the test
data during the classification and the QE (see Figure 5.2). In that way, we
can evaluate which simulated leads are closer to the test data and therefore
have an estimation of the quality of the simulations.

Since we aim to obtain the best combination of leads for the prediction of
the SOO we performed a global rank of the leads. We observed, as expected,
that lead V3 and V4 were the most discriminant, followed by V2 and V5.
That means that any prediction in which V3 or V4 are included has higher
chances to predict correctly the SOO, for any location of the ectopic focus
and any geometry of the heart studied. These results are in agreement with
clinical studies that look for specific features in leads such as V3 [15, 25]. It
is also important to take into account that we are training with simulated
data, and that the simulated ECGs might be more realistic for some leads
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than for others. Therefore, some features learnt in some leads in the training
set could not fit with real ECGs for a given SOO, and then removing them
from the training set improves the accuracy of the classifier.

We also studied the possibility of having a dimensionality reduction before
the training by using PCA and a dimensionality reduction to 10 dimensions.
Following that approach all the results improved significantly, specially the
RF. This may indicate that algorithms such as RF or SVM could present
problems to work with raw data instead of a reduced signal model.

Overall, the best results were obtained using the combination of leads V2,
V3, V4 and V5, with k-NN (see Table 5.3). The cause under the good per-
formance of this particular algorithm could be the evident relation between
the SOO and the corresponding signals. k-NN algorithm works studying
the similarities among ECG signals, and signals that are similar to each
other correspond to ectopic focus triggered from points close to each other.

MKL was used for visualizing the input data. Since it is an unsupervised
algorithm, all the data (test and training) was introduced as input. The
obtained results, that can be seen in Figure 5.3 confirm that ML algorithms
are able to distinguish between RV vs LV SOO in simulated and real data.
One drawback of this method is the fact that although we can see its ability
to classify, it is not straightforward to know what features are used for that
purpose. The MKL algorithm can also be used to compared simulated vs
real signals. In Figure 5.3 (A) we can observe that simulated signals are
forming a small cluster at the right of the graph. This means that MKL is
able to detect the simulated data from the rest of simulations. In Figure 5.3
(B), asterisks are more uniformly distributed on the plane, which indicates
that the similarity between simulated and real data has increased. This
might be caused by the fact that some simulated leads (e.g. lead V1 or V6)
are not able to reproduce the behaviour shown in the real leads.

Finally, we evaluated the impact of using simulated data in the training
of ML algorithms. We performed a real ECG classification without using
simulated data and compared the results with the obtained using the sim-
ulated data as training. Results proved that better accuracy and F1 scores
are obtained by using the simulated data for training, except when only
the precordial leads are evaluated (RF trained with real data offers the
best performance). This confirms the potential of the simulated data to
reproduce the real ECG data and to improve the performance of the ML
techniques. However, more test and training data are needed to have a solid
confirmation.
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In summary, we showed that it is possible to classify clinical data, using as
a training set simulated signals, where we can control in detail the origin of
the ectopic focus, and the patient anatomy. The classification works better
when the patient-specific geometry is used, which indicates that we have to
extend the database of simulations to take into account patient variability
in terms of anatomy and orientation with respect to the torso. All cases
analysed where idiopathic, i.e., we did not consider any type of structural
disease, which would be much harder to classify due to the effects of scarred
tissue in the activation sequence. Using the different ML algorithms we ob-
served that not all the precordial leads exactly reproduced the real patterns,
which affects negatively the model, since they cannot be used for training
and classification. Therefore, improving the computational simulations to-
gether with a larger database that includes a large variability in the patient
ECG would improve the results obtained in this study.

We have shown a computational approach to predict the SOO of idio-
pathic ventricular tachycardia originated in the ventricle outflow tract. The
method that relies in biophysical simulation and machine learning tech-
niques is able to differentiate between LV or RV origin of the ectopic beat
with an accuracy of 89%, by using as an input data precordial leads V2,
V3, V4, and V5. since all the simulated training set is built off-line, the
methodology could be transferred to a clinical environment easily, avoiding
the need of time consuming tasks such as building computational models
of the heart and performing electrophysiology simulations. In addition, the
methodology is not dependent on the expertise of electrophysiologist, and
it is consistent between cases, which could provide an additional tool to
electrophysiologist to plan RFA interventions of this type of tachycardia.
Future works will focus on the accurate determination of the exact SOO of
the tachycardia.

102



6

General Conclusions

6.1 Short summary

In this thesis, we have developed computational methods to simulate cardiac
electrophysiology in patients with arrhythmia originated in the ventricle
outflow tract, as well as tools to be able to identify its origin from non-
invasive data.

The methodology has been divided in three main components.

In Chapter 3, we presented a RBM that includes fiber information specific
to the RV, inter-ventricular septum and both OT of the ventricles, to repli-
cate histological observations. The proposed model improves the realism
of electrophysiological simulations in applications when these regions are
important such as in OTVA patients. That was not possible with previous
RBM in the literature since they tend to apply the rule of LV to RV, and do
not model properly the septal wall. The RBM was indirectly validated by
comparing the results of electrophysiological simulations that incorporated
the proposed arrangement of fiber orientation with EAMs acquired from
patients during OTVA. The obtained results showed good agreement with
clinical observations, demonstrating the potential of the RBM as a compo-
nent for the simulations that aim to replicate the sequence of activation of
this type of arrhythmias.

In Chapter 4, we developed a computational pipeline, that included the
RBM developed in Chapter 3, to perform patient-specific in silico pace
mapping, which helped us to replicate the procedure followed by electro-
physiologist in the electrophysiology Lab in a non-invasive manner. We were
able to build 11 patient-specific models, that included the patient anatomy
and EAMs. Following, we simulated the electrical sequence of activation of
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the patient in sinus rhythm and during tachycardia, as well as the patient’s
ECG.

Simulations matched the clinical data, and allowed us to use the models to
produce a large set of ECGs corresponding to arrhythmia originated from
different locations on the LV and RV outflow tracts. That helped us to
further validate the pipeline against data from the literature (description of
ECG morphology as a function of SOO), and at the same time to evaluate
the similarity between the ECGs originated from the same ectopic location
in different patients. Simple tools such as the correlations between signals
were used to evaluate the simulation versus the patient data, and to define
which ECG precordial leads were more informative to differentiate between
SOO.

Finally, in Chapter 5, we used all the models developed in previous Chap-
ters, and studied different machine learning techniques to train a system
with simulated ECGs, capable of predicting the site of origin of an arrhyth-
mia originated in the OT. To account with the ECG variability introduced
by the ECG lead placement, we enhanced our simulated ECG database with
different ECGs obtained on the surrounding of the standard lead location
(displacement and torso rotation). We test the classification of real clinical
ECGs of patients with OT ventricular arrhythmias using single leads, or
combinations of them. Our results showed that leads that show a better
discrimination factor between left vs right origin of the tachycardia were V3
and V4, but results improved when V2-V5 were all combined. Our results
matched the hypothesis of electrophysiologists that use mainly the infor-
mation in V3 to decide the origin of the arrhythmia. The best model for
classification of ECGs was the k-NN with an accuracy of 89%. We could
classify properly some cases that were considered very complex for electro-
physiologist pre-operatively, showing that the tool has the potential to help
in planning intervention of RFA in this type of arrhythmia.

6.2 Limitations and future perspectives

There are several limitations of the work presented that are summarized in
the following paragraphs.

One of the main limitations of the RBM method is the absence of quanti-
tative 3D fiber information from imaging data in the RV and in the OTs.
We developed our method being guided by findings in histological stud-
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ies from 2D pictures of ex-vivo specimens and following recommendations
from anatomists involved in this work. It would be desirable to compare
our results with data obtained from advanced imaging techniques such as
micro-CT or X-ray phase-contrast imaging, especially from the RV and
OTs, which is rarely available in the literature. In this thesis we also com-
pared our results with ex-vivo cardiac DT-MRI. This technique provides
information related to myofiber orientation, but it cannot be considered as
ground-truth since measurements are noisy, show poor signal-to-noise ratio
and change under gradient calibration and temperature variation [189]. In
addition, smoothing and interpolation techniques required to reconstruct
tensor data from cardiac DT-MRI do not allow capturing myofiber orienta-
tion changes in very heterogeneous areas. Unlike in the LV, where DT-MRI
may provide a good approximation of myofibers in most areas, this is par-
ticularly critical in thin structures of the heart such as the outflow tracts
and the RV. Another limitation of the developed RBM is the smoothness of
the resulting fiber orientation distributions, which is inherent to the RBM.
Unlike the variability found in histological data, a RBM tend to generate
idealistic fiber orientation, in part due to the use of smooth biventricular
geometries (e.g. without trabeculae). Finally, the definition of the longitu-
dinal direction in some points of the boundary surfaces can affect the fiber
orientation. Due to the definition of the boundary, the gradient in these
points is zero, thus obtaining an incorrect fiber orientation (an example can
be seen in Figure 3.8, where apical regions have a slightly higher angle dif-
ference in all cases). However, this problem can be minimized by reducing
the number of points taken as boundaries and applying interpolation with
the closest neighbors.

Further work will be focused on the application of this pipeline to a larger
clinical database and in the adaptation of the developed RBM to high-
resolution fiber information provided by X-ray phase-contrast imaging data.

With respect to the computational pipeline to generate virtual ECGs of
patient showing arrhythmia triggered from the OT, we have to acknowl-
edge some limitations. Our patient-specific models included the patient
geometry and general properties for the tissue, since we did not personal-
ize the conductivities in the heart or other organs. Although we did not
expect substantial changes in the overall pattern of the ECG due to that
fact, there might be changes in the amplitude or the duration of the waves.
That is why, we decided to work with normalized signals. A personaliza-
tion of conductivity parameters will require a set of simulations that will
increase substantially the computational cost, making the tool more diffi-
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cult to translate to the clinics. One potential complementary alternative
could be to use simplified models for performing fast simulations of cardiac
electrophysiology that allow the fast estimation of the desired parameters.

Our models did not include patients with any type of structural heart dis-
ease, which will also impact the ECG wave morphology, and could hamper
the classification of the signals by the automatic algorithm. In addition,
we are using only the activation sequence to compare signals, not consid-
ering the repolarization, where the effect of infarcted regions will be more
important. Therefore, we have only assessed the methodology in idiopathic
patients.

As a future work, we expect to exploit the pipeline extending the current
set of patients to a much large population, which allows us to consider more
heart-torso geometries. We also want to perform simulations in patient with
structural heart disease, so that we can assess the difference in the ECG in
a quantitative way. Another important group of simulations that would be
required are those triggered from the epicardium, since in this work we only
considered one epicardial SOO for the tachycardias. These new datasets
can help us to further validate the pipeline, and to improve the accuracy of
the classifiers built based on the simulation data. Clinical studies that try
to predict whether the origin of a ventricular tachycardia comes from the
LVOT or RVOT have used algorithms based on particular properties of the
ECG waves, and in particular the precordial leads. Since our simulations
do not reproduce precisely some wave characteristics such as the amplitude,
we did not use those algorithms for validation of our results. Therefore, one
of the goals in the future is to improve the pipeline to obtain more realistic
QRS-waves in terms of signal amplitude.

The systems should take into account possible incorrect location of some
precordial leads. This is specially important since in the electrophysiology
Lab due to requirements that the navigation system imposes, some leads
might be displaced with respect to their standard locations. This fact has
to be explicitly considered in our model, in order to improve the results in
all possible scenarios.

Once all the improvements are carried out, we aim to assess the methodology
to classify the origin of the tachycardia considering any location of the
ventricles. That would involve a large number of simulations to be carried
offline, but it should only be done once.

Regarding the machine learning methods studied in this thesis to determine
the origin of the tachycardia, we have used standard and well-known tech-
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niques, which have shown good performance but will require much larger
training sets to be able to improve their accuracy. In addition, we need to
balance better the number of cases we have from different locations, in order
to perform better tests. While in the training set the origin of the ectopic
focus can be virtually anywhere thanks to the use of the cardiac simulator,
the validation set requires the collection of datasets from different patients
and with ectopic foci distributed all over the regions of interest (e.g. AMC,
LV summit, LCC-RCC, RVOT, RFW, etc).

In order to extract the correct features to train ML algorithms, future work
will be focused on the use of deep learning techniques. However, using
a black-box as a clinical decision making tool is not a good approach for
clinicians. Other methods such as SVM or K-NN provide results which
could be easily interpreted by doctors. In that sense, the introduction of
non-supervised learning methods such as SOM or MKL could further help
in the interpretation of the classifiers, complementing the current clinical
methodologies to determine the origin of a focal tachycardia.

In conclusion, the methods and pipeline developed in this thesis have shown
the potential of combining biophysical simulations of cardiac electrophysi-
ology with machine learning techniques to predict the site of origin of id-
iopathic ventricular tachycardias, and help in RFA interventional planning.
One of the advantages of the methods presented are that the simulations
can be performed off-line by an expert engineering, and can be incorpo-
rated gradually into a database that the machine learning tools can exploit.
Therefore, the translation into the clinical environment does not require ex-
perts in the field of simulations, or time consuming tasks such as segmenta-
tion, modeling and biophysical simulations. Therefore, the most important
limitation if the amount of data available to build a database large enough
to consider most of the potential scenarios.

The methodology could be easily integrated into already available clinical
tools for planning interventions without a big effort, since the methods used
in the thesis are standard and available in open-source scientific software
packages.
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In Appendix A all simulation results obtained with the developed modelling
pipeline for all 11 biventricular geometries studied in this work and the 12
different sites of origin (SOO) are presented. For each case, results are
displayed in two figures. In the first one, simulation results are presented
in 12 different columns according the SOO. This type of visualization is
inspired by artwork presented in Anderson et al. [15]. In the second one,
the measured patient 12-lead ECG (black) and the simulated ECGs (Blue
for LV SOO and red for RV SOO) are compared. For the sake of clarity, only
ECGs obtained using one of the thirteen lead configurations are presented.



a.1. patient 1 (ablation in rcc)

A.1 Patient 1 (Ablation in RCC)

Figure A.1: 12-lead simulated signals for the 12 different sites of origin of Patient 1.

Figure A.2: Simulated 12-lead ECG for Patient 1. Signals simulated from a LV SOO are
represented in blue color whereas RV SOO signals are in red. Black ECG belongs to the
patient ECG.
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A.2 Patient 2 (Ablation in LCC)

Figure A.3: 12-lead simulated signals for the 12 different sites of origin of Patient 2.

Figure A.4: Simulated 12-lead ECG for Patient 2. Signals simulated from a LV SOO are
represented in blue color whereas RV SOO signals are in red. Black ECG belongs to the
patient ECG.
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a.3. patient 3 (ablation in lcc)

A.3 Patient 3 (Ablation in LCC)

Figure A.5: 12-lead simulated signals for the 12 different sites of origin of Patient 3.

Figure A.6: Simulated 12-lead ECG for Patient 3. Signals simulated from a LV SOO are
represented in blue color whereas RV SOO signals are in red. Black ECG belongs to the
patient ECG.
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A.4 Patient 4 (Ablation in LCC)

Figure A.7: 12-lead simulated signals for the 12 different sites of origin of Patient 4.

Figure A.8: Simulated 12-lead ECG for Patient 4. Signals simulated from a LV SOO are
represented in blue color whereas RV SOO signals are in red. Black ECG belongs to the
patient ECG.
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a.5. patient 5 (ablation in rcc)

A.5 Patient 5 (Ablation in RCC)

Figure A.9: 12-lead simulated signals for the 12 different sites of origin of Patient 5.

Figure A.10: Simulated 12-lead ECG for Patient 5. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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A.6 Patient 6 (Ablation in RCC)

Figure A.11: 12-lead simulated signals for the 12 different sites of origin of Patient 6.

Figure A.12: Simulated 12-lead ECG for Patient 6. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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a.7. patient 7 (ablation in rv)

A.7 Patient 7 (Ablation in RV)

Figure A.13: 12-lead simulated signals for the 12 different sites of origin of Patient 7.

Figure A.14: Simulated 12-lead ECG for Patient 7. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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A.8 Patient 8 (Ablation in RCC)

Figure A.15: 12-lead simulated signals for the 12 different sites of origin of Patient 8.

Figure A.16: Simulated 12-lead ECG for Patient 8. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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a.9. patient 9 (ablation in rcc)

A.9 Patient 9 (Ablation in RCC)

Figure A.17: 12-lead simulated signals for the 12 different sites of origin of Patient 9.

Figure A.18: Simulated 12-lead ECG for Patient 9. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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A.10 Patient 10 (Ablation in RV)

Figure A.19: 12-lead simulated signals for the 12 different sites of origin of Patient 10.

Figure A.20: Simulated 12-lead ECG for Patient 10. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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a.11. patient 11 (ablation in rv)

A.11 Patient 11 (Ablation in RV)

Figure A.21: 12-lead simulated signals for the 12 different sites of origin of Patient 11.

Figure A.22: Simulated 12-lead ECG for Patient 11. Signals simulated from a LV SOO
are represented in blue color whereas RV SOO signals are in red. Black ECG belongs to
the patient ECG.
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