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Abstract

In this thesis new modelling methodologies to analyze dynamic pro-
cesses from image sequences are presented. The problem of analyzing
stochastic processes from image sequences in which spatially and tem-
porally overlapping objects could be observed is fundamental to study
real phenomenons and it is not completely fulfilled with current ap-
proaches.

The original motivation was to develop models to study important
stochastic mechanisms observed in cells, the endocytosis and the ex-
ocytosis, from image sequences obtained by means of Total Internal
Reflection Fluorescence Microscopy, which allows selective illumina-
tion of the cellular plasma membrane. In our approach these images
are considered the result of a stochastic process that meets the con-
ditions of stationarity and isotropy.

Firstly, we propose the application of a methodology in the con-
text of Point Processes to study the existence of spatial, temporal or
spatio-temporal clustered patterns on patterns based on the Ripley
K-function to study fusion sites and time in constitutive exocytosis.
This kind of methodology has never been used before for the anal-
ysis of exocytosis, although it can bring new information to better
understanding the underlaying machinery of the cell.

Secondly, we propose an extension of the classical Boolean model to
study spatial temporal stochastic processes with special emphasis on
the temporal dimension. The spatio-temporal Boolean model is defined
to model spatial temporal overlapped patterns. Estimators to obtain
the mean number of events per unit area and unit time, mean size
and density function of durations of the events from image sequences
are proposed. Two different approaches to obtain these estimates
are presented. Both of them are based on the study of the intensity
variation over time, however the first method analyzes these changes
by calculating the differences between couples of cross-sections of the



model whereas the second one uses cross-section aggregations and an-
alyzes the intensity increment. The spatio-temporal Boolean model
has been applied to the study of the endocytosis since they are ob-
served as fluorescence spots which overlap in space and time for a
random period of time.

Results of simulation studies carried out to test the estimators of the
spatio-temporal Boolean model showed relative errors ranging 1% −
5% in both approaches which indicates that the methodologies and
models proposed may fulfill the requirements of real applications. The
application of spatio-temporal Boolean models on the particular case
of the endocytosis allowed us to estimate among others the mean
duration of the events, which turned out to be in agreement with
manual studies performed in these sequences.

With the models presented in this thesis, it is possible to study real
phenomena showing overlapping objects with random shapes and ran-
dom durations. In the study of exocytosis and endocytosis we have
showed that these models could bring valuable estimates in a fast way
and at the same time to reduce the bias introduced by the manual
selection of samples when studying such processes.
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Abstract

En esta tesis se presentan nuevos modelos y metodoloǵıas para el
análisis de procesos dinámicos a partir de secuencias de imágenes.
El análisis procesos estocásticos a partir de secuencias de imágenes,
en las cuales se puede producir superposición espacial y temporal
de los objetos, es fundamental para el estudio de muchos fenómenos
reales, sin embargo las técnicas y modelos existentes no resuelven
completamente el problema.

La motivación original de este trabajo fue el estudio de dos mecan-
ismos celulares, la endocitosis y la exocitosis, a partir de secuencias
de imágenes obtenidas por medio de la técnica de microscoṕıa To-
tal Internal Reflection Fluorescence Microscopy. Esta técnica per-
mite la iluminación selectiva y de alta precisión de la membrana cito-
plasmática. Nuestra aproximación al estudio considera las imágenes
obtenidas mediante esta técnica como una realización de un proceso
estocástico que cumple las condiciones de estacionariedad e isotroṕıa.

En la primera parte del estudio se propone la aplicación de una
metodoloǵıa para el estudio de patrones puntuales agregados espa-
cial, temporal o espacio temporalmente dentro del contexto de Pro-
cesos Puntuales. Fundamentalmente se centra en la aplicación de la
K-función de Ripley para el estudio de la relación espacial y tem-
poral de la fusiones producidas por la exocitosis constitutiva. Esta
metodoloǵıa nunca ha sido aplicada antes para el estudio combinado
de espacio y tiempo en el proceso de exocitosis constitutiva, aunque
puede ayudar a conocer mejor el funcionamiento de la célula o a testar
nuevas hipótesis.

Posteriormente, se propone una extensión del modelo Booleano con el
fin de estudiar procesos estocásticos espacio temporales con especial
énfasis en la dimensión temporal. Se define el modelo Boolean tem-
poral para el modelado de objetos superpuestos en espacio y tiempo,
y seguidamente se definen los estimadores que permiten obtener el



número medio de eventos por unidad de área y tiempo, su tamaño
medio, y la función de densidad de las duraciones, a partir de secuen-
cias de imágenes. Se plantean dos aproximaciones diferentes para
estimar los parámetros del modelo. Un primer método basado en
diferencias, que estudia la variación de la intensidad del modelo a
lo largo del tiempo, calculando diferencias entre pares de secciones
temporales separadas por distancias que se van incrementando. Un
segundo método que se basa en la agregación de secciones temporales
del modelo para estudiar el aumento de intensidad del agregado. El
modelo Booleano temporal ha sido aplicado al estudio de las áreas de
fluorescencia generadas por protéınas que contribuyen a la endocitosis,
las cuales se superponen espacial y temporalmente durante peŕıodos
aleatorios.

Los resultados obtenidos tras un estudio de simulación diseñado para
testar los estimadores mostraron errores relativos de entre un 1%−5%
para ambos métodos de estimación, lo cual permite su aplicación a
estudios reales. La aplicación del modelo para el caso particular de
la endocitosis permitió estimar el número de eventos por unidad de
área y tiempo, y su duración media, la cual se encontraba próxima a
valores obtenidos manualmente para las mismas secuencias.

Mediante los modelos presentados en esta tesis, es posible analizar
fenómenos reales en los cuales se observe superposición de objetos
con formas y duraciones aleatorias. Su aplicación para el estudio
de la endocitosis y la exocitosis permite la obtención de parámetros
estimados de una forma rápida al mismo tiempo que reduce el sesgo
introducido por la selección manual de muestras del proceso.
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Resumen y Conclusiones

En esta tesis se presentan nuevos modelos estad́ısticos y metodoloǵıas para el
análisis de procesos dinámicos a partir de secuencias de imágenes, en las cuales
se puede producir superposición espacial y temporal de los objetos. Estos mode-
los son fundamentales para el estudio de muchos fenómenos reales, sin embargo
las técnicas y modelos existentes no resuelven completamente el problema.

Las células animales muestran complejos patrones de transporte intracelular,
requeridos no sólo para su supervivencia, sino también para el ensamblaje de las
complejas estructuras multicelulares. Aunque śı que se han estudiado en profun-
didad los mecanismos de transporte, incluyendo la formación de las veśıculas en
el interior de las células y su fusión en la membrana plasmática, apenas se conoce
cómo la membrana plasmática mantiene el equilibrio entre los dos fenómenos
básicos de endocitosis y exocitosis, procesos que median la entrada/salida de
macromoléculas y part́ıculas para la alimentación, regulación y transporte in-
tracelular. Estos procesos son interdependientes, aunque están inexorablemente
relacionados entre śı con el fin de asegurar el mantenimiento del tamao y la forma
de la célula.

El advenimiento de la Green Fluorescent Protein (GFP y sus derivados cian,
amarillo y rojo, CFP/YFP/dsRed, respectivamente), junto con la microscoṕıa
por onda evanescente, también conocida como Total Internal Reflection Fluores-
cence Microscopy (TIR-FM), han proporcionado una herramienta muy poderosa
para examinar el acoplamiento espacio temporal entre los citados procesos biológicos
((5), (69), (70), (73)). Esta técnica proporciona una resolución vertical y un ratio
seal/ruido inigualable con otras técnicas de microscoṕıa. Aunque otros grupos
han detectado y seguido gránulos o veśıculas durante la exocitosis (70), los al-
goritmos de detección y de seguimiento de veśıculas son burdos y están basados
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operaciones básicas de diferenciación de imágenes, filtrado y medidas de distancia
sobre el centro de masas. Las nuevas técnicas han producido un incremento en
el estudio de fenómenos dinámicos a partir de secuencias de imágenes, especial-
mente en áreas como Bioloǵıa y Medicina, debido esencialmente a los últimos
avances en Microscoṕıa y al desarrollo de técnicas moleculares para el marcaje
de protéınas. Propiedades de tamaño, duración, conteo de eventos por unidad
de área y tiempo o interacción entre eventos pueden aportar al experimentador
información muy valiosa sobre el comportamiento del sistema (en nuestro caso
la célula) ante diferentes condiciones (tratamientos). La gran cantidad de infor-
mación proporcionada por las técnicas actuales hace que la búsqueda de modelos
y métodos formales de contraste de hipótesis sea cada vez más necesaria.

En esta tesis se examinan los procesos biológicos básicos de exocitosis y en-
docitosis dentro del contexto de la estad́ıstica espacial y la geometŕıa estocástica.
Este marco de trabajo garantiza la formulación y contraste de hipótesis biológicas
asociadas a estos fenómenos. Estos métodos han sido raramente aplicados en Bi-
oloǵıa Celular hasta la fecha, a pesar de su gran utilidad demostrada en otros
campos. Aunque existe una gran cantidad de bibliograf́ıa sobre procesos pun-
tuales espaciales (11; 14; 52) y sobre conjuntos aleatorios en el espacio Euclideo
(35; 36; 62), no lo hay si se considera el tiempo como una dimensión especial,
quizás esto es debido a que hasta la fecha existen pocas aplicaciones en donde
sea posible disponer de datos tan exhaustivos que permitan describir el compor-
tamiento espacial y temporal de fenómenos dinámicos. En esta tesis se proponen
modelos que asuman expĺıcitamente la dimensión temporal y sus correspondientes
estimadores, aśı como métodos de contraste de hipótesis por técnicas de Monte-
carlo o boostrap. Estas metodoloǵıas proporcionarán la objetividad, el análisis
exhaustivo de datos y la robustez necesarias en muchos experimentos.

La motivación original de este trabajo fue por tanto el estudio de dos mecan-
ismos celulares, la endocitosis y la exocitosis, a partir de secuencias de imágenes
obtenidas mediante la citada técnica de microscoṕıa Total Internal Reflection Flu-
orescence Microscopy. Nuestra aproximación al estudio considera las imágenes
obtenidas mediante esta técnica como una realización de un proceso estocástico
que cumple las condiciones de estacionariedad e isotroṕıa.
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Estudio de la exocitosis constitutiva mediante procesos

puntuales espacio temporales

La exocitosis es un fenómeno muy importante en la vida de las células. El pro-
ceso de segregación y desplazamiento apical y basolateral de veśıculas ha podido
visualizarse en células PtK2 vivas mediante el uso de técnicas de imagen multi-
color aplicadas a células con protéınas fluorescentes. En trabajos anteriores se
descubrió la existencia de ’zonas calientes’ o ’hot-spots’ de exocitosis en la mem-
brana plasmática (31), es decir, se observaron zonas de la membrana en las que
las veśıculas se fusionaban con mayor frecuencia. Sin embargo, los lugares y tiem-
pos de ocurrencia de las exocitosis nunca han sido analizados de forma conjunta
hasta ahora. Además, no existen test formales para describir el comportamiento
espacial o espacio temporal de las diferentes hipótesis biológicas formuladas, sino
que en su lugar se usan descriptores estad́ısticos sencillos. Una de las preguntas
más importantes a considerar es si existe algún tipo de dependencia entre los
lugares de la membrana donde se producen las exocitosis y el momento en el que
se producen. Con ello se pretende ahondar en el conocimiento actual de los com-
plejos mecanismos que gobiernan la exocitosis y comprender más detalladamente
el movimiento de las veśıculas hacia la membrana plasmática.

En la primera parte del estudio se propone la aplicación de una metodoloǵıa
para el estudio de patrones puntuales agregados espacial, temporal o espacio
temporalmente dentro del contexto de Procesos Puntuales. Fundamentalmente
se centra en la aplicación de la K-función de Ripley para el estudio de la relación
espacial y temporal de las fusiones producidas por la exocitosis constitutiva. Esta
metodoloǵıa nunca ha sido aplicada al estudio combinado de espacio y tiempo
en el proceso de exocitosis constitutiva, aunque puede ayudar a conocer mejor el
funcionamiento de la célula o a testar nuevas hipótesis.

Para llevar a cabo el estudio es necesaria la realización de dos tareas indepen-
dientes:

• Creación de técnicas de análisis de imagen digital para la obtención de
posicion y tiempo de exocitosis a partir de secuencias biológicas.

• Análisis estad́ıstico de la información espacio temporal obtenida tras la fase
de análisis de imagen.

En la fase de análisis de imagen proponemos un nuevo método de detección de
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veśıculas basado en criterios de forma del granulo, tamaño y textura, dentro del
contexto de la Morfoloǵıa Matemática. Para el análisis estad́ıstico de los patrones
espacio temporales obtenidos utilizamos la siguiente formulación:

1. Asociamos a cada exocitosis i el par (zi, ti) donde zi es su posición y ti el
instante temporal asociado.

2. Utilizamos un extensión de la K-función de Ripley que depende de dos
variable, el espacio y el tiempo.

La K-función de Ripley puede ser extendida para tener en cuenta las dimen-
siones espacial y temporal. Básicamente, la K-función espacio temporal cuenta
todos los eventos dentro de un cilindro con radio definido por una distancia es-
pacial h y una longitud temporal t. Se pretende testar como hipotesis nula, śı
los eventos producidos por el proceso de exocitosis constitutiva se comportan
como un proceso de Poisson espacio temporal, es decir, no existe ningún tipo de
efecto clustering. Esta es la hipótesis nula que se plantea desde el punto de vista
biológico. En el estudio realizado sobre secuencias biológicas obtenidas mediante
TIRFM se utilizaron un total de 3 secuencias (Ver Tabla 1).

Table 1: Descripción de secuencias de imágenes

Céelula Marcador Tamaño ν2(W ) T

1 (VSVG3-SP-YFP) 409× 334 74276 750

2 (VSVG3-SP-YFP) 407× 320 71151 500

3 (VSVG3-SP-YFP) 455× 608 117003 300

En el estudio se estudiaron las secuencias desde tres puntos de vista. Los dos
primeros estudios dependientes solo de una variable, en los cuales se investigó si
los eventos eran resultado de un proceso aleatório en el espacio o aleatorio en el
tiempo. En el tercer estudio se estudió si existíıa algún tipo de acoplamiento o
dependencia espacio temporal entre los eventos. Para ello se utilizaron diferentes
versiones de la K-función de Ripley.

Para el estudio de dependencias espaciales o temporales la K-función se define
como,
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K(s) =
1
λ

E[número de eventos extra hasta una distancia s desde un evento arbitrario].

(1)

Esta función se puede estimar a partir de los datos extraidos en la fase de
procesado de imagen mediante el siguiente estimador propuesto por Ripley (14;
52),

K̂(s) =
ν2(W )
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

wijI(dij ≤ s), (2)

Para el estudio de las dependencias espaciales también se utilizaron los es-
timadores de distancia mı́nima, F-función y de vecino más próximo, G-función.
Estas función están detalladas en (14).

En nuestro estudio se propone describir los procesos puntuales espacio tem-
porales producidos por las exocitosis en una determinada célula mediante una
extensión a la dimensión temporal de la K-función,

K(s, t) =
1
λ

E[# de eventos extra dentro de una distancia s

y tiempo t de un evento arbitrario].
(3)

El estimador para K-función espacio temporal es,

K̂(s, t) =
ν2(W )T
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

wijI(dij ≤ s)vijI(uij ≤ t), (4)

donde uij = ν2(ti − tj) y vij= 1, si ti − uij > 0 y tij + uij < T , sino vij=2. En
este estimador se tuvieron en cuenta los posibles efectos de borde.

Se aplicaron las funciones F,G y K en el ámbito espacial, y se llevó a cabo
un test de Monte Carlo con 99 simulaciones para contrastar si la hipótesis nula
de no dependencia entre las posiciones de los eventos era factible. Los resultados
mostraron claramente que los patrones eran el resultado de un proceso agregado,
sugiriendo que las exocitosis no se produćıan de forma aleatoria sobre la mem-
brana plásmatica. Los p-valores obtenidos pueden observarse en la Tabla 2.

Cuando estudiamos la dimensión temporal obtuvimos resultados similares.
En este caso realizamos un test de Monte Carlo con 1000 simulaciones, y los
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Table 2: Monte Carlo p-valores usando funciones F, G y K

Célula 1 Célula 2 Célula 3

F 0.00 0.00 0.00

G 0.00 0.00 0.00

K 0.02 0.02 0.02

Table 3: Monte Carlo p-valores usando función K

Célula 1 Célula 2 Célula 3

0.0002 0.0001 0.0006

resultados de los p-valores fueron muy concluyentes como se observa en la Tabla
3.

Para el estudio de las dependencias espacio temporales se utilizó,

D̂(s, t) = K̂(s, t)− K̂1(s)K̂2(t). (5)

Esta nueva función tiene en cuenta que si no existe dependencia entre la dimensión
espacial y la temporal estas pueden factorizarse.

Los p-valores obtenidos en el estudio de las dependencias espacio temporales
están recogidos en el Tabla 4. Como puede observarse el test de Monte Carlo que
indica si existen clusters espacio temporales de exocitosis dió resultados negativos.

Table 4: Monte Carlo p-vaores para testar cluster espacio temporal

Cell 1 Cell 2 Cell 3

0.698 0.753 0.783

Los resultados muestran que no existe dependencia entre las posiciones y los
tiempos de ocurrencia de las exocitosis. Por el contrario, observamos que se pro-
ducen hot-spots de exocitosis en el espacio y en el tiempo de forma marginal.
Este estudio demostró un comportamiento temporal inesperado y nunca reve-
lado hasta ahora y que desencadena nuevas preguntas sobre el funcionamiento de
la exocitosis constitutiva. Esta metodoloǵıa puede ser extrapolada fácilmente a
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otros tipos de células (células cromaf́ın y neuronas).

Análisis y conteo de áreas endoćıticas mediante mode-

los Boleanos

La endocitosis es el proceso mediante el cual las células transportan nutrientes
desde la membrana endoplasmática hasta los endosomas. Las veśıculas formadas
por clathrin son las portadoras más destacadas en el transporte de este tipo de
tráfico intracelular. La GTPase dinamin se presenta como un mediador crucial en
el proceso de endocitosis de las veśıculas formadas por clathrin. Nuevas técnicas
de visualización han permitido observar la formación de veśıculas envueltas en
clathrin en células vivas. Se ha asumido que el mı́nimo cluster de moléculas de di-
namin fluorescente que puede ser detectado corresponde con un ’spot’ de veśıculas
rodeadas de clathrin. Cuando se observa mediante microscopio la membrana
plasmática, las áreas de fluorescencia asociadas a diferentes ’spots’ endoćıticos se
solapan formando ’clumps’ aleatorios con diferentes formas y tamaños. En este
estudio se presenta una metodoloǵıa que permite obtener el número medio de
’spots’ endoćıticos en cada imagen, aśı como su área y peŕımetro medios, usando
para ello una secuencia de imagenes. Para obtener estos datos a partir de una
secuencia de imágenes capturadas con microscopio es necesario desarrollar los
mecanismos necesarios de análisis de imagen. Uno de los principales retos radica
en que los ’spots’ endoćıticos están total o parcialmente solapados entre ellos, por
lo que las técnicas de análisis de imagen solo sirven como información básica de
entrada. De esta información se estimarán posteriormente los parámetros rele-
vantes del proceso Boleano subyacente.

La definición a grandes rasgos de un modelo Boleano es, un conjunto de pun-
tos en el plano (gérmenes) producidos mediante una distribución de Poisson esta-
cionaria con intensidad λ, sobre los que se ha colocado una forma aleatoria (gra-
nos). Más formalmente: Sea Ψ = {x1, x2, . . .} un proceso de Poisson estacionario
en R2 con intensidad λ. Sea Ξ1,Ξ2, . . . una secuencia de conjuntos compactos
aleatorios (como Ξ0), independientemente distribuidos en R2, que a su vez son
independientes del proceso de Poisson Ψ, y que cumplen Eν2(Ξ0 ⊕ Ǩ) < +∞,
para todo conjunto compacto K. El modelo Boleano es un conjunto aleatorio
definido como,

Φ = ∪∞n=1(Ξn + xn). (6)
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El conjunto aleatorio Ξ0 recibe el nombre de grano primario. La distribución
Φ se puede caracterizar mediante la función de capacidad. Esta función para un
modelo Boleano es,

T (K) = 1− exp{−λEν2(Ξ0 ⊕ Ǩ)}. (7)

Entre las caracteŕısticas del modelo Boleano, la fracción de volumen es de
vital importancia, ya que mide la fracción media de volumen ocupada por Ξ en
una región por unidad de área,

p = E(ν2(Ξ⊕B)), Ξ(B) = 1. (8)

Puesto que p no depenede de la elección de la región B cuando Ξ es estacionario,
podemos reescribir (para K = 0),

P (0 ∈ Ξ) = 1− exp{−λE(ν2(Ξ0))} (9)

Partiendo de estas definiciones de G. Matheron (35; 36), vamos a asumir que
las imágenes obtenidas mediante microscoṕıa TIRFM en las que se observan en-
docitosis son el resultado de un modelo Boleano espacial. Por tanto podemos
aplicar la formulación de un modelo Boleano para estimar parámetros relevantes.
Existen distintos métodos, aqúı se realiza una implementación del método del
contraste mı́nimo (ver (62)). Los parámetros en los que estamos interesados son,
la intensidad del proceso, el área media de cada evento, que en nuestro caso es
el área de fluorescencia producida por una endocitosis, y finalmente su peŕımetro
medio.

De las definiciones originales de Matheron (ver (36) pp. 139 y (60)) obten-
emos,

HK(t) = 1− exp

{
− λE[ν2(A0 ⊕ tK)− ν2(A)]

}
, (10)

donde K es un disco unidad en el plano y A0 es el grano primario. La fórmula
general de Steiner establece que,

Eν2(A0 ⊕ K̆) = Eν2(A0) +
U(K)EU(A0)

2π
+ ν2(K). (11)

La función de distribución de contacto HK(t) se puede calcular directamente de
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las imágenes obtenidas del microscopio mediante,

HK(t) = 1− 1− T (tK)
1− p

, (12)

puesto que conocemos el estimador de la función de capacidad T (K) para un
modelo Boleano T (K),

T̂W (K) =
ν2((Φ⊕ K̆) ∩ (W 	K))

ν2(W 	K)
, (13)

donde W es la ventana de muestreo y A	 Ǩ = {x ∈ A : x+K ⊂ A}.

Esta metodoloǵıa se aplicó al análisis de 6 secuencias de imágenes obtenidas
mediante microscopio confocal en las que se mostraban endocitosis, gracias al
marcado con fluoroporos de la clatrina, una protéına que interviene en el pro-
ceso. Puesto que las secuencias cuentas con cientos de frames, los estimadores se
aplicaron independientemente para cada uno de ellos. La Fig. 1.2, muestra los
resultados obtenido tras la aplicación de estos estimadores sobre una secuencia de
300 imágenes. El elemento estructurante utilizado ha sido un cuadrado, puesto
que su aproximación digital es mejor que la de otros elementos como los discos.
Las estimaciones obtenidas para cada frame se combinaron utilizando el método
del batch-mean (33), ya que estaban correlacionados. Finalmente, se obtuvo el
valor medio para cada uno de los parámetros de interés en cada secuencia.

(a) (b)

Figure 1: Valores estimados de intensidad λ, y peŕımetro u0 para una
de las secuencias de clatrina utilizando un cuadrado unidad. (a) Esti-
maciones e intervalos de confianza al 95% para λ̂. (b) Idem para el peŕımetro
medio del grano primario û0.

Los resultados obtenidos fueron de una gran precisión con errores muy pequeños
en la estimación de los parámetros, como muesta la Tabla 5 donde se resumen
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los valores medios y sus respectivos intervalos de confianza.

Table 5: Valores estimados eintervalos de confianza al 95% de 6 secuencias ex-
presando clatrina

Cell Sequence λ̂ û0 λ̂ν2(W )

1 1 0.0099 ± 0.0006 9.565 ± 0.28 281.86 ± 17.49
2 0.0085 ± 0.0006 9.575 ± 0.32 347.20 ± 23.69

2 3 0.0092 ± 0.0002 6.6269 ± 0.19 277.54 ± 7.23
4 0.0097 ± 0.0003 7.1997 ± 0.24 235.41 ± 8.05

3 5 0.0081 ± 0.0010 9.0042 ± 0.37 170.17 ± 20.88
6 0.0075 ± 0.0012 8.9756 ± 0.34 220.28 ± 3.54

En las siguientes secciones se propone una extensión del modelo Boleano con
el fin de estudiar procesos estocásticos espacio temporales con especial énfasis
en la dimensión temporal. Se define el modelo Boleano espacio temporal para el
modelado de objetos superpuestos en espacio y tiempo, y seguidamente se definen
los estimadores que permiten obtener el número medio de eventos por unidad de
área y tiempo, su tamaño medio, y la función de densidad de las duraciones, a
partir de secuencias de imágenes. Se plantean dos aproximaciones diferentes para
estimar los parámetros del modelo. Un primer método basado en diferencias, que
estudia la variación de la intensidad del modelo a lo largo del tiempo, calculando
diferencias entre pares de secciones temporales separadas por distancias que se
van incrementando. Un segundo método que se basa en la agregación de secciones
temporales del modelo para estudiar el aumento de intensidad del agregado.

Análisis de eventos superpuestos espacial y temporal-

mente y definición de los STBMs

El conteo de eventos superpuestos en una secuencia de imágenes aśı como la
estimación de sus tamaños y duraciones es un problema importante en muchas
aplicaciones reales. En este trabajo se propone un procedimiento para llevar
a cabo estas tareas basándose en un modelo estocástico. El modelo propuesto
recibe el nombre de modelo Boleano espacio temporal, siendo una generalización
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del modelo Boleano clásico en el cual las superposiciones entre diferentes formas
es expĺıcitamente asumida y modelada.

Definiremos el modelo Boleano espacio temporal como la unión de mues-
tras con formas aleatorias (granos), colocadas de acuerdo a un proceso puntual
de Poisson (gérmenes) y con una duración aleatoria asociada (independiente e
idénticamente distribuida para los diferentes granos). El modelo propuesto tiene
una aplicación directa al estudio del proceso de endocitosis, descrito anterior-
mente. La ventaja que introduce este nuevo modelo es la capacidad de tener en
cuenta la dimensión temporal y ser capaz de obtener la estimación de la duración
de los eventos. Obtener estos valores no es posible por métodos de análisis de
imagen puesto que los eventos están superpuestos y su número seŕıa intratable
en secuencias largas.

A continuación, el modelo Boleano espacio temporal y sus propiedades prob-
abiĺısticas son formalmente presentados. Proponemos un método para la esti-
mación de parámetros en un intervalo temporal de una secuencia de imágenes
basado en diferencias. A continuación, se dan los estimadores para el número
medio de gérmenes por unidad de área y tiempo, el tamaño medio de los granos
y su distribución de duraciones. Posteriormente, se lleva a cabo un estudio de
simulación, en el cual se estudian los errores relativos asociados a los estimadores
propuestos, sobre secuencias simuladas cuyos parámetros son conocidos. Final-
mente, el método es ilustrado sobre secuencias de imágenes biológicas con el fin
de estimar el número medio de eventos endoćıticos en la membrana plasmática
aśı como su duración media. Los resultados muestran que los modelos propuestos
son efectivos y permiten obtener información de procesos dinámicos en los cuales
objetos superpuestos de corta vida son observados.

Definición formal del modelo Boleano espacio temporal. Sea Ψ = {(xi, ti)}i≥1

un proceso de Poisson estacionario en R2 × R+ con intensidad λ. Sea {Ai}i≥1

una secuencia de conjuntos aleatorios compactos independientes e identicamente
distribuidos (como A0) en R2. Sea {di}i≥1 una secuencia de variables positi-
vas independientes e identicamente distribuidas (como D) . Asumimos que Ψ,
{Ai}i≥1 y {di}i≥1 son independientes y que Eν3(A0 × [0, D] ⊕ Ǩ) < +∞ para
cualquier subconjunto K de R3. El modelo Boleano espacio temporal, STBM, es
el conjunto aleatorio definido como,

Φ = ∪i≥1(Ai + xi)× [ti, ti + di]. (14)
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El conjunto (Ai +xi)× [ti, ti +di] es un cilindro en R2×R+, el i-ésimo evento.
El método de estimación que se presenta a continuación se basa en dos hechos.

• Una sección 2D de un modelo Boleano 3D es también un modelo Boleano
(36; 66).

• Si Φ es un modelo Boleano espacio temporal con intensidad λ y grano
primarioA0×[0, D], entonces una sección temporal Φs es un modelo Boleano
2D con grano primario A0 e intensidad

λs = λED. (15)

En el método por diferencias un modelo Boleano espacio temporal lo consid-
eraremos la unión de los siguientes modelos Boleanos,

Φs1,s2 = ∪i:ti≤s1≤s2≤ti+di
Ai + xi, (16)

Φs1,s−2
= ∪i:ti≤s1≤ti+di<s2Ai + xi, (17)

Φs−1 ,s2
= ∪i:s1<ti≤s2≤ti+di

Ai + xi. (18)

A partir de estos modelos Boleanos independientes definimos una serie de
funciones muy importantes. β(s2 − s1) indica la intensidad de Φs1,s2 (número
medio de gérmenes vivos en el intervalo temporal [s1, s2]), y viene dado por,

β(s2 − s1) = λp(s2 − s1), (19)

donde p(s) =
∫ +∞
s P (D ≥ v)dv. Además, asumiendo estacionariedad, Φs1,s−2

y
Φs−1 ,s2

tienen la misma intensidad, α(s2 − s1) (número medio de gérmenes que
han muerto en el intervalo temporal [s1, s2]) dada por,

α(s2 − s1) = λED − λp(s2 − s1) = λs − β(s2 − s1). (20)

El estimador de la función α(s2 − s1) puede ser obtenido a partir de las
siguientes ecuaciones,

P (0 ∈ Φs1 |0 /∈ Φs2) = P (0 ∈ Φs2 |0 /∈ Φs1) = 1− exp{−α(s2 − s1)a0}, (21)

1− exp{−δ̂(s2 − s1)} =
1
2

(
ν2(φs1 ∩ φc

s2
∩W )

ν2(φc
s2
∩W )

+
ν2(φs2 ∩ φc

s1
∩W )

ν2(φc
s1
∩W )

)
. (22)
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donde δ(s2 − s1) = α(s2 − s1)a0.
Mediante el método del contraste mı́nimo podemos obtener estimaciones para â0

y λ̂s, y posteriormente calcular,

α̂(s) =
δ̂(s)
â0

and β̂(s) = λ̂s − α̂(s). (23)

Finalmente, podemos obtener la intensidad del proceso de gérmenes espacio
temporal y la función de densidad mediante α′(s) = λ(1 − FD(s)) y α′′(s) =
−λfD(s) donde α′ y α′′ son la primera y segunda derivadas de α, mientras que
FD and fD son la función de distribución acumulada y la función de densidad de
la variable aleatoria D, respectivamente.

Para testar los estimadores definidos se llevó a cabo un estudio de simulación
utilizando 9 combinaciones de parámetros diferentes y generando 15 replicas para
cada una de estas. La Tabla 6 muestra los errores relativos para los diferentes
parámetros obtenidos tras el estudio de simulación. En todos los casos estos
errores se mantienen en un ĺımite muy bajo y por tanto aceptables para un
estudio real.

Table 6: Errores relativos con respecto a la distribución de duraciones

Parametro Distribución Min. 1st Qu. Mediana Media 3rd Qu. Max.

λ Uniforme -0.084 -0.003 0.022 0.022 0.047 0.125
Exponencial -0.057 0.016 0.053 0.055 0.090 0.153
Gamma 0.127 -0.010 0.013 0.017 0.044 0.159

λs Uniforme -0.086 -0.020 0.004 0.000 0.022 0.090
Exponencial -0.093 -0.020 0.008 0.009 0.034 0.109
Gamma -0.109 -0.026 0.004 0.000 0.022 0.096

a0 Uniforme -0.087 -0.049 -0.028 -0.025 -0.005 0.073
Exponencial -0.105 -0.057 -0.031 -0.032 -0.010 0.074
Gamma -0.093 -0.047 -0.030 -0.027 -0.007 0.066

u0 Uniforme -0.055 -0.014 0.005 0.009 0.028 0.096
Exponencial -0.078 -0.023 0.002 0.002 0.025 0.113
Gamma -0.062 -0.010 0.006 0.007 0.027 0.087
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El modelo Boleano temporal fué aplicado al estudio de las áreas de fluores-
cencia generadas por protéınas que contribuyen a la endocitosis, las cuales se
superponen espacial y temporalmente durante peŕıodos aleatorios. En concreto
se aplicó sobre 6 secuencias de imágenes. En todos los casos se obtuvieron valores
de duraciones que estuvieron en los rangos esperados por los biólogos en base a la
bibliograf́ıa existente. Además nuevos parámetros nunca obtenidos hasta ahora
como la intensidad del proceso del gérmenes fueron satisfactoriamente obtenidos,
aunque su valor no ha podido ser contrastado.

Estimación de parámetros en STBMs mediante TBM

2D agregados

Un segundo método ha sido desarrollado para la evaluación y estimación de
parámetros de un modelo Boleano espacio temporal, STBM. Este segundo método
permite la estimación de los mismos parámetros que el modelo basado en diferen-
cias presentando en el punto anterior, pero en este caso se consideran agregaciones
de modelos Boleanos (BM) 2D para obtener los estimadores correspondientes.
Esta implementación tiene como ventaja principal frente al método anterior una
mayor inmunidad al ruido. El principio en que se basa este método es el hecho
de que ”La unión de modelos boleanos independientes sigue siendo un modelo
Boleano” (Matheron75). Esto nos permite descomponer un modelo Boleano es-
pacio temporal en sus diferentes secciones y estimar sus parámetros mediante
agregaciones de estas secciones de una forma espećıfica.

Partimos de un modelo Boleano espacio temporal:

• Construimos nuevas secuencias acumulando sobre la dimensión temporal.

• Acumulamos usando diferentes combinaciones de (k, δ),

– Número de secciones temporales, k.
– Distancia temporal entre dichas secciones acumuladas, δ.

Las diferentes secuencias obtenidas por acumulación usando combinaciones
de (k, δ) nos permitirán inferir parámetros del modelo Boleano espacio temporal
original. El número medio de eventos nacidos antes de una sección temporal
determinada y muertos en el intervalo [si, si+1) puede obtener mediante,

EN
[si,si+1)
(−∞,s1] = θp(si − s1)− θp(si+1 − s1). (24)
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En general, el número medio de eventos nacidos en un intervalo (si−1, si] y
muertos en otro intervalo posterior (sj−1, sj ] viene dado por,

EN
(sj−1,sj ]

(si−1,si]
= θp(si−1, si; sj−1, sj), (25)

donde

p(si−1, si; sj−1, sj) = p(sj−1−si)−p(sj−1−si−1)−p(sj−si)+p(sj−si−1). (26)

En realidad nosotros estamos interesados en estimar parámetros partiendo
de un modelo acumulado. Por ejemplo, el número medio de eventos vivos en
∪k

i=1Ψsi que viene dado por
∑k

i=1

∑k+1
j=i+1N

(sj−1,sj ]

(si−1,si]
. La formulación base para

realizar estas estimaciones es,

ψ(s1, . . . , sk) = E

k∑
i=1

k+1∑
j=i+1

N
(sj−1,sj ]

(si−1,si]
= θ

[
kp(0)−

k∑
i=2

p(si − si−1)
]
. (27)

Los estimadores nos permitirán obtener λ, α(δ), y ED. Aplicando el método
del contraste mı́nimo podemos obtener para cada combinación de (k, δ) su re-
spectivo λs(k, δ) y aśı obtener,

λs(k, δ) =
ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ)

ν2(W )
= λ

[
kp(0)− (k − 1)p(δ)

]
. (28)

Esta ecuanción se puede reescribir como,

λs(k, δ) = (λp(0)− λp(δ))k + λp(δ), (29)

Es evidente que ahora podŕıamo obtener las funciones α(δ y β(δ) a partir de
estimaciones para diferentes k, α(δ) = λp(0)−λp(δ), y β(δ) = λp(δ). Finalmente
λ y la función de densidad puede obtenerse a partir de las siguiente ecuaciones,

α′(0) = −λp′(0) = λP (D ≥ 0) = λ. (30)

y
p′′(δ) = fD(δ), (31)

Un análisis de simulación realizado con 6 tipos de secuencias diferentes per-
mitió medir la precisión de los estimadores. Los errores relativos fueron constantes
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y muy bajos, del orden del 5% en los peores casos, que correspondieron a secuen-
cias cuyos eventos teńıan una distribución exponencial.

Esta metodoloǵıa también se aplicó sobre secuencias biológicas para el estudio
de endocitosis. En concreto se usaron 6 secuencias en las que se hab́ıa marcado
la protéına clatrina. Los resultados al igual que con el método por diferencias
dieron resultados dentro de los rangos temporales esperados, y fueron de la misma
magnitud que los obtenido por otros grupos en similares experimentos, aunque
en nuestro caso la variabilidad se mostró más baja.

Conclusiones

En este trabajo se han propuesto diferentes métodos estad́ısticos y computa-
cionales para analizar procesos estocásticos espacio temporales. Estas metodoloǵıas
han sido aplicadas al estudio de procesos biológicos celulares ampliamente cono-
cidos, la exocitosis y la endocitosis. Estos procesos son intrinsecamente distintos
y por tanto generan diferentes tipos de información, lo cual conlleva a diferentes
metodoloǵıas de análisis dentro del marco de los procesos estocásticos.

Primeramente, se ha propuesto una metodoloǵıa para el estudio de los pa-
trones puntuales espacio temporales obtenidos tras el análisis de imagen de una
secuencia de exocitosis. Esta metodoloǵıa ha sido probada sobre secuencias reales,
en las cuales se han analizado las dependencias, espaciales, temporales y espacio
temporales exitosamente, obteniendo información nunca vista hasta ahora. Para
ello se ha utilizado una combinación de funciones bien conocidas como son F, G y
K y test de Montecarlo. Aunque la metodoloǵıa mostrada aqúı se ha aplicado a
un caso particular, es suficientemente flexible para ser aplicada a una gran vari-
adedad de casos similares en los que se trate este tipo de información.

Para el problema biológico, se desarrollo una aplicación de procesado de ima-
gen con el fin de obtener las posiciones y tiempos en los que se produćıan las ex-
ocitosis. Este algoritmo permitió obtener de una forma rápida y semi-automática
los datos necesarios para el estudio.

En los siguientes caṕıtulos hemos definido y estudiado un caso particular de
modelo Boleano, que llamamos modelo Boleano espacio temporal, que formaliza
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la configuración de eventos independientes con posiciones y duraciones aleatorias.
Además este modelo considera la posibilidad de superposición tanto espacial como
temporal de estos eventos. Esta aproximación nos ha permitido obtener infor-
mación de procesos estocásticos con formas y duraciones aleatorias que seguen
una determinada distribución.

Se han definido dos métodos diferentes para el estudio de modelos Boleanos
espacio temporales. El primero, basado en diferencias entre pares de secciones
temporales de un modelo temporal espacio temporal. Con este método podemos
observar los cambios en intensidad dependiendo de la distancia temporal entre las
diferencias escogida. El segundo método se basa en la agrupación de conjuntos
pertenecientes a diferentes secciones temporales de un STBM. De este modo la
nueva secuencia agrupada muestra cambios en intensidad que de nuevo revelan
información de modelo original. La combinación de diferentes números de con-
juntos agregados y de diferentes distancias temporales entre estos conjuntos dan
lugar a nuevas secuencias agregadas que permitirán la inferencia de parámetros
del modelo. Uno de los inconvenientes de este método es que requiere de mayor
tiempo para estimar los parámetros ya que primeramente es necesario crear las
nuevas secuencias agregadas y luego analizarlas. Cabe remarcar que el tiempo
que este algoritmo necesita es ı́nfimo comparado con el que requeriŕıa un método
manual.

Además, también se han definido los estimadores para la obtención del número
medio de eventos por unidad de área y tiempo, el tamaño medio de los eventos,
su función de densidad y su duración a partir de una realización de un modelo
Boleano espacio temporal. Un exhaustivo estudio de simulación ha sido real-
izado para estudiar la bondad de los estimadores. En particular, se usaron 135
secuencias simuladas de modelos Boleanos espacio temporales utilizando 9 combi-
naciones de parámetros con 15 replicas cada una. Los errores relativos obtenidos
fueron muy bajos y se situaron en un rango de 0.3% − 15%, siendo su mayoŕıa
menores del 5%. A lo largo de los diferentes procesos de estimación con funciones
se utilizaron tecnicas de Functional Data Analysis, con el fin de mejorar las esti-
maciones y poder derivar funciones de forma más precisa.

Para ilustrar la aplicación de los modelos Boleanos espacio temporales, estu-
diamos las propiedades espacio temporales del proceso biológico de endocitosis.
Las técnicas de análisis de imagen o las basadas en procesos puntuales son in-
capaces de obtener información fiable de estas secuencias puesto que los eventos
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se solapan en espacio y en tiempo. Sin embargo, los dos métodos basados en
STBM fueron aplicados exitosamente a secuencias celulares obtenidas mediante
microscopios confocales. Varios parámetros relacionados con la dimensión tem-
poral fueron estimados, tales como i) el número medio de endocitosis por unidad
de tiempo y de membrana, ii) la función de densidad de las duraciones de dichos
eventos, aśı como su duración media.
Una aproximación clásica basada en técnicas de análisis de imagen que segmen-
tan componentes conexas hubiese infraestimado tanto el número de endocitosis
reales presentes en cualquier instante de tiempo, como su duración media. Por
tanto, los modelos STBM aśı como los métodos de estimación se presentan como
una nueva herramienta automática capaz de obtener estimaciones de parámetros
relevantes de un proceso. Además este tipo de medidas son muy complicadas de
obtener de forma manual, aunque son necesarias para el sondeo de tratamientos
en campos como la bioloǵıa.

Finalmente, es importante mencionar que aunque la exocitosis y la endocito-
sis son dos procesos estrechamente relacionados, un análisis formal que combine
ambos procesos es todav́ıa necesario. Los resultados mostrados aqúı indican
que la exocitosis constitutiva se produce de forma agrupada sobre la membran
plasmática indicando algún tipo de dependencia, mientras que las regiones de flu-
orescencia producidas por las endocitosis se consideran aleatorias sobre la mem-
brana. Estas asunciones son seguras, ya que no existen evidencias claras de lo
contrario.

Existen varias extensiones interesantes a los modelos propuestos, y que permi-
tiŕıan testar una mayor cantidad de hipótesis de mayor complejidad. En general,
estas mejoras implican también una mejora en la calidad o en el tipo de datos para
el modelo, que no siempre están disponibles debido a restricciones tecnológicas.

En resumen, se ha definido y presentado una metodoloǵıa para estimar parámetros
espacio temporales de modelos estocásticos los cuales nos permiten testar hipote-
sis complejas. Las metodoloǵıas y modelos descritos en este trabajo permiten
obtener información sobre distribuciones temporales, intesidades o medidas de
tamaño de procesos estocásticos. Todos los estimadores propuestos fueron testa-
dos mediante estudios de simulación exhaustivos y aplicados a problemas com-
plejos en el campo de la bioloǵıa celular.
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Chapter 1

Introduction

Problems in Engineering, Computational Science and Biology are using increas-
ingly complex mathematical and computational techniques, creating a bridge
between these disciplines that is heavily travelled. Traditional fields, as Biology
and Medicine, are encouraging the ways that mathematics could be applied to-
wards new and innovative models which can help to the understanding of different
processes.

Here, we study the dynamics of the processes of endocytosis and exocytosis
separately from image sequences obtained by means of a microscopy technique
know as Total Internal Reflection Fluorescence Microscopy (TIRFM).

The study of these two processes has been done in the context of stochastic
geometry. Specifically, we based it on theory related to Point Processes and Ran-
dom Sets since they present a natural framework for modelling the binary image
sequences we deal with. The main goal of this work is to develop a methodology
to analyze the spatial pattern of either biological process individually. In order
to accomplish this requirement we have i) extended the classical Boolean model
to take into account the temporal dimension; ii) proposed the use of estimator
for spatio-temporal point processes to model real cellular phenomena.

These new estimators allow us to characterize these spatial temporal cellular
processes accurately and in a fast way. So far, this kind of analysis has been
performed manually from data obtained by researchers in a one by one basis (19),
making it virtually impossible in many situations. In addition, manual selections
of this kind of data use to introduce a high bias in the sample. Furthermore, it
is important to point out that each one of the experiments carried out to study
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1. INTRODUCTION

the mentioned processes conveys the analysis of hundreds or even thousands of
frames which led to an impossible task.

The problem of studying the existence of spatio-temporal clustering is not new
in the literature of Spatial Statistics and has been applied in many frameworks
that increase every year, specially with the advent of powerful microscopes, geo-
graphical information systems, etc. This problem is also very common in Ecology
and in Epidemiology, as for instance, finding clusters of infected people around a
focus, in space and time, that is, people infected that live in the neighborhood of
the focus and that became infected close in time. Sciences such as Agriculture,
Astronomy, Meteorology, etc., to name a few, have in spatial temporal Statistic
the basis of their research. Spatial Statistics has provided a number of tools in
order to analyze any given set of points, models or processes which can generate
point data following some stochastic law (11; 14).

Theory on spatial point processes has been developed with extensive amounts
of literature devoted to their analysis. However, if the observed process is a hy-
brid spatial temporal point process, only few practical methods exists. In such
cases, practitioners often remove the temporal component and analyze the spatial
dependencies. This marginal spatial analysis may lead to misleading conclusions
if time is an important factor in the process. In (52) was introduced the analysis
in the spatial domain through the widely used K-function. Currently, Ripley’s
approach to study the dependency structure of point patterns remains the dom-
inant method for analysis.

Computational Biology attempts to create and test models that describe com-
plex cellular processes (19; 43; 46; 47; 64). In addition, problems similar to the
biological ones studied here that involve existence of random spatial patterns
have been encountered in various other fields, such as Ecology and Geographical
Information Systems (14), (11), (51).

One of the first aims of this work is to present a new methodology for the
study of the joint spatio-temporal distribution of exocytosis events in the plasma
membrane in the context of the theory of spatio-temporal point processes, that
may provide new insight into understanding the complex exocytosis mechanisms
in membrane trafficking. The use of spatio-temporal point pattern analysis in
Biology is strongly new, though some accounts in biological literature as (31) and
(46) use spatial domain approximations based on point patterns. We consider the
second-order analysis of spatio-temporal point patterns through an extension of
Ripley’s K-function. From a practical point of view, we apply this methodology
to the analysis of constitutive exocytosis patterns in epithelial cells.
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1.1 Biological background and motivation

Approaches based on random sets have also been considered to study similar
processes in other areas of knowledge. In particular, the Boolean model is a well-
known model when we study binary images composed of the union of different
(independent random) shapes located independently in the 2D Euclidean space.
The basic references about this topic are (35; 36; 62). The use of such models
allows us to estimate (among other things) the mean number of objects per unit
area or the mean area and perimeter of the objects from an image. It has been
widely used (26; 40; 66) ever since it was proposed by G. Matheron in the late
1960s , since it can provide a good description for irregular patterns observed
in Microscopy, Material Sciences, Biology, Chemistry, Geostatistics or Cellular
Communication Networks.

We are concerned with the analysis of overlapping short-lived events from an
image sequence. In fact, endocytic spots show a similar pattern and overlap to
each other both in space and time and live. In approaching this problem, we have
defined the spatio-temporal Boolean model (from now on STBM), a particular
case of a non-isotropic 3D Boolean model. This new model formalizes the config-
uration of independent randomly placed events with independent durations. We
will derive some probabilistic properties of the proposed model and consider the
estimation of some characteristics such as the mean number and life-time of the
germs from a time-lapse image sequence.

1.1 Biological background and motivation

Every cell must eat, and it must communicate with the world around it. In a
procaryotic cell, all the eating and communicating takes place across the plasma
membrane. The biosynthetic-secretory pathway allows the cell to modify the
molecules it produces in a series of steps, store them until needed, and then
deliver them to the exterior through a specific cell-surface domain by a process
called exocytosis. The complementary process, the endocytosis, allows the cell to
take up molecules and deliver them inside the cell. In this process, the material to
be ingested is progressively enclosed by a small portion of the plasma membrane,
which first invaginates and then pinches off to form an endocytic vesicle containing
the ingested substance or particle.

Vesicle recycling through exocytosis and endocytosis is mediated by a coordi-
nated cascade of protein-protein interactions. Here, exocytosis and endocytosis
are studied separately so that the coupling between them is understood only indi-
rectly. Other studies have focused on the coupling of these processes by observing
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1. INTRODUCTION

secretory vesicle markers and the endocytotic vesicle marker tagged with green
and red fluorescent proteins under an evanescent wave microscope. Nonetheless,
this is not the aim of this work.

1.1.1 Exocytosis

Golgi-derived vesicles travel along cytoskeletal elements toward the plasma mem-
brane where they encounter their docking and fusion sites and undergo the process
of exocytosis. In the so called constitutive secretory pathway, membrane protein
and lipids are continuously delivered to the cell surface while some proteins are
excreted into the extracellular space (44). Specialized secretory cells also have a
regulated exocytosis pathway, where an extracellular signal is required to induce
secretion of specific proteins such as neurotransmitters (2), (3) (see Fig. 1.1). In
the present study we focus on the constitutive secretory pathway which is impor-
tant in the delivery of membrane lipids and proteins to the cell surface. These
molecules are implicated in numerous cellular processes including signaling, ad-
hesion, migration, and differentiation. This pathway is therefore fundamental
for cell function throughout the lifetime of every cell. Not surprisingly, distur-
bances of exocytosis characterize a variety of human disorders such as diabetes,
hypertension and several neurological diseases.

TIRFM has been recently applied (31), showing the existence of preferred
sites for exocytosis, but it was a marginal study and no joint information of
space and time was considered and analyzed. In posterior papers (58), new
environmental factors related with the exocytosis, such as the role of microtubules
were taken into account, leading to new hypotheses where some kind of vesicles
are transported away from the Golgi via microtubules, so that colocalization of
fusion sites is expected. These hypotheses were corroborated in (57) where it
was concluded that microtubules are necessary for the domain-specific fusion of
Post-Golgi vesicles with the plasma membrane.

Questions that still remain open are,

1. Does the rate of exocytosis vary over time?

2. Is there any mechanism encouraging exocytosis waves?

3. Are exocytosis clustered spatially and temporally?

In the literature there are studies based on either patch clamp capacitance and
amperometric techniques or total internal reflection microscopy, but the informa-
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1.1 Biological background and motivation

Figure 1.1: Constitutive and regulated secretory pathways in cells.

tion of locations and times of occurrence of exocytosis has never been analyzed
together (70), (32), (12),(27).

1.1.2 Endocytosis

Endocytosis is the process by which cells carry traffic from the plasma membrane
into various intracellular compartments. Among the different endocytic routes,
clathrin-mediated endocytosis has been more extensively characterized, and op-
erates in many important cellular processes. The life cycle of a clathrin-coated
vesicle, illustrated in Fig. 1.2, involves a sequence of regulated events: a) Cargo
loading, where cargo molecules bind to receptors on the plasma membrane; b)
Coat assembly, where a molecular lattice of clathrin molecules ensheathes a por-
tion of the plasma membrane containing the cargo-receptor complex; c) Vesicle
budding, followed by its pinching-off from the plasma membrane; d) Internaliza-
tion and coat disassembly; e) Intracellular trafficking of the endocytosed vesicle.
Many of these steps have traditionally been inferred from biochemical and cell
structural studies (8).

The process of endocytosis has been recently observed in living cells, due to
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1. INTRODUCTION

Figure 1.2: Sequential stages in clathrin-mediated endocytosis.

the use of fluorescent molecules conjugated to endocytic proteins, as well as the
application of specialized microscopy techniques, such as Total Internal Reflection
Fluorescence Microscopy (TIRFM).

Multiple proteins mediate this complex process. For instance, the GTPase
dynamin has emerged as a crucial mediator of the endocytosis of clathrin-coated
vesicles. Dynamin surrounds the neck of clathrin-coated vesicles, and hydrolyzes
GTP, resulting in the fission of the vesicle. The precise mechanism of this release
is still being debated. Dynamin may directly ”pinch”, or ”pop”, the vesicle
from the plasma membrane, due to a conformational change resulting from the
hydrolysis of GTP. Alternatively, dynamin may recruit additional factors which,
in turn, operate the fission step (63). It has been reported that a sudden burst
of dynamin associated with the coated pit precedes the budding and disassembly
of the vesicle (19; 37). An image provided by a microscope is shown in Fig. 1.3
(a). The contour of the cell plasma membrane has been delineated in order to
define the region of interest for posterior image processing. Fig. 1.3 (b) displays
a zoom of the middle bottom part of the cell. The regions with high fluorescence
have been delineated in white color. Each connected component may comprise
one or an unknown number of very close and overlapped clathrin-coated vesicles.

In a similar way, clathrin has also been studied in order to characterize the
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1.1 Biological background and motivation

(a) (b)

Figure 1.3: Dynamin spots when viewed under TIR-FM.

endocytosis. Viewed by TIRFM, the assembly of fluorescently-labeled clathrin
molecules at a site of ongoing endocytosis results in the appearance and steady
growth of a diffraction-limited spot. The time which elapses between the ap-
pearance and the disappearance of a fluorescent clathrin spot is defined as the
duration, or lifetime, of a discrete endocytic event (19). An image of a cell ex-
pressing clathrin fluorescent protein provided by TIRFM is shown in Fig. 1.4 (a).
Fig. 1.4 (b) shows several sub-images of an endocytic event (highlighted with a
circular mark) which appears (birth) at time 20 seconds and disappears (death)
at time 130 seconds. Fig. 1.4 (c) plots the brightness profile as a function of time
of this endocytic spot. Fig. 1.4 (f) displays the segmented endocytic spots after
image processing. The different areas of fluorescence overlap with each other
and vary in size and shape, forming relatively large and irregular regions with
high fluorescence. From now on, these regions will be called clumps (as usual in
Stochastic Geometry)

From a biological point of view, it is key to characterize endocytic spots
by estimating parameters which allow us to know more about the underlying
phenomenon of endocytosis, such as the number of endocytic spots per unit area,
its mean size (perimeter or area) or its mean duration. An endocytic spot is
defined as the associated area of the minimum cluster of fluorescent clathrin
molecules that can be detected. It can vary in size and shape due to many
factors, including: the intrinsic variability in the size of vesicles, the reversibility
of the process, and the instrumental noise. The fluorescent areas viewed through
the microscope overlap between them forming relative large and irregular regions
with high fluorescence, as shown in Fig. 1.3 and 1.4. As the vesicles are smaller
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1. INTRODUCTION

Figure 1.4: Clathrin spots when viewed under TIRFM.

than the spatial resolution limit of the microscope, the apparent size of a single
vesicle is given by its point-spread function. Where two or more vesicles overlap,
we can see objects of irregular morphology in the image, i.e., the clumps (See
Fig. 1.3 (b)).

The natural question that arises to the experimenter when analyzing this type
of images is: how many endocytic spots are in a given image, especially when
they overlap in specific regions? Classical techniques based on segmentation and
labelling of the connected components would lead to an underestimation of the
number of vesicles. It is a common practice in the endocytosis literature to use
shape and size criteria from consecutive frames of a time-lapse movie, in order
to select the clumps that are presumably composed by a single endocytic vesicle.
The result is a binary image composed almost solely by these isolated endocytic
areas (19). The main drawback to this approach is concerning with the selection
procedure. Given a frame, the endocytic spots corresponding to larger vesicles
will have a greater probability of belonging to a non-isolated endocytic spot,
i.e., a greater probability to touch other endocytic spots. Obviously, if only the
isolated endocytic spots are used to study the phenomenon then a biased sample is
considered (one that includes smaller vesicles with higher probability) producing
biased estimators, such as the mean number per unit area, or the size of a single
endocytic spot (area or perimeter).
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1.2 Stochastic Geometry

1.1.3 Total Internal Reflection Fluorescence Microscopy

Evanescence wave microscopy, also termed total internal reflection fluorescence
microscopy (TIRFM), has shed new light on important cellular processes taking
place near the plasma membrane. In this way, we can enable the direct observa-
tion of membrane fusion vesicles and the movement of single molecules (69). The
optical phenomenon of TIR can be observed in everyday life, from fibre optics to
sparkling diamonds. The principle based on Snell’s law and shown in Fig. 1.5 is
as follows: if light travelling in a dense medium strike a less dense medium be-
yond a certain ’critical angle’ θc, the light then undergo Total Internal Reflection,
TIR. Cells are grown on glass coverslip or transparent materials of high refrac-
tive index, and a beam of light, usually from a laser, is optically coupled into the
cover slip by a prism or the objective itself. If the light approaches the aqueous
medium at greater angle than θc, it totally reflects into the glass; however, if the
light ’rays’ simply bounced off the interface like a mirror, this would never illumi-
nate the cell. An important property of the evanescent wave is that intensity falls
off exponentially away from the coverslip. Penetration depths lesser than 100nm
are easily achieved. Electronic Microscopy (EM) has high spatial resolution, but
only gives snapshots of the process, by contrast TIR-FM offers a compromise in
that good spatial-temporal resolution can be achieved.

Figure 1.5: Snell’s Law.

1.2 Stochastic Geometry

Even though the exocytosis and the endocytosis are closely related, their behavior
from a statistical point of view is intrinsically different in nature. Exocytosis can
be seen as events happening instantaneously in a specific region of the cell, while
endocytosis are part of a long process in which events cannot be differentiate
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1. INTRODUCTION

easily from one another, but as a clump of overlapped events. Here we model
both types of events using different statistical tools due to either, the source of
biological data is physically different and the data that are obtained are also
different.

1.2.1 Point Processes to study exocytosis

The concept of random spatial structure is complex, because it refers to both
the vertical and horizontal use of space by the elements inside the cell. Each
exocytosis is observed at a given location and at a given time. Then, we propose
the use of the Point Processes theory to analyze the data obtained after image
processing of videos of cells showing exocytosis.

A spatial point process is a random mechanism producing locally sets of points
in the plane. Let zi : i = 1, 2, 3, . . . denote the points of a realization in R2, a
point pattern. We call zi, the events (fusion events) of the process in R2. The
use of the term ’event’ has become standard in spatial point process analysis as
a means of distinguishing the location of an observation from any other arbitrary
location within the study region. Two important characteristics of a spatial point
pattern are stationarity and isotropy, that are directly related with the invariance
under spatial shifts and rotation.

Invariance under spatial shifts means that a similar pattern of exocytosis
events would have been observed although another view of the cell had been
acquired. Invariance under temporal shifts means that the structure of the process
has to be unaffected by shifting over the time axis i.e. a similar pattern of
exocytosis would have been observed over different periods of time.

The first-order intensity measures the uniformity of the pattern, i.e., the way
in which the expected value (mean or average) of the process varies across space.
It is given by

λ(s) = lim
ν2(ds)→0

E[N(ds)]
ν2(ds)

, (1.1)

where ds is an infinitesimal disk at location s with area ν2(ds), E[·] is the expec-
tation operator and N(ds) denotes the number of events in the disk.

The second-order intensity is a measure of the dependency structure of the
events in a region A, i.e., the covariance (or correlation) between values of the
process at different regions in space. It is given by,
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1.2 Stochastic Geometry

λ2(si, sj) = lim
ν2(dsi),ν2(dsj)→0

E[N(dsi)N(dsj)]
ν2(dsi)ν2(dsj)

. (1.2)

As we pointed out, a point process is stationary if the process is location
invariant. This is equivalent to saying λ(s) = λ so that the expected number of
events at an arbitrary location s is constant for all s ∈ A; and λ2(si, sj) = λ2(h)
so that dependence between events depends only on the difference h = si − sj ,
(direction and distance), between si and sj and not on their absolute locations.

Let A be any planar region (the cell membrane), we call ν2(A) the area of A,
and N(A) the number of events in A. We associate to the i-th event or exocytosis
a pair (zi, ti) where zi is the location and ti the time associated. Much of the
theory of spatio-temporal point processes carries over from that of spatial point
processes. However, the temporal aspect enables a natural ordering of the points
that does not generally exist for spatial processes (59).

A spatio-temporal point process Φ is defined as a a random mechanism pro-
ducing points in the space at different times.

From now on, the spatio-temporal points (zi, ti)’s will be called events. These
events are thought to be indistinguishable, other than by their times and loca-
tions. Our data set is the whole sequence of fusion events {(zi, ti) : i = 1, . . . , n}
observed for each cell. We will assume that (zi, ti) ∈ W × [0, T ], being W the
plasma membrane and [0, T ] the time duration of the recorded sequence, hence
we are restricted to a specific time interval. In our sequences this time interval
corresponds to approximately five minutes. These data are considered as real-
izations of a spatio-temporal point process, Φ, in such a way that Φ(A × B) is
the number of points (in our case, number of exocytosis) in the rectangle A×B
with A a Borel subset of R2, the 2D Euclidean space, and B a Borel subset of
[0,+∞), the time axis.

The probability distribution of Φ is given by

P(Φ(A×B) = k), (1.3)

for k = 0, 1, 2, . . . , i.e., the probability of finding k points in the planar region
A which belong to the set B. The intensity of the point process Φ is a function
λ(s, t) such that

EΦ(A×B) =
∫

B

∫
A
λ(s, t)dsdt, (1.4)

where E(·) denotes the mean of the random variable, in our case, the number of
observed exocytosis in A × B. Intuitively, if ds is a small region centered at s
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with area ν2(ds) and dt is a small time interval centered at t with length ν1(dt),
then λ(s, t)ν2(ds)ν1(dt) is the probability of an event observed at (s, t).

Φ is called stationary if all properties of the process are invariant under shifts
of A and B. More formally, Φ is stationary if

P(Φ(A×B) = k) = P(Φ((A+ h)× (B + t)) = k), (1.5)

where h ∈ R2, t ≥ 0 and A+ h = {a+ h : a ∈ A}.

If Φ is stationary Eq. (1.4) becomes,

EΦ(A×B) = λν2(A)ν1(B), (1.6)

where ν2(A) is the area of A and ν1(B) is the length of B. We have that the
function λ(s, t) is constant i.e. λ(s, t) = λ, where λ is the mean number of events
per unit area and unit time.

Edge effect arises in spatial point pattern analysis when, as is often the case in
practice, the region A on which the pattern is observed is part of a larger region
on which the underlying process operates. That problem arises in our framework
since the microscope only gives us one of the cell sides. The essential difficult is
that unobserved events outside A may interact with observe events within A but,
precisely because the events in question are not observed, it is difficult to take
proper account on this.

There are several ways to avoid the edge effects. We have applied the adjust-
ment method described in (14). The adjustment method operates by making an
’on average’ adjustment for unobserved events outside A. Hence, if we count the
number of exocytosis events observed inside W (plasma membrane), n say, within
distance d of a location x, and a(d) denotes the area of intersection between A
and a disc of radius d centered on the location x, then a sensible estimate of the
actual number of events within distance d of x is nπd2/a(d).

It is natural to consider separately the locations of fusion events and times
in such a way that we will have the marginal point patterns given by Φ1(A) =
Φ(A× [0, T ]), i.e., the set of locations corresponding to the whole period of time
considered [0, T ]. Similarly, the second marginal point pattern is composed by
the times {ti}i=1,...,n without any consideration about the locations, i.e., Φ2(B) =
Φ(W ×B). If Φ1 is (spatially) stationary then EΦ(A) = λ1ν2(A), with λ1 being
the mean number of events per unit area. If Φ2 is (temporally) stationary then
EΦ2(B) = λ2ν2(B) where λ2 is the mean number of events per unit time.

In some applications as Geography, it is common the use of regular grids of
quadrats on the event distribution in order to obtain the kernel estimation. In-
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stead, we could form a count of events per unit area within a moving quadrat or
’window’. We define a window of fixed size and imagine centering this on a num-
ber of locations in turn, where these are arranged in a fine grid superimposed over
A. We thus obtain estimates of the intensity at each grid point. This produces a
more spatially ’smooth’ estimate of variation in λ(s) than we can obtain by using
a fixed grid of quadrats. However, in each of the intensity estimates, no account
is taken of the relative location of events within the window and the choice of
a suitable window size is not clear. Kernel estimation is a generalization of this
idea, where the window is replaced with a moving three-dimensional function
(the kernel) which weights events within its sphere of influence according to their
distance from the point at which the intensity is being estimated. The method is
commonly used in a more general statistical context to obtain smooth estimates
of univariate (or multivariate) probability densities from an observed sample of
observations.

Fig. 1.6 shows a kernel estimation where color is proportional to the intensity
function value, from small values (green) to higher values (yellow, orange and
white).

Formally, if s represents a location within A, and s1,..., sn are the locations
of n observed events, then the intensity λ(s) at s can be estimated as

λ̂τ (s) =
n∑

i=1

1
τ2
k

(
s− si

τ

)
(1.7)

where k(·) represents the kernel weighting function which, for convenience, is
expressed in standardized form, i.e., centered at the origin and having a total
volume of one under the curve. This is then centered on s and ’stretched’ accord-
ing to the parameter τ > 0, which is referred to as the bandwidth. The value
of τ is chosen to provide the required degree of smoothing in the estimate. The
kernel estimate λ̂τ (s) is intended to be sensitive to the choice of bandwidth, τ .
As this is increased, there is more smoothing of the spatial variation in intensity;
as it is reduced we obtain an increasingly spiky estimate.

Kernel estimation is considered a good exploratory tool for first-order prop-
erties of a point pattern and has been widely used in many context (24). One of
the most commonly used kernels is the so-called quartic kernel defined as,

λ̂τ (s) =
∑
di≤τ

3
πτ2

(
1− di

2

τ2

)2

(1.8)

where di is the distance between the point s and the observed event location si,
and the summation is only over values of di which do not exceed τ . The region

13



1. INTRODUCTION

(a)

(b)

Figure 1.6: Kernel estimation of a point pattern. Events correspond to
exocytosis observed at any time.
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of influence within which observed events contribute to λ̂τ (s) is therefore a circle
of radius τ centered on s.

A good reference about statistical analysis of spatial point processes is (14)
and in the real line (10),(9).

1.2.2 Random Closed Sets to study endocytosis

Until the 1970s random sets were only a marginal or exotic part of probability
theory. Most papers written mainly by non-mathematicians and widely scattered
in the literature, introduced particular models of random sets and some formulae
were derived that today are considered as fundamental. This was done without
rigorous theoretical base. Nonetheless, the situation changed completely in 1975
when G. Matheron published his fundamental and seminal book (? ? ). This
book has laid the fundamentals of the theory of random closed sets, provided
the suitable measure-theoretic machinery and offered the fundamental theorems.
Many mathematicians and statisticians have thus been encouraged to study prob-
lems of random sets. Various successful applications have led to systematization,
simplification, commonness and experience.

First, some basic notation needs to be introduced. If A denotes a Borel subset
R2 then ν2(A) and U(A) will denote the area and perimeter respectively of the
set A. A⊕B = {a+b : a ∈ A, b ∈ B} is the Minkowski addition of the sets A and
B. Finally, Ǎ = {−a : a ∈ A} is the symmetric of A with respect to the origin.

Let F be the class of closed subsets in the Euclidean space R and σf the σ-
algebra generated by the sets FK = {F ∈ F : F ∩K 6= ∅} where K is a compact
subset of R2. If P denotes a probability measure in (F, σf ), then (F, σf ,P) is a
random closed set. Let Φ be a random closed set, i.e. a random element of this
probability space. The definition is given in such a way that {Φ ∩ K 6= ∅} is
a random event, i.e. a given compact subset K touches the random closed set.
In fact, the following function characterizes the probability distribution of the
random set Φ,

T (K) = P(Φ ∩K 6= ∅) with K any compact subset. (1.9)

This set function is known as the capacity functional of Φ.

The Boolean model (also known as the Poisson germ-grain model) is an im-
portant and simple type of random closed set. Roughly, a Boolean model could
be described as a set of scattered points in the plane, following a stationary Pois-
son process distribution of intensity λ, where a random shape is placed on every
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point. The union of all of these discs is a Boolean model. In this framework,
the points of the Poisson process are the germs of the model while the discs are
the primary grains. A particular realization of a Boolean model is shown in
Fig. 1.7. The heuristic notion of a clump can be described mathematically as the
Boolean model.For the foundation of the theory of random closed sets the reader
is referred to (36).

Figure 1.7: Example of a Boolean model. Germs appear as xi while primary
grains are Ξi.

More formally, let Ψ = {x1, x2, . . .} be a stationary Poisson point process in
R2 of intensity λ. Let Ξ1,Ξ2, . . . be a sequence of independent and identically
distributed (as Ξ0) random compact sets in R2 that are independent from the
Poisson process Ψ such that Eν2(Ξ0 ⊕ Ǩ) < +∞ for all compact set K. The
Boolean model is the random set defined as

Φ = ∪∞n=1(Ξn + xn). (1.10)

The random set Ξ0 is called the primary grain. As it was previously men-
tioned, the distribution of Φ is characterized by the capacity functional. This
capacity functional for a Boolean model is given by

T (K) = 1− exp{−λEν2(Ξ0 ⊕ Ǩ)}. (1.11)

Typical possibilities for the primary grains include: discs of random radius,
random polygons, segments of random length and orientation. If primary grains
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are convex then classical averages of various numerical measures of convex sets
play an important part in the theory.

The Boolean model has an important value in the description of given samples
and situations in nature. First, a relatively parsimonious description is available
for the random set in question, by means of the intensity λ of the germs pro-
cess and the various characteristics of the grains. Second, it is at least possible
that the model assumptions may be suggestive of the process of formation of
the structure. We will take advantage of this characteristic to develop further
methods in Chapter 4 and Chapter 5. Finally, the formulae to be derived for the
Boolean model may be used for estimations of quantities not available for direct
measurements.

If we assume that the underlaying point process producing the germs of the
Boolean model follows a stationary Poisson process, then the resulting Boolean
model is also considered to be stationary. Moreover, if the primary grains have
isotropic distribution then the Boolean model is also isotropic in distribution.

Among the basic characteristics of the Boolean model, the volume fraction is
of special importance. It measures the mean fraction of volume occupied by Ξ in
a region of unit area,

p = E(ν2(Ξ⊕B)), Ξ(B) = 1. (1.12)

As p does not depend on the choice of the region B when Ξ is stationary, we can
rewrite Eq. (1.12),

p = P (0 ∈ Ξ). (1.13)

Finally, putting K = 0 it is seen that

P (0 ∈ Ξ) = 1− exp{−λE(ν2(Ξ0))} (1.14)

1.3 Outline of the thesis

In Chapter 2 a methodology to study different kinds of dependence of a natural
stochastic process happening in cells, called exocytosis, is presented. In particu-
lar, we test the existence of spatial, temporal and spatial temporal dependence
among the events of the process in the context of point processes. Chapter 3 is
devoted to the study of the counter process, called endocytosis. Boolean models
are used to model the endocytosis observed on the plasma membrane of cells, and
several measures are estimated which allows us to better characterize the pro-
cess. Chapter 4 elaborates on the concepts of the previous chapter to extend the
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classical Boolean model to the temporal dimension. This explicit consideration
of time allows us to propose new estimators for this spatial temporal stochastic
process and to apply them to study the endocytosis process. In Chapter 5 a
different method, based on the aggregation of Boolean models, is developed to
obtain temporal estimates of a Boolean model in the spatial temporal dimension.
This methodology, though different, is based on some of concepts described in
Chapter 4. Finally, Chapter 6 gathers the conclusions of the study carried out
and presents the future work.
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Chapter 2

Spatio-temporal Analysis of

Constitutive Exocytosis in

Epithelial Cells

2.1 Introduction

Earlier studies suggested that constitutive exocytic fusions sites were randomly
distributed in space (56), while other works indicated spatial ’hot spots’ for ex-
ocytosis (31). As vesicles are transported away from the Golgi via microtubules
(68) and have been observed to colocalize near fusion sites, it is possible that
cytoskeleton may in part function to specify a domain-specific fusion site (58).
Importantly, formal tests were not used to validate biological hypotheses, but
rather largely relied on the visual inspection or limited statistical analysis. An
in-depth study of the spatio-temporal behavior of exocytosis is lacking and es-
sential for determining if such a correlation exists. Although temporal coupling
is well-known from regulated pathway, and in fact defines it, a wide-open ques-
tion is if similar mechanisms function in constitutive pathways; e.g. with lower
constraints. One questions is: Why might this be feasible? Literature states
(2) that, a key regulator in regulated fusion is the elevation of cytoplasmic cal-
cium. When its concentration is raised it will trigger the release of many primed
vesicles, albeit to different extents in various cell types. However, it is worth to
study if spatial and temporal coupling exists in constitutive pathways. Hypo-
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thetically, a local elevation of calcium could increase the probability that vesicles
in the vicinity are released. Of course, as by definition this constitutive pathway
occurs to some extent all the time (e.g. it is not tightly regulated), without the
direct imaging of putative spatio-temporal coupling, as has been done here, this
biologically relevant issue would be virtually impossible to address.

Electrophysiological studies of exocytosis, while having a high temporal res-
olution that have revealed multiple vesicle pools, provide practically no spatial
information. In contrast, confocal microscopy has been used to examine the ki-
netics of constitutive secretion (28); although arguably fast processes and single
vesicle behaviors can be missed.

TIRFM was used in the present study to obtain spatial and temporal data of
exocytosis and test our hypothesis of putative temporal, and/or spatio-temporal
coupling (it has been previously demonstrated that spatial coupling exists (31)).
To our knowledge no formal tests have been proposed in the biological field to
examine these complex data sets (70), (32), (12),(27), (69). The methods we
propose and validate here will provide new and better tools for testing biologi-
cal hypotheses of spatio-temporal interdependencies associated with membrane
trafficking and fusion.

In this study, we first considered the number of exocytosis events per unit
area and time for the different cells; i.e., the observed spatio-temporal intensities.
We then tested to see if a common spatio-temporal intensity could be assumed
by comparing rates between the observed counts and the spatio-temporal volume
by using generalized linear models (GLM) (1).

Secondly, the null hypothesis of a completely random spatial distribution of
events in the plasma membrane was tested. The rejection of this null hypoth-
esis will indicate if a more aggregated or regular distribution should be consid-
ered. Specifically, we can address whether the events are randomly distributed
or whether there is spatial coordination. While it was previously assumed to be
random, recent reports suggest that microtubules may play an important role in
positioning exocytic fusion sites (56). Such putative connections can be essential
for, as a cell migrates, exocytosis can be spatially repositioned to the leading edge
(56). Understanding this process is also essential in diseases such as cancer where
one needs to elucidate the cellular mechanisms that alter cell migration during
metastasis. Clearly, if the cell already has a means of restricting spatial deliv-
ery, this need only be repositioned during migration rather than a new molecular
machine being created. In order to examine the spatial arrangement of fusions
the K-function, the empty space function F-function and the nearest neighbor
function G-function were used (14).
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Thirdly, we examined whether the times of occurrence are uniformly and
independently distributed (i.e. if they can be considered realizations of a one
dimensional temporal Poisson point process) or exhibit some degree of cluster-
ing; the latter would imply that there is an underlying mechanism that causes
waves of exocytosis. We note that we would expect a constant rate of exocytosis
over times of our GFP tagged temperature sensitive marker, vesicular stomatitis
virus glycoproteins (VSVG-GFP) (see Appendix A.2 for details), which is re-
leased as a wave from the endoplasmic reticulum and eventually exocytosis at
the plasma membrane; however, it should have a single ’hump’ unless some part
of the biological process is rate limiting (as our new data suggests).

Lastly, we examined if there is a dependence between the spatial locations and
the times of the fusion events. The null hypothesis tested whether the random
mechanisms producing the locations and the times are independent. In this case,
the alternative hypothesis was the spatio-temporal clustering, where the fusions
which are close in spatial position also occur close in time. This hypothesis
was tested by using a temporal extension of the K-function. Monte Carlo tests
enabled us to test all the null hypotheses previously mentioned.

The results that we present here offer direct and quantitative evidence that
in constitutive exocytosis the spatial and temporal processes are not linked, but
that we do see a surprising and novel temporal coupling of this process with
exocytosis events distributed in a double ’humped’ camel shaped pattern.

In order to test these null hypotheses we need a stochastic model of these
complex data. Each exocytosis is observed at a given location and at a given time.
Our primary information is the set of spatial locations marked with the occurrence
times (or the occurrence times marked with the locations). An example of a
spatio-temporal point pattern of fusions observed can be seen in Fig. 2.1. Dots
represent the locations of fusions and colors represent the time of occurrence. The
colorbar represents the time axis, from 0 sec (dark blue) to end time (dark red).
See supplementary material Videos 2.1 and 2.2 (more details in appendix C). A
set of temporally referenced points is called a spatio-temporal point pattern. A
spatio-temporal point process is a random mechanism producing a set of points in
the plane or in a bounded subset of the plane (as the cell membrane) at random
times.

Section 2.2 is devoted to the experimental setup used to obtain the image
sequences and the image processing algorithm used to detect fusions. Section 2.3
describes the statistical analysis of the spatio-temporal point patterns observed
for three cells. Firstly, counts of fusions per unit area and unit frame are compared
among cells in Section 2.3.1; Secondly, the locations (without times) are analyzed
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Figure 2.1: Spatio-temporal point pattern of fusions observed for one
cell.

in Section 2.3.2; Thirdly, the times (without locations) are analyzed in Section
2.3.3 and finally, the spatio-temporal clustering is studied in Section 2.3.4. In
Section 2.4 the results obtained are discussed and conclusions are given.

2.2 Material and methods

2.2.1 Image processing

Exocytosis is characterized by a unique signature when it is imaged by TIRFM
(69). Firstly, the brightness of a small, spatially localized region in the image in-
creases as the dye spreads symmetrically from the center of the vesicle, the bright
area grows and the intensity decreases until complete disappearance. That behav-
ior is illustrated in Fig. 2.2 (a). Exocytosis appears as symmetric and round bells,
when the grey level image is represented as a function in a 2D space. A fluores-
cent vesicle is shown before, during and after fusion. As it enters the evanescent
field and approaches the lower membrane it becomes exponentially brighter (see
3D intensity profile). Upon membrane fusion, the brightness of a small, spatially
localized region increases. Later, as the dye continues to spread, the diameter of
the bright area grows, yet its intensity diminishes. This ”flash” follows a charac-
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teristic spatio-temporal signature. See supplementary material videos 2.3 and 2.4
(more details in appendix C). Fig. 2.2 (b) shows a grey-level intensity profile as
a function of time. Three temporal phases can be distinguished: stationary, rise
and spread phases. During the stationary phase, the total intensity was constant
corresponding to docked vesicles. During the rise phase the total intensity rises
rapidly. Finally, during the spread phase the total intensity decreases exponen-
tially, indicating that the cargo is diffusing in the plane of the plasma membrane
(for a transmembrane marker).

Figure 2.2: Example of a vesicle fusing with the membrane detected by
TIRFM.

In general, four kinds of objects can be observed in the images: exocytotic
events (fusions), lateral moving vesicles, emerging vesicles and static vesicles (see
Table 2.1) (56), (31). Fusions can be distinguished from moving, emerging or
static vesicles by taking into account that the subtraction of two consecutive
images of the sequence is not null, that their grey level intensity spreads sym-
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metrically and that their grey level intensity decreases over time. Taking heed of
this behavior, the following algorithm was designed.

Table 2.1: Type of objects and its behaviors

Object Image difference Symmetry Intensity decrease

Exocytotic events not null yes yes

moving vesicles not null no yes

emerging vesicles not null yes no

static vesicles null yes no

Step 1: Temporal subtraction. Forward image subtraction of consecutive
frames allows the detection of regions whose pixel brightness have changed
(25). See Fig. 2.3 (a).

Step 2: Thresholding the subtracted image. After temporal subtraction
of consecutive frames, only those points where the changes in intensity are
higher than a given threshold Th are considered as fusion candidates. Th

was set to 15. See Fig. 2.3 (b).

S(x, y, n) =
{

1 |It+1(x, y)− (It(x, y)| > Th
0 otherwise

(2.1)

Step 3: Area opening. An area opening transform, γAmin (65), is applied to
the thresholded image. All the connected components with a surface area
(pixel count) less than a certain threshold Amin are removed. Amin was set
to 20. See Fig. 2.3 (c).

γAmin =
∨
i

{γBi |Bi is connected and |Bi| = Amin}. (2.2)

The value of Amin can change from one image sequence to another, so this
a tuning parameter.

Step 4: Top-Hat and Regional maxima. A Top-Hat operator was applied
to the original grey level image and regional maxima of the Top-Hat image
were calculated to obtain the centers of fusions. A disk of radius of 10 pixels
was used as the structuring element. See Fig. 2.3 (d).
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Step 5: Image reconstruction. Maxima obtained in Step 4 were used as
seeds to reconstruct the area opened image obtained in Step 3. In this
way, we could discriminate between fusions and moving vesicles (61), (54).
If an object in the opened image had corresponded to a moving vesicle,
then its center would have been slightly displaced with respect to its corre-
sponding difference image, and therefore it would not have appeared in the
reconstructed image. See Fig. 2.3 (e).

Step 6: Fusion recognition by quantifying intensity decrement and
symmetry. So far, we have discarded moving vesicles and static vesicles. In
order to reject emerging vesicles, vesicles that suddenly appear in the image,
we use the intensity profile. Emerging vesicles exhibit a constant intensity
profile through time, whereas fusions undergo an intensity decrement, as
shown in Fig. 2.2 (b). The brightness in the neighborhood of the fusion
could be fit to a symmetric 2-dimensional Gaussian kernel centered at the
point y where the fusion appears by using

I(x) =
1

2π|Σ|
1
2

exp (x− y)tΣ−1(x− y). (2.3)

The total intensity of the fusion located at y is defined as the integral of
the function I + Ibg in the circle centered at y with radius 8, where I is
defined in Eq. (2.3) and Ibg is the mean intensity of the background. The
background intensity is calculated as in (73). Note that a circular Gaussian
kernel has been used, i.e. Σ = σ2I2×2 where I2×2 is the identity matrix.

The output of the algorithm is the location and time of occurrence for each
fusion. The performance of the algorithm has been tested by comparing the
fusions detected with those observed manually in the three cells analyzed. The
method detects on average 86.2 out of 100 true fusions. The specificity was on
average 65 out of 100. In this study an automatically detection has been applied
which was afterwards manually revised.

2.2.2 Material description

For the image analysis three different video sequences infected with a marker
called V SV G − SP − Y FP were used. Table 2.2 gives a summary of the im-
age sequences. The size is measured in pixels, being a pixel 180 nm, and time
is measured in frames. Each one of the cells was recorded and stored as a dif-
ferent video. Images were acquired at 2 frames per second. Summary on table
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(a) Forward subtraction (b) Thresholded image (c) Area opening

(d) Top-Hat image (e) Regional maxima (f) Image reconstruction

Figure 2.3: Different steps of the detection algorithm.

2.2 describes the cell number, which is used throughout the study, the kind of
fluorescence marker used to image the fusion, the size in pixels of the images,
the area of the cell, and finally in the column T , the number of frames for each
sequence.

Table 2.2: Description of the image sequences

Cell Marker Size ν2(W ) T

Cell 1 (VSVG3-SP-YFP) 409× 334 74276 750

Cell 2 (VSVG3-SP-YFP) 407× 320 71151 500

Cell 3 (VSVG3-SP-YFP) 455× 608 117003 300

2.2.3 Statistical analysis

First, let us describe the data obtained by using the image processing algorithm.
We observe, for every cell, different exocytosis (events) occurring in the plasma
membrane. In our analysis, each event or exocytosis is defined by its location
(where it is observed) and its occurrence time (when it is observed). Let xi be
the location of the i-th fusion and ti its occurrence time. Let W denote the
plasma membrane observed. Each image sequence lasts from an initial time 0

26



2.2 Material and methods

to a final time T (approximately five minutes in our cells). If n exocytosis are
observed at the plasma membrane W during the time interval [0, T ], our data are
then the set φ = {(xi, ti)}i=1,...,n, a spatio-temporal point pattern. The different
spatio-temporal point patterns associated to each cell are analyzed in Section
2.3.4.

If only the locations xi’s are considered then we have a spatial point pattern
defined over the plasma membrane. If we focus only on the observation times ti’s,
we are then concerned with a temporal point pattern. These two point patterns
are called the marginal point patterns and are analyzed in Sections 2.3.2 and
2.3.3, respectively.

As was mentioned in Section 2.1, the hypotheses to be tested are: first, if
only the spatial locations {xi}i=1,...,n, are considered, is there some kind of spatial
clustering? Second, if only the times {ti}i=1,...,n, are analyzed, is there temporal
clustering? Finally, is there spatio-temporal clustering? To answer these ques-
tions, we need a probabilistic model in order to formulate and test these biological
hypotheses formally. In Section 2.3.4 the spatial and temporal information are
jointly considered and analyzed.

A spatial point pattern is considered as the outcome or realization of a spatial
point process, i.e. a random mechanism producing points in the space. The set of
times is a realization of a point process in the one-dimensional Euclidean space.
Finally, a spatio-temporal point pattern is a realization of a spatial point process,
in which points in the space are marked with random times (14), (9), (24).

Let Φ denote a spatial point process then, for a subset A of the 2D Euclidean
space R2, N(A) will denote the number of events (fusions) of the point process
in A. For a spatial point process, the intensity function is defined as

λ(s) = lim
ν2(ds)→0

Φ(ds)
ν2(ds)

, (2.4)

where ds is a small region centered at point s with area ν2(ds), i.e. λ(s)ν2(ds) is
the probability that one exocytosis would be observed at s. If we assume that the
spatial point process is stationary, its probability distribution is invariant against
shifts, i.e. a similar pattern of exocytosis events would have been observed if an-
other view of the cell had been acquired, thus the intensity function is constantly
equal to λ and can be interpreted as the mean number of fusions per unit area.
Note that cells were not excited, therefore we expect the same behavior from the
cells every time whenever the cells were alive. In addition, the temporal window
was long enough, more than 5 min. In our opinion, it seems that to assume a
stationary spatiotemporal point process is reasonable.
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A good functional descriptor of spatial arrangement is the K-function defined
as

K(s) =
1
λ

E[number further events within distance s from an arbitrary event].

(2.5)

For aggregated patterns, each event is likely to be surrounded by further
fusions and, for small values of s, K(s) will be relatively large. In Fig. 2.4 (a)
the fusion locations of a whole image sequence are displayed and the plasma
membrane is delimited by a yellow line. Fig. 2.4 (b) illustrates the concept
of Empty space distances, which are the set of distances from every point of
a regular grid (white dots) to the nearest fusion (black dots). Another kind of
distance measurement, the nearest neighbor distance, is shown in Fig. 2.4 (c), and
comprises the set of distances from every fusion to the nearest fusion observed.
Finally, Fig. 2.4 (d) shows how to calculate the K-function. This function is
obtained by locating a disk or radius s over each fusion and counting the number
of further fusions (without the center) inside the disk. The count is done for
every fusion. If fusions are regularly spaced, each one is likely to be surrounded
by empty space and therefore, at small distances, K(s) will be relatively small.

The K-function can be estimated by means of the estimator proposed by
Ripley (14) given by

K̂(s) =
ν2(W )
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

wijI(dij ≤ s), (2.6)

where I(·) denotes the indicator function 1 if the comparison is true, and 0
otherwise. A weight wij is included because of the edge effects. Figs. 2.4 (e)
and (f) show an example in which edge effects are observed. Fig. 2.4 (e) shows
a hypothetical set of fusions observed on a 3D cell. The same fusions after cell
flattening are displayed in Fig. 2.4 (f). Then a border correction adjustment has
to be performed since the fusion count inside the disk with no border correction
would be two, i.e. two fusions would be missed.

The explanation is that for a given fusion within distance s of the boundary
of W (the part of the plasma membrane we observe through the microscope), the
observed count of other fusions within distance s necessarily excludes any fusions
which may have occurred within distance s but outside the observed W , since we
can only image one cell surface side. Naturally, TIRFM only reveal fusion events
on the lower side of the cell near the glass and any events that occur on the upper
side of the cell will be undetected. Several methods have been proposed to correct
this bias. The Ripley estimator has been used, where wij is the proportion of the
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area of the disk with center xi and radius dij = ν2(xi − xj) (Euclidean distance
between xi and xj) which lies within W .

Figure 2.4: Map of fusions along with explanation of F, G and K-
functions.

In addition to the K-function previously defined, two other usual functional
descriptors of spatial point patterns will be used. They are based on the measure
of different kinds of distances between points. First, the empty space distance E is
the distance from an arbitrary fixed point in the plasma membrane to the nearest
fusion. See Fig. 2.4 (b). Second, the nearest neighbor distance D is defined as the
distance from a fusion (a point of the point pattern) to the closest of the other
fusions (points of the pattern), that is, the closest neighbor. See Fig. 2.4 (c).
For a given point pattern, a set of distances (nearest neighbor or empty space
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distance) is summarized by means of their corresponding cumulative distribution
functions. G(s) = P (D ≤ s), is the cumulative distribution function of D and
can be estimated by,

Ĝ(s) =
#(di : di ≤ s)

n
, (2.7)

where n is the number of fusions, d1, . . . , dn are the nearest neighbor distances
observed from each fusion to its closest fusion and # stands for ’number of’, i.e.,
for each distance s, Ĝ(s) is the proportion of distances lesser than or equal to s.
For the empty space function, F(s) = P (E ≤ s) will be estimated by means of

F̂(s) =
#(di : di ≤ s)

m
, (2.8)

where d1, . . . , dm are the distances from the m points of a lattice to the nearest
fusion. These functions are estimated by using the point pattern observed for
each cell.

Let us now consider the spatio-temporal point process, i.e. random locations
marked with random times. If Φ denotes the spatio-temporal point process then,
as we introduced before in the spatial case, we can define the intensity as

λ(s, t) = lim
ν2(ds),dt→0

Φ(ds× dt)
ν2(ds)dt

, (2.9)

where Φ(ds×dt) is the number of events located in ds×dt, a small region centered
at s with area ν2(ds), and dt is a small time interval centered at t with length
dt. Note that λ(s, t)ν2(ds)dt could be interpreted as the probability of an event
observed at (s, t), i.e. at location s and at time t.

Φ is called stationary if all properties of the process are invariant under spatial
and temporal shifts. Since we are considering constitutive exocytosis on non-
polarized PtK2 cells and the temporal window is long enough (more than 5
min), the hypothesis of stationary spatio-temporal point process is tenable. If Φ
is stationary, then the function λ(s, t) is constant, i.e. λ(s, t) = λ, where λ can
be interpreted as the mean number of events per unit area and unit time.

We propose to describe the spatio-temporal point pattern of exocytosis ob-
served by using an extension to the temporal dimension of the K-function, which
is defined as

K(s, t) =
1
λ

E[# of further events within distance s

and time t of an arbitrary event].
(2.10)
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In order to test the null hypothesis of independency between times and loca-
tions of fusions, i.e. the existence of an underlying clustering mechanism which
may regulate the spatial and temporal behavior of exocytosis, we propose to use
function K(s, t). If the locations and times are independent then it holds,

K(s, t) = K1(s)K2(t), (2.11)

where, K1(s) is the marginal K-function corresponding to the spatial locations
for any event in the whole period of time considered [0, T ]; and K2(t) is the sec-
ond marginal K-function associated to the times {ti}i=1,...,n for any event located
within W . Let us denote the spatial and temporal intensities by λ1 and λ2, re-
spectively. We have the following relations between the spatio-temporal intensity
λ and the corresponding spatial and temporal intensities, λ1 = λT and λ2 =
λν2(W ).

Figure 2.5: Edge correction for the spatio-temporal K(s, t).

In this context the spatial K-function has to be re-interpreted as

K1(s) =
1
λ1

E[# of further events within distance s

and time t from an arbitrary event],
(2.12)

and the temporal K-function as

K2(t) =
1
λ2

E[# of further events in W within time t of an arbitrary event].

(2.13)
The estimator of K1(s) was already given in Eq. (2.12), so now we give the
estimators for the temporal and spatio-temporal K-functions. The temporal K-
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function is estimated by

K̂2(t) =
T

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

vijI(uij ≤ t), (2.14)

where uij = ν2(ti − tj) and vij= 1, if ti − uij > 0 and tij + uij < T , otherwise
vij=2. Finally, the estimator for the spatio-temporal K-function is

K̂(s, t) =
ν2(W )T
n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

wijI(dij ≤ s)vijI(uij ≤ t). (2.15)

The Ripley estimator was again used to correct the edge effects. The edge-
correction weights are defined by the proportion of the surface area of a cylinder
centered at dij , passing through uij , and inside the study region W ×T (See Fig.
2.5).

2.3 Results

2.3.1 Comparing the intensities of the different cells

The first question to be faced is the fact that we do not have a unique spatio-
temporal point pattern to be analyzed. We actually have three different point
pattern, each one corresponding to a different cell. We intend to evaluate if a
common spatio-temporal intensity can be assumed for the different cells analyzed.
Note that an analysis of variance (ANOVA) is not appropriate in this case. Three
rates (counts per unit area and unit time) have to be compared. The natural sta-
tistical framework for this problem is the generalized linear model. The question
to answer is: Can we consider that the observed sets of fusions for each cell are
realizations of a given point process with a common spatio-temporal intensity
(i.e with the number of events per unit area and time)? We assume this to be a
legitimate hypothesis since all cells were treated and analyzed in a similar way
in the same set of experiments.

We compared the spatio-temporal intensities estimated for the three cells.
The estimated intensity λi of the i-th cell is given by

λ̂i =
ni

ν2(Wi)Ti
, (2.16)
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where ni is the number of events observed, ν2(Wi) denotes the area of the plasma
membrane observed and Ti the total observation time. We have a different spatio-
temporal sampling window for every cell. Table 2.3 shows the areas of these
windows (second column); the observation times in seconds (third column); the
numbers of fusions observed, i.e. the counts (fourth column) and finally, the
fifth column gives the intensities estimated. Note that the intensities are rates
between the counts (the number of fusion events) and the product of the area
of the plasma membrane by the total time, i.e. the size of the spatio-temporal
sampling window, given in Eq. (2.16).

Table 2.3: Description of the point patterns observed
Cell ν2(W ) T No. events λ̂

Cell 1 74276 750 171 0.0000030
Cell 2 71151 500 260 0.0000073
Cell 3 117003 300 89 0.0000025

First, a probability distribution for the response has to be chosen for which a
negative binomial distribution was used. Second, a transformation of the mean of
the response variable has to be related as a linear combination of the independent
variable. In our case, the only independent variable was the experimental factor
indicating the cell in which the count was observed.

The mean of the i-th count µi is assumed to verify

log
(

µi

ν2(Wi)Ti

)
= α+

2∑
j=1

βjSj , (2.17)

where Sj with j = 1, 2 are the dummy variables indicating the corresponding cell.
Sj = 1 for the j-th cell for j = 1, 2. The third cell corresponds to S1 = S2 = 0.
The standard deviation was adjusted in such a way that the residual deviances
observed were completely acceptable, i.e. it was a suitable model.

Finally, the null hypothesis of a common intensity for the three cells, that is,
H0 : β1 = β2 = 0 was tested. The statistic had a chi-square distribution with 2
degrees of freedom and an observed value of 1.5692 with a corresponding p-value
of 0.45. It is clearly non significative. In summary, we cannot reject the null
hypothesis of a common intensity for the three cells. We also note that extensive
data (more than 1500 seconds) were acquired, providing many fusion events for
analysis (more than 500 fusions).

33



2. SPATIO-TEMPORAL ANALYSIS OF CONSTITUTIVE
EXOCYTOSIS IN EPITHELIAL CELLS

The statistical analysis was done by using the R package (49). A short version
of the functions used for the algorithm can be found in Appendix B.

2.3.2 Spatial clustering

Let us consider now only the fusion locations observed. All the points observed
for each cell were considered without any information about their observation
times.

First, it is necessary to evaluate if the observed fusion locations observed were
independently and randomly distributed and i.e. if it can be considered as a re-
alization of a Poisson point process. This model formalizes the concept of points
located without any kind of interaction between them and with the environment,
or on the contrary, whether there is an underlying clustering mechanism which
gives rise to preferred sites for exocytosis. The mechanisms for restricted deliv-
ery may be explained by the existence of cell structures such as microtubules or
heterogeneity in the plasma membrane in relation to the distribution of the pro-
tein machinery. A visual inspection of Figs. 2.6 (a), 2.8 (a) and 2.9 (a) suggests
that more aggregated patterns (than those provided by a Poisson point process)
could be expected. Clusters of exocytosis, ’hot-spots’, are observed corresponding
to regions with high intensity values (high number of exocytosis per unit area).
Color is proportional to the intensity function value, from small values (green)
to higher values (yellow, orange and white).

(a) (b)

Figure 2.6: Fusion sites of Cell 1.
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The first step was to evaluate whether the different point patterns can be con-
sidered as independent realizations of (possibly with different intensities) Poisson
point processes. The intensity function λ(·) defined in Eq. (2.4) for the different
cells was estimated. Figs. 2.7 (b), 2.8 (b) and 2.9 (b) show the estimated inten-
sity functions for the three cells. It is clear that a clustered spatial point pattern
is observed, corresponding with regions with high intensity values.

Using the functions K, F and G, we test if a Poisson point process is a rea-
sonable model for our three spatial point patterns. In a previous work (31) we
stated that fusion events seem to cluster forming ’hot-spots’ by means of the G-
function which is based on the nearest neighbor distance. Here we use two further
functional descriptors based on different distances than G-function. Specifically,
based on the empty space distance, F-function, and on the number of neighbors,
K-function, in order to compare with previous results.

(a) (b)

(c)

Figure 2.7: Spatial analysis of Cell 1 by using F, G, K functional descrip-
tors.
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A Monte Carlo test was used to test the null hypothesis. Let us see a short
explanation of the Monte Carlo procedure using the empty space function, F.
Analogously, it can be applied to the other two functional descriptors, G and K.

In this Monte Carlo test, a given spatial point pattern is described by means
of the empty space function. Let F0(t) be the cumulative distribution function
of the empty space function for the point pattern observed. Using the estimated
intensity, different Poisson point processes are generated using this intensity over
the same window. Let F1(t), F2(t), . . . , Fs(t) be the distribution functions cor-
responding to the different generated point patterns (s simulations, in our case
s = 99). Let L and U be the functions given by L(t) = mini=1...s(Fi(t)) and
U(t) = maxi=1...s(Fi(t)), the lower and upper envelopes of the distribution func-
tions estimated from the simulated patterns. The region delimited by both en-
velopes quantifies the variability associated with the model considered. If F0

is contained between the envelopes then the observed pattern corresponds to a
Poisson point pattern. Otherwise, the point pattern is not random.

Figs. 2.7 (a), 2.8 (c) and 2.9 (c), plot the observed empty-space functions F0

(solid line) against the average value of F−function’s of the 99 simulated random
patterns. Upper and lower envelopes of the F − function’s calculated from the
simulated patterns are also shown (dashed and dotted lines, respectively). If
we look at Figs. 2.7 (a) we can clearly distinguish that the observed function
deviates from the straight line (bisectrix). The higher this deviation is, the more
different the observed pattern from the simulated random patterns is. The range
of distances used is from smin = 0 to one third of the diameter of the cell,
smax = diameter(W )/3, approximately 192 pixels. Figs. 2.7 (b), 2.8 (d) and
2.9 (d) show the plots of the observed nearest-neighbor distribution function, G0

(solid line). G0 is also out of the envelopes of the simulated random patterns.
Finally, Figs. 2.7 (c), 2.8 (e) and 2.9 (e) shows the spatial marginal function
K(s), for the observed pattern (solid line) and the upper and lower envelopes of
the simulations. 10 µm are approximately 50 pixels.

Apart from this graphical test, a p-value corresponding to a randomization
test can be used as well. The null hypothesis to test is that F0, the function
associated with the observed pattern, is similar to the Fi’s with i = 1, . . . , s, the
functions obtained from the simulated patterns. Let us consider

di =
∫

0

t0

(Fi(t)− F̄i(t))2dt (2.18)

where F̄i(t) =
∑s

j=0,j 6=iFj(t) and i = 0, 1, . . . , s. If F0 cannot be distinguished
from the Fi’s with i = 1, . . . , s then any permutation of d0, d1, . . . , ds is equiprob-
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able. The one-tail p-value would be 1− k
s+1 where k is the rank of d0 (14).

(a) (b)

(c) (d)

(e)

Figure 2.8: Spatial analysis of Cell 2 by using F, G, K functional descrip-
tors.
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(a) (b)

(c) (d)

(e)

Figure 2.9: Spatial analysis of Cell 3 by using F, G, K functional de-
scriptors.
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In Figs. 2.7 (a), 2.8 (c) and 2.9 (c) it is shown that the three observed
functions for the three cells analyzed clearly lie below the lower envelopes from
the simulated point patterns. If the observed pattern is similar to the simulated
patterns, then the observed F-function, F0, should lie inside the envelopes. A
deficiency of empty-space is observed, which is compatible with the underlying
clustering mechanism. Remember that the F-function measures the empty spaces
in W . The observed G-function along with the lower and upper envelopes against
the averaged value of the G-functions from the generated patterns are shown in
Figs. 2.7 (d), 2.8 (d) and 2.9 (d). The observed G0 is clearly out of the envelopes.
An excess of small inter-event distances is observed, which is a feature of the
clustering mechanism. Lastly, Figs. 2.7 (e), 2.8 (e) and 2.9 (e) display the plots
for the K-function. Once more an excess of small distances is observed, suggesting
again the proposal of an aggregated model for the observed pattern. Clearly, an
aggregated model must replace the Poisson point process.

In Table 2.4 the p-values for the Monte Carlo test for the three cells and
functions F, G and K are shown. These values again provide strong evidence for
rejection of a Poisson point process in favor of an aggregated pattern. A similar
result is obtained when analyzing the remaining cells. We can conclude that there
are preferred sites for exocytosis.

Table 2.4: Monte Carlo p-values using F, G and K-functions

Cell 1 Cell 2 Cell 3

F 0.00 0.00 0.00

G 0.00 0.00 0.00

K1 0.02 0.02 0.02

2.3.3 Temporal clustering

In this section the marginal temporal point patterns, the times associated with
exocytosis observed throughout the whole period of time, are analyzed for the
different cells. No spatial information is taken into account now. This point
pattern can be considered as a point pattern in the real line. An analysis of
this (marginal) information is given in this section. The procedures used are
analogous to those detailed in Section 2.3.2. The K2-function was the functional
descriptor used in this case. Note that, with respect to the spatial case, the
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estimator has to be modified. Eq. (2.14) shows the estimator of this function for
a one-dimensional point pattern.

The null hypothesis to be tested is whether the observed times can be con-
sidered as a realization of a Poisson point process in the real line. In order to
test the null hypothesis we applied a test consisting of the followings steps. First,
we used a Poisson distribution to generate N , the number of events of the simu-
lated pattern. Second, we used a uniform distribution to generate N time values
uniformly distributed along the time interval [0, T ], where T is the length of the
observation time analyzed for each image sequence. Lastly, we evaluated the
K2-function for the simulated pattern. 999 simulations were performed, and the
lower and upper envelopes were obtained. Let K0 be the temporal function for
the observed pattern. If the observed pattern corresponds to the observed point
pattern then it has to be contained inside the envelopes. Table 2.5 displays the
Monte Carlo p-values observed for the cells analyzed.

For all the temporal point processes considered, the null hypothesis is clearly
rejected in favor of a more aggregated point process (than the Poisson model).
These aggregation effects can also be observed in Fig. 2.10. Fig. 2.10 (a), (c) and
(e) show the K2(t) estimated and Fig. 2.10 (b) (d), (f) show the estimated density
function of the occurrence time for the three cells analyzed. The observed K2 is
above the upper envelope. The density function was calculated for each pattern,
clearly revealing the existence of two waves of exocytosis that may indicate rate-
limiting step or saturation of the exocytic process. See Fig. 2.10 (b), (d) and
(f).

Table 2.5: Monte Carlo p-values using K2-functions

Cell 1 Cell 2 Cell 3

0.0002 0.0001 0.0006

2.3.4 Spatio-temporal clustering

In this section we are concerned with the study of spatio-temporal clustering,
i.e. groups of fusion events occurring close in time and close in space. Note that
we are not evaluating spatial clustering or temporal clustering separately. Our
objetive now is to test whether events (exocytosis) which are close in space are
also relatively close in time, and conversely.

Fig. 2.11 (a) shows the observed spatio-temporal pattern for one of the three
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Analysis of temporal clustering.
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cells analyzed. Dots represent the locations of fusions and colors represent the
time of occurrence. The colorbar represents the time axis, from 0 seconds (dark
blue) to end time (dark red). Hot spots of exocytosis are observed, but they
are not connected to ”temporal waves” of exocytosis. No spatio-temporal cluster
exists under visual inspection. However, formal tests are needed. Given the
fusion locations observed, a simulated spatio-temporal pattern in which fusions
are spatially and temporally clustered (dots with similar colors are highlighted
with a red ’>’) is shown in Fig. 2.11 (b), where clusters of colors are clearly
observed. Fig. 2.11 (c) shows the same number of points randomly distributed
in space and time.

The spatio-temporal point patterns observed for the three cells are displayed
in Fig. 2.12 in two different ways. In Fig. 2.12 (a), (c) and (e) the colorbar
corresponds to the time of occurrence whereas in Fig. 2.12 (b), (d) and (f), the
radii of the white circular disks are proportional to the time of occurrence. Large
radii correspond to fusions observed later in time. After visual inspection it is
hard to say if there is spatio-temporal clustering, i.e. clusters of white disks with
similar radii.

If the locations and times are realized independently, then Eq. (2.11) holds.
We will use the function

D̂(s, t) = K̂(s, t)− K̂1(s)K̂2(t). (2.19)

Fig. 2.13 (a), (c) and (e) shows the observed D̂-functions for the three cells.
It is not an easy task to evaluate graphically if the values observed are close
to zero at small values of s and t, as expected if the locations and times are
independent. Nonetheless, we can infer from these plots that there is no spatio-
temporal clustering. Axes represent time and space. When locations and times
are independent, the function is almost null. D̂-function represents the degree
of spatio-temporal association. Thus, for instance, at distance s = 10 and time
t = 10, D̂-function is near zero, which means there is no spatio-temporal cluster
within a circle of size 10 and during 10 seconds. When we increase the space and
time, the D̂-function necessarily deviates from zero, since clusters of fusions tend
to be formed, in the limit when we consider all the cell and the whole sequence
all the points would fall inside. Fig. 2.13 (b), (d) and (f) show the results of
the randomization test for spatio-temporal clustering, which confirm the first
hypothesis of independence.
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Figure 2.11: Spatio-temporal point patterns.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: Spatio-temporal point patterns observed for the three cells
analyzed.
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We will use the following summary statistic proposed in (15)

U =
m1∑

k1=1

m2∑
k2=1

R(sk1 , tk2), (2.20)

where ski
, tkj

are the spatio-temporal sampling points; sm1 is the maximum dis-
tance used to estimate the spatial function; sm2 is the maximum time-lapse used
to estimate the temporal function, and

R(s, t) =
D̂(s, t)√
var(K̂(s, t))

. (2.21)

Let u1 be the observed value of U for the observed point pattern and let
u2, . . . , um be the observed values when random assignment of locations and times
are generated. A Monte Carlo test with 99 simulations is applied. Table 2.6 gives
the p-values observed for the three cells analyzed. They are really large p-values,
greater than 0.5. We can then state that there is no spatio-temporal clustering
for any cell. In summary, the locations and times of the different exocytosis can
be considered independent.

Table 2.6: Monte Carlo p-values for testing spatio-temporal clustering

Cell 1 Cell 2 Cell 3

0.698 0.753 0.783

2.4 Discussion and Conclusions

A method for studying the spatio-temporal distribution of exocytosis events at the
plasma membrane in the context of the theory of spatio-temporal point processes
has been presented. Locations and times of occurrence of exocytosis have been
jointly considered for the first time and a complete spatio-temporal study of
exocytosis observed in three cells has been performed. Results indicate that
there is no spatio-temporal coupling of constitutive exocytosis, indicating that
every fusion event acts individually and that there is no central coordination
by a diffusible factor that influences the final fusion event. It is still, however,
conceivable that such factors could act upstream to influence the antepenultimate
and penultimate processes, e.g. vesicle docking and priming. These results would
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: D̂-function and randomization test of spatio-temporal clus-
tering.
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suggest that if a diffusible calcium signal was produced, that it is either too weak
or dissipates too rapidly to influence vesicle fusion in time at nearby spatial
sites. Importantly, the methodology presented here can also be applied later to
processes such as regulated fusion where the spatio-temporal coupling based on
global diffusible factors is known to play a central role and should allow one to
measure their effects.

A study of locations led us to state that exocytosis tend to form clusters of
fusions at specific regions of the plasma membrane. Clearly, an aggregated model
must replace the Poisson point process. This study was performed by using differ-
ent spatial descriptors that allow us to strongly confirm previous results obtained
(31). The spatial clustering in the statistical analysis of spatial point processes is
considered to be a consequence of either a direct interaction between the points
(say, one fusion leads to more fusions in its vicinity) or of environmental factors in
the neighborhood of points. Both kinds of factors should be considered when ap-
plying our model in a biological context in search of the causes of clustering. For
example, from among the environmental factors we could consider cell cytoskele-
tal architecture underlying the plasma membrane as well as the distribution of
various molecules implicated in the regulation of exocytosis.

Surprisingly, contrary to our expectations, temporal release showed a double
hump distribution, like a double humped camel’s back. But what would be ex-
pected? Given that VSVG-GFP is released from the endoplasmic reticulum (ER)
as a temporal wave, we did expect some degree of temporal coupling as cargo is
kinetically released and egresses out of the ER, trafficks to the Golgi Complex and
finally to the plasma membrane. Despite hundreds of studies of identical markers
by pulse-chase biochemistry, to our knowledge biochemistry studies have shown
no such distribution, but rather the cargo appears on the surface as a single peak
(28; 45). But why might this key observation be missed and what is its signifi-
cance? These data are at odds with others reported in the literature and could
reflect differences between ensemble analysis (as is typically done) and the finer
temporal-spatial resolution of the processes studied at the single vesicle level. An
advantage of biochemistry experiments is that they automatically average the re-
sults from thousands (minimum) to millions of cells. Thus, they provide ensemble
measurements. We, however, are now doing thousands of measurements (image
timepoints) on a single cell. Namely, the analysis is done at the single unit level,
or vesicle here. With computational analysis, as here, this can reveal a funda-
mental process and order of magnitude of resolution better than with ensemble
methods such as traditional biochemistry. For instance, we note that each cell is
slightly different in the temporal control of exocytosis (or position of the double
humps), thus the mere act of averaging many cells can blur the distinction of in-
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dividual cellular behaviors. Second, the temporal resolution of such biochemical
experiments is typically in the tens of minutes, as each experiment must be done
for every timepoint. This is in stark contrast to the millisecond resolution that
sensitive imaging can achieve. Even in the events here which are separated by
2− 5 min, such a dual peak would be blurred with a 10 min temporal filter and
applying a Nyquist temporal filter would require 1 min sampling intervals and
even then could be missed by a blurred average.

The biological significance of these observations is the implication that a pre-
fusion step is rate limiting. This would suggest saturation of an earlier trafficking
event. For instance, one possibility is that during exocytosis only a given amount
of the protein fusion machinery can be used and must be recycled for subsequent
rounds. This interesting observation suggests that the precise kinetics of earlier
membrane trafficking steps be revisited using single cell time-lapse imaging to
see which part of the exocytosis acts as the bottleneck, and hence would be
an ideal place for finer regulation. Importantly, only a slight modulation of a
constant rate of a critical exo- or endocytic pathway can cause a striking cellular
phenotype such as in diseased pathological states. The computational methods
that we have established here should provide new opportunities for testing key
models of how membrane traffic in cells function and the processes that regulate
it. The methodology can be easily extrapolated and applied to the study of
other types of cells, such as chromaffin cells and neurons, or to other types of cell
processes. The model is flexible and general enough to incorporate and test these
biological hypotheses in a direct way. Also more complex hypotheses that take
into account heterogeneity in the plasma membrane or internal cell structures
such as microtubules could be formulated and tested.

Several aspects remain open. First, formulating a parametric model for the
spatial locations where biological factors could be included in the model. A
Cox process could be a good general framework since it can deal with the non-
homogeneous intensity rate of fusions throughout the plasma membrane. In this
new framework the intensity function is a stochastic process, i.e. first, an inten-
sity function is generated and, second a non-homogeneous Poisson process with
this intensity function is generated. The Cox process also allows us the incor-
poration of covariates in the analysis and possible sources of aggregation due to
environmental heterogeneity, for instance the existence of microtubules or any
local characteristic of the plasma membrane. Another model, a Poisson cluster
process, that incorporates an explicit form of spatial clustering could be a good
starting point too. Moreover, it is possible to extend those models to see if the
amount of cargo depends on the position and time, that is, to study dependencies
on what, where and when. This last hypothesis can be formulated considering a
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marked spatio-temporal point process. Once more, note that the framework cho-
sen is flexible and general enough to incorporate and test biological hypotheses
in a direct way.

Finally, an image processing method that allows us to automatically segment
fusions is presented and will greatly facilitate future investigation. While this
software was used in this proof-of-principle study exclusively for PtK2 cells, the
parameters should be easily adaptable to analyze secretion in a wide range of
cells such as astrocytes, neurons, fibroblasts, etc.
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Chapter 3

Counting Endocytic Spots by

Means of Boolean Models

3.1 Introduction

In this chapter we are concerned with the estimation of the mean number of en-
docytic spots per unit area and their mean perimeter observed in a given frame,
when overlapping between different endocytic spots exist. We propose to con-
sider the union of the different endocytic areas as a realization of a Boolean model
where this overlapping between endocytic spots is explicitly considered and as-
sumed. Estimators based on Boolean models for the mean number of endocytic
spots per unit area and their mean perimeter observed in a frame are proposed.
It should be noted that, since endocytic vesicles are below the spatial resolu-
tion limit of the imaging system, the perimeter of the endocytic spots does not
provide a measurement of the real size of the vesicles, but rather is a geometric
property of the point-spread function. However, the geometric features of the
endocytic spots, which could be associated with vesicles, can be safely used for
the purposes of the Boolean model, such as determining the number of endocytic
spots per unit area. To our knowledge, it is the first time that these estimators
obtained from this type of image sequences are proposed. In following chapters
we will generalize this model from 2D to 3D in order to study temporal and
spatial information.

Boolean models have been successfully applied to similar problems in other
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disciplines such as, estimation of the area occupied by forest or grass in a given
field observed from the air, area of pores in a given material or counting of
red blood cells in the viewing field of a microscope (66). Nevertheless, to our
knowledge, they have not been applied yet in the live cell image analysis, despite
their interest and usefulness.

An endocytic protein, known clathrin has been used in this study to show
the application of the model. Clathrin spot bursts appear in the images as small
round hyperfluorescent areas with an approximately Gaussian shape on a dark
background. These Gaussian shapes overlap each other forming clumps.

In Section 3.2, the image acquisition method, the data and the image process-
ing algorithm are described. In Section 3.3, the methodology based on Boolean
models is introduced. In Section 3.4, the estimated values for the sequences of
images analyzed are presented. Conclusions are given in Section 3.5.

3.2 Data Collection

3.2.1 Image processing

The image processing method developed is based on the application of the Top-
Hat transform to extract peaks of fluorescence, template matching to remove
eventual noise and region growing technique that will fully delineate each marked
object.

Step 1: Opening Top-Hat. The presence of protein molecules is revealed by
brighter pixels surrounded by a relative dark background (17; 62). The opening
of a grey-level image f with b, denoted f ◦ b, is defined as

f ◦ b =
∨
x

{bx + u : bx + u ≤ f},

where b is a gray-scale image, known as the structuring function. For the special
case when b(x, y) = 0 for (x, y) ∈ B, and −∞ otherwise, being B a given subset
of R2, it is referred as a flat structuring function.

∨
stands for maximum and bx

is the translation of the structuring function centered at x. The opening is found
by taking the maximum over all morphological translations of the structuring
function b that fit beneath the input signal f . It removes narrow peaks from the
images, where the meaning of narrowness is relative to the shape and size of the
structuring function. It is a smoothing filter that approximates an image from
below. Then, the operator ψopnth(f) = f − f ◦ b produces such peaks.
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3.2 Data Collection

Fig. 3.1 illustrates the use of Top-Hat operator to extract the peaks of hy-
perfluorescence. Figs. 3.1 (a) and (d) show a subimage of the original grey
level image. Opening this image results in Figs. 3.1 (b) and (e). This figures
correspond to the local background, with a mean grey level value of 20. A flat
structuring function, a disk with radius 10 pixels, was used for these images. The
substraction between images in Fig. 3.1 (a) and (b) leads to the detection of
peaks (see Figs. 3.1 (c) and (f)). Note that the reference level is approximately
zero in Fig. 3.1 (c). The Top-Hat operator implies the subtraction of the local
background, which is robust against an inhomogeneous illumination. Grey-level
images have been brightened for visualization purposes.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Extracting peaks. (a) Original image. (b) Opened image. (c)
Top-Hat Image. (d), (e) and (f) correspond to the three dimensional plots of the
original image, opened image and Top-Hat image, respectively.

Step 2: Thresholding the Top-Hat Image. Owing to noise, the Top-Hat image
is thresholded to remove points with low signal. This results in a black-and-white
image shown in Fig. 3.2 (a), where white represents the background and black
corresponds to the object. Only points with values of the Top-Hat image higher
than a given threshold are taken into account for the next step, the template
matching. The binary image is used as a mask for the Top-Hat image (see Fig.
3.2 (b)). Points outside the mask correspond to the background or to noise and
they are not considered for posterior processing. The value of the threshold
depends on the signal-to-noise ratio, and it is a tuning parameter of the method.
A value of 50 for 8-bits grey levels images is used. The value was fixed by taking

53



3. COUNTING ENDOCYTIC SPOTS BY MEANS OF BOOLEAN
MODELS

into account the mean intensity of the background . See Fig. 3.1 (d).

(a) (b)

Figure 3.2: Thresholding. (a) Binary image after thresholding the Top-Hat
image; (b) Top-Hat image after applying the binary mask.

Step 3: Template matching. Since clathrin spots lead to roughly Gaussian
shapes of fluorescence, the next step is to match a template to the image resulted
from applying the binary mask to the Top-Hat image. The template is a small
image that contains the shape we are trying to find. The template is centered
at each image point and the number of points in the template that match those
of the image is counted. The procedure is repeated for the entire image and the
point which led to the best match, the maximal count, is deemed to be the point
where the template lies within the image. A Gaussian template with σ = 1,
shown in Fig. 3.3 (a), is used. Only maxima with higher correlation coefficient
than a given threshold (threshold set at 0.7) are used as seeds for the region
growing process that will fully delineate each marked object. Seeds are shown
as black dots in Fig. 3.3 (b). The size of the Gaussian template depends on the
spatial resolution.

Step 4: Region Growing. Points with higher correlation are considered the
seeds of the region growing process. We have to judge whether a particular
neighboring pixel is to be included in the grown object. If the pixel grey level
is greater than a certain absolute threshold, then the pixel is included into the
growing object. A value of 30 is used for this signal-to-noise ratio. The Top-Hat
image is used instead of the original image in this step. It avoids the growing
region to spread in excess due to noise. Fig. 3.3 (b) to (e) show the grown region,
delineated with black crosses, for different consecutive iterations.

Fig. 3.4 (a) illustrates the final results of the application of region growing
technique on a detail of the original grey-level image. This region is 45×90 pixels
in size. Fig. 3.4 (b) is a black-and-white representation of the intermediate step
after thresholding the Top-Hat image; whereas Fig. 3.4 (c) is the final step
of region growing. Small particles corresponding to noise are removed in the
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(b) (c)

(a) (d) (e)

Figure 3.3: Template matching and region growing. (a) Gaussian kernel for
template matching. (b) Seed (dots). (c), (d) and (e) show consecutive iterations
of region growing process.

template matching step. The region growing technique delineates the final shapes.
Figs. 3.5 (a) and (b) display the image obtained after Top-Hat thresholding and
the final segmentation after region growing for the entire original grey-level image,
respectively.

(a) (b) (c)

Figure 3.4: Intermediate steps of image processing. (a) Original image
and grown regions. (b) After thresholding the Top-Hat image. (c) After region
growing.

55



3. COUNTING ENDOCYTIC SPOTS BY MEANS OF BOOLEAN
MODELS

(a) (b)

Figure 3.5: Segmentation of the original image. (a) After thresholding the
Top-Hat image. (b) Final segmentation after region growing.

3.3 The model

As we mentioned in Section 3.1, experimenters like to answer questions such as:
how many endocytic spots are there in a given frame? How large are the endocytic
spots? How is the shape of these endocytic spots? Fig. 3.5 (b) shows a binary
image where different kinds of randomness have contributed to its formation: the
acquisition process, the segmentation process and, possibly, other non-controlled
experimental factors. In our approach, this image is considered as a realization of
a stochastic model, i.e., an experiment where the results (binary images) cannot
be predicted in advance.

The natural mathematical framework that gives some answers to these ques-
tions is the Random Closed Set theory. The datum to model is a random binary
image, i.e., random subset of the Euclidean space R2. The research in random
set theory is highly active. After the original definition by G. Matheron (35; 36),
and the subsequent works of J. Serra (62) and their colleagues the Boolean model
was defined. These studies cover at least an 80% of the matter and definitions
related to Boolean models.

An applied study of this kind of stochastic model addressed to practitioner is
presented in (38), where basically is described as a framework to model (static) 2D
or 3D overlapping objects. Ilya Molchanov from the University of Bern maintains
a BibTeX bibliography called “Random sets and related topics” within “The
Collection of Computer Science Bibliographies” which contains about 3000 items
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and it is the fastest way to access to information about the subject. References
(11; 26; 39; 66) contain general and clear presentations about these stochastic
models. Van den Berg et al. (72) introduce dynamics into the Boolean model,
letting the grains move around, and study the properties of this modified model.
Dousse et al. (18) model a wireless sensor network by defining a blinking Boolean
model, in which grains switch in an uncoordinated way between an ’on’ and
’off’ mode to save energy, in order to study the latency of the network. In
most of the studies that deal with 3D data it is common to analyze each one of
the 2D sections separately, even with isotropic data. Dougherty et al. in (16)
present an application for counting illuminated randomly sized spheres in 3D
regions by taking the cross-sections with spheres to form the estimate. A similar
approximation is carried out in (55) to estimate the number of straight cylinders
in a random system. Boolean models they have been also used in texture analysis
and synthesis (4; 20; 22; 23).

3.3.1 The Boolean model

In our approach, the total area segmented covered by fluorescent protein molecules
associated to endocytic spots is considered as a realization of a random closed
set. Fig. 3.5 (b) displays the area covered in a frame. If different subimages
were cropped then they would look similar among them but not equal to each
other. This is the intuitive idea underlying to the concept of stationarity. The
stationarity hypothesis is a quite natural simplifying hypothesis for the stochastic
model, and it seems tenable for the analysis of our images.

The next step is to choose a type of random closed set in order to model
our images. Let us consider the underlying phenomenon that generates the im-
ages. Different endocytic vesicles produce different endocytic spots of fluorescence
located around each other. It seems quite natural to assume that the different
endocytic areas are independent realizations of a given random set independently
and uniformly located within a given region of the plasma membrane. Indepen-
dent realizations of a given random set means that the size and shape of a given
endocytic spot is not related or conditioned by the other endocytic spots. This
assumption is justified by the recent biological data, supporting a random model
of endocytic vesicle formation (19). The second basic hypothesis is that the
different centers of the endocytic spots are located uniformly in a given region
contained in the plasma membrane and the location of each one is independent
from the locations of the others. It is a parsimonious stochastic model for our bi-
nary images. The mathematical formulation of these intuitive concepts is known
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as Boolean model. Two basic references about the topic are (38; 66) and should
be consulted for a complete presentation.

The locations of different endocytic spots, corresponding to the locations of
nucleation sites for vesicles, can be considered as a spatial temporal point pattern,
a probabilistic model producing locally finite sets of points (11; 14; 66; 67).
In particular, vesicle locations in each cross-section of the image sequence will
be modelled as a realization of a Poisson point process in R2. In this study
the hypothesis of stationarity concerning with the vesicle locations is assumed.
Under the stationarity hypothesis, one can define the intensity of the process as
the mean number of points per unit area, λ, i.e. the mean number of endocytic
spots per unit area in our case. We will assume that the vesicle locations can be
considered as realizations of a Poisson point process.

From now on, we will assume that the primary grain A0 is isotropic, i.e.,
its distribution is invariant against random rotations. Given an isotropic and
stationary Boolean model we are interested in the following three unknown pa-
rameters, which allow us to characterize the process: (i) the intensity λ of the
germ process (number of germs per unit area); and (ii) the mean perimeter of
the primary grain, u0 = EU(A0).

In our application the primary grain corresponds to a cluster of clathrin
molecules associated to one single endocytic spot. The intensity of the germ
process or mean number of points per unit area is the mean number of endocytic
spots per unit area of cytosol in our case. In this study, it is not assumed any
parametric model for the primary grain as it presents irregular forms, and the
size is estimated by the mean perimeter u0.

In order to illustrate the kind of binary images generated by a Boolean model,
two simulated stationary homogeneous Boolean models in a 512×512 rectangular
window are shown in Fig. 3.6 (a) and (b). These simulated images have similar
aspect to that one obtained after image segmentation, Fig. 3.5 (b). In both
simulated images, the primary grain is a ball with normally-distributed random
radius, R ∼ N(µ, σ). Thus, the model is completely characterized by λ, µ, σ.
As it is showed in Fig. 3.6 (a), the first model has an intensity λ = 0.0012, i.e.,
around 315 grains in the window, and its primary grains are balls with random
radii R ∼ N(8, 3). However, most of the observed clumps are constituted by
several primary grains and the number of clumps is only 186. Thus, we can
estimate correctly neither the number of grains per unit area, nor the mean
radius of a grain, unless a Boolean model is assumed. The second model (see
Fig. 3.6 (b)) is formed by bigger primary grains (R ∼ N(11, 3)) with λ = 0.0009,
i.e., 235 grains. Isolated areas in both simulated models can be observed, but
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again estimating the size from this biased sample will produce biased results,
since smaller grains have a higher probability of belonging to an isolated area.
Additionally, higher dispersion in size will introduce higher bias in the estimation
of the size and intensity, if only the isolated spots are considered as the sample.

(a) (b)

Figure 3.6: Simulations of two different Boolean models in a 512 × 512
window. (a) Balls with random radii R ∼ N(8, 3) and λ = 0.0012. (b) Balls
with random radii R ∼ N(11, 3) and λ = 0.0009.

Some previous applications of Boolean models within Image Processing are
(13; 22; 23).

3.3.2 Defining the sampling window W

From our point of view, the most difficult hypothesis to be verified concerns the
uniform distribution of the endocytic spots along the plasma membrane. This
assumption appears in the definition of Poisson point process, the model assumed
for the germs. We solve this problem by using only part of the plasma membrane
observed. The sampling window finally used is the union of the regions where
we have observed fluorescence of protein molecules along the total time interval
analyzed. From now on, this bounded sampling window will be denoted as W .

Definition 1 (Sampling Window) Let us denote W1,W2, . . . ,Wn the sequence
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of sets in R2, where Wi corresponds to the union of all white areas of the ith bi-
nary image, i.e., the region covered for all the endocytic areas in the corresponding
image. At any point x ∈ Wi, we can assume that at least one endocytic spot is
detected in the ith-image. The sampling window W is defined as the union of the
sets Wi’s, i.e., W = ∪N

i=1Wi.

Fig. 3.7 displays the sampling window for a sequence of 210 seconds. White
represents the regions where protein molecules have been observed. It corresponds
to an active area of the plasma membrane of 90.57%.

Figure 3.7: Sampling window. Obtained by stacking the whole sequence
composed by 2100 images.

3.3.3 Parameter estimation. Minimum contrast method.

A robust method to estimate the intensity λ of the process (mean number of
endocytic spots per unit area) and the mean perimeter of the endocytic spots u0

is the minimum contrast method. There is an extensive literature about statistical
analysis of Boolean models. This method is detailed by D. Jeulin in (29), who
is considered to be the one who bridged the gap between RACS and physical
laws. Other fundamental references are (36; 62). Furthermore, for pedagogical
details addressed to practitioners (38; 66) are interesting references. See (21) for
computational details.

We propose to use this method since it is a simple and robust procedure. The
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irregular sampling window makes difficult to apply other alternative procedures
such as the method of intensities.

Let K be a convex and compact subset of R2 containing the origin. If tK =
{tk : k ∈ K} (i.e., the homothetic of K) then let us define the following function

HK(t) = 1− 1− T (tK)
1− p

, (3.1)

where p = P (0 ∈ Φ) = 1−T ({0}), is the area fraction of Φ (or mean area covered
per unit area by the stationary random set Φ). This function is a probability
distribution function known as the contact distribution function.

It follows that,

HK(t) = 1− exp

{
− λE[ν2(A0 ⊕ tK)− ν2(A)]

}
, (3.2)

where K is the unit disk on the plane and A0 the primary grain. (For the original
definitions see (36) pp. 139 and (60)).

It is well-known (38; 66) that, if H l
K(t) = − log(1−HK(t)), then

H l
K(t) = λ[Eν2(A0 ⊕K)− ν2(A0)]. (3.3)

The generalized Steiner Formula establishes that

Eν2(A0 ⊕ K̆) = Eν2(A0) +
U(K)EU(A0)

2π
+ ν2(K). (3.4)

In particular, if we consider K = B(0, t), the disk centered at the origin with
radius t then we have

Eν2(A0 ⊕B(0, t)) = Eν2(A0) + EU(A0)t+ πt2. (3.5)

Thus,
H l

B(0,1)(t)

t
= λπt+ λu0. (3.6)

Similarly, if K is taken equal to a unit square centered at the origin, S(0, 1),
then

H l
S(0,1)(t)

t
= λt+

2
π
λu0, (3.7)

where u0 stands for the mean perimeter of the primary grain.
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The contact distribution function can be estimated from the estimators of the
capacity functional and the area fraction from Eq. 3.1. The capacity functional
T (K) can be estimated from a given realization (i.e. from each binary image of
the sequence) by using the minus-sampling estimator given by

T̂W (K) =
ν2((Φ⊕ K̆) ∩ (W 	K))

ν2(W 	K)
, (3.8)

where W is the sampling window and A 	 Ǩ = {x ∈ A : x + K ⊂ A}. Using
the estimator given in (3.8), the left-hand side of (3.6) and (3.7) for different t
values can be estimated. A linear fit using these estimated values provides us
with estimates for λ and u0. If c0 + c1t is the fitted function then the parameters
can be estimated as

λ̂ =
c1
π
, û0 =

c0

λ̂
, (3.9)

when K is a disk.

It is important to remark on some implementation details. Firstly, the contact
distribution function TK(t) takes values in the interval [0, 1] since it represents
the cumulative distribution function and, as a consequence, the empirical values
of log(1 − TK(t)) tend to infinite. Hence, only values for 1 − TK(t) in the inter-
val [0, 0.8] are used in the linear fitting. Secondly, the unit square structuring
element has been used because its digital approximation is more accurate than
the corresponding approximation for the disk. Finally, we fit the data in a least-
squares sense constraining the resulting polynomial to pass through the three
first estimated points.

At this point it is important to test whether the logarithm of the capacity
functional is a polynomial of degree the dimension of the structuring element.
Fig. 3.8 shows the fitting of function log(1−TK(t)) over a frame showing clathrin
protein. Marks in the plot correspond to the values obtained after applying Eq.
3.8 with a square structuring element, and solid line corresponds to the next
polynomial of degree 2, 0.0075x2+0.0711x+0.0242. All the frames tested showed
almost identical fittings and showed the same behavior, so we can conclude that
the process could be the result of a Boolean Model.

3.4 Results

We have analyzed 6 image sequences expressing ClatrhinGFP in order to illustrate
the methodology. Images were acquired at 0.25 frames per second for the clathrin.
All the results are in pixels (1 pixel = 200 nm).
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Figure 3.8: Logarithm of capacity functional and fitting. Logarithm of
the capacity functional and a polynomial fit for these values.

Given a sequence, the intensity λ̂ and the mean perimeter û0 for each frame
were estimated from (3.7). Let us denote these estimates as {(λ̂i, û0,i) : i =
1, . . . , n}, where n is the number of frames. A first basic assumption is that these
parameters do not vary significantly along the image sequence. More formally,
we assumed that the formation of endocytic vesicles is a stationary phenomenon,
i.e. if a different temporal window had been chosen, a similar behavior would
have been observed, at least within the periods considered for each sequence.

Fig. 3.9 (a) displays the λ̂’s estimated values for the third clathrin sequence
analyzed using a unit square as structuring element. Fig. 3.9 (b) displays the
estimates of the mean perimeter. The horizontal solid line corresponds to the total
mean for this sequence. Similar plots were observed for the other sequences.

Other characteristics of the primary grain can be estimated only if a para-
metric model is assumed. For instance, if a random disk with random radius R
is assumed, then we estimate u0 = 2πER. Hence, the mean radius ER and the
mean area a0 = πER2 from the mean perimeter could be estimated if a one-
parameter probability distribution is assumed for the radius. Other methods to
estimate the mean area of the primary grain can be found in (66).

From a given sequence {(λ̂i, û0,i) : i = 1, . . . , n}, point estimates and confi-
dence intervals were calculated. The batch-mean method was used (33). A short
explanation follows. First, the sequence is partitioned into a set of equally sized
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(a) (b)

Figure 3.9: Estimated values for λ and u0 for the third clathrin sequence
using a unit square. (a) Point estimates and confidence limits at 95% for λ̂.
(b) Idem for the mean perimeter of the primary grain û0.

and non-overlapping batchs, from 1 to s, from s+ 1 to 2s and so on. The mean
of the estimates within a batch is then calculated as

λ̄j =
js∑

i=(j−1)s+1

λ̂i, (3.10)

and

ū0,j =
js∑

i=(j−1)s+1

û0,i, (3.11)

with j = 1, . . . , J . The batch size s is chosen in such a way that the values λ̄j

defined in Eq. (3.10) are approximately uncorrelated. The same comment applies
to Eq. (3.11). These batch means are approximately normally distributed as a
consequence of the central limit theorem for sequences of dependent variables.
Finally, the confidence interval for the mean of a normal distribution is used.
This confidence interval is given by λ̄ ± tJ−1,1−α/2

S√
n

where λ̄ =
∑J

j=1 λ̄j/J =∑n
i=1 λ̂i/n and tJ−1,1−α/2 is the 1 − α/2 quantile of a t-distribution with J −

1 degrees of freedom. The mean perimeter u0 is estimated similarly from the
original point estimates ū0,j ’s. On analogy of signal filtering, it could be said
that this method removes the high frequencies observed in the estimates.

We applied the described estimators to six biological image sequences express-
ing clathrin coupled to the Green Fluorescent Protein (GFP). These sequences
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were derived from three movies of fibroblast (COS7) cells, acquired at 1 frame
every 4 seconds. The estimates for the sequences expressing clathrin can be found
in Table 3.1. Columns headed λ̂ and û0 give the point estimates and the 95%
confidence interval using the different image sequences for the intensity and the
mean perimeter, respectively. It is important to remark the high accuracy pro-
vided by the batch-mean method. We estimated the mean intensity λ̂ with a
95% confidence interval. The intervals are very short. This comment applies
for all the sequences analyzed. A small decreasing in the mean intensity and a
small increasing in the mean perimeter is also observed in the estimates, probably
as a consequence of photo-bleaching effect. The application of the batch-mean
method implies a minimum number of frames. Sequences of 300 leads to about
15 batches of 20 images, which allowed us to use the method. The column headed
λ̂ν2(W ) is the estimate of the mean number of endocytic spots for each sequence.
The fraction of spots not observed due to the overlapping effect, and that are
provided by the model, ranges from 74% to 127% of the number of clumps.

Table 3.1: Estimates and 95% confidence intervals for the six sequences expressing
clathrin analyzed

Cell Sequence λ̂ û0 λ̂ν2(W )

1 1 0.0099 ± 0.0006 9.565 ± 0.28 281.86 ± 17.49
2 0.0085 ± 0.0006 9.575 ± 0.32 347.20 ± 23.69

2 3 0.0092 ± 0.0002 6.6269 ± 0.19 277.54 ± 7.23
4 0.0097 ± 0.0003 7.1997 ± 0.24 235.41 ± 8.05

3 5 0.0081 ± 0.0010 9.0042 ± 0.37 170.17 ± 20.88
6 0.0075 ± 0.0012 8.9756 ± 0.34 220.28 ± 3.54

An interesting remark is the discretization effect. In a digital image and with
primary grains about 4 pixels in size, the perimeter and the area of so small
primary grains are the same. Thus, we give the estimation of u0 as an indicator
of the size of the primary grain.

Finally, an interesting exercise in order to evaluate the estimates provided
could be to perform a simple (coarse) analysis using the characteristics measured
from the connected components. For instance, we know that each clump contains
at least the fluorescence associated to an endocytic spot. The perimeter of the
connected components could be obtained and the number of clumps counted.
A rough estimator of the intensity of endocytic spots would be the number of
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clumps divided by the area of the sampling window, i.e., to estimate this intensity
using the estimated intensity of clumps. It is clear that the intensity would
be underestimated and the mean perimeter overestimated by using this simple
approach. In other words, the real number of endocytic spots in each image
would be underestimated, since it is assumed that a clump is a single endocytic
area instead of an overlapping of several ones. Besides, the mean size of an
endocytic area would be overestimated, as some of these clumps could contain
several of them. In order to improve the estimation of the mean perimeter uo,
some clumps could be ruled out. In particular, only those clumps composed by
just one endocytic spots could be selected. The mean perimeter would be then
estimated as the corresponding mean. However, this selection procedure would be
again biased since smaller endocytic spots are selected with a higher probability.
Only an approach based on Boolean models would lead to unbiased results.

3.5 Conclusions

We have proposed a statistical methodology based on Boolean models to study
endocytosis in living cells. Our methodology enabled us to estimate the mean
number of endocytic spots per unit area in a robust way. Although the number of
endocytic spots can be studied by using electrical techniques such as capacitance
measurements, no spatial information is obtained. To our knowledge, it is the
first time that these estimates from images are used in this context.

Current studies tend to ignore the overlapping between endocytic areas and
calculate the mean area by taking into account only the smallest clumps, i.e.,
those clumps that may correspond to a single endocytic spot. Nonetheless, using
this simple approach the sample would be biased, and the size would be under-
estimated. By contrast, robust estimators for the mean number of spots per unit
area in a given frame and its mean apparent size (perimeter of its point-spread
function) are proposed here. Additionally, the estimated values obtained from
different frames are jointly used to provide global estimators for both parameters
using the batch-mean method. The proposed method provides the experimenter
with a robust and formal methodology for the quantitative study of the cell en-
docytic behavior in response to different levels of stimulation, treatments, etc.
Moreover, this type of analysis may provide mechanistical information on the en-
docytic process. For instance, the role of other proteins such as GTPase dynamin
in the endocytosis of clathrin-coated vesicles may be better elucidated.

An interesting extension of the model is the analysis of fluorescence in grey-
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level images. In this case, the parameter to be estimated would be the energy
(fluorescence) associated with a single endocytic spot. This approach will allow
us to estimate if the fluorescence content of endocytic spot is quantized, and to
determine the quantal of fluorescence associated to a single endocytic spot.

It has been recently proposed that the minimum cluster of fluorescent clathrin
molecules that can be detected in an image might correspond to one single endo-
cytic vesicle (19). Under this hypothesis, the number of clathrin coated vesicles
would correspond with the number of endocytic spots.

It is important to note that this framework is flexible and general enough, as
well as intuitive and direct, to incorporate biological hypotheses. In fact, although
we have assumed that the different endocytic spots are independent realizations
of a given random set and they are independently and uniformly located within
a given region of the plasma membrane, this framework is the natural one to
incorporate a non-homogeneous distribution of germs if required.

Our model may be applied to the study of other biological and biophysical
processes. One example is the analysis of the distribution and dynamic behavior
of single molecules, such as cellular proteins conjugated to fluorophores, as they
interact with biological surfaces (i.e. the plasma membrane) and non-biological
ones (catalyst surfaces).

Finally, we should point out that the presented model does not take into
account the temporal dimension of the endocytosis phenomenon. However, a
further expansion which fill this gap is developed in Chapters 4 and 5. It is called
Spatio-temporal Boolean model and will allow us to estimate the mean duration of
the endocytic spots (”endocytic delay”), as well as its temporal intensity λ (mean
number of endocytic spots per unit time and unit area). These parameters will
allow us to better characterize the complex process of vesicle endocytosis. Both
extensions of the work can be approached in a natural way within the context of
Boolean models.
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Chapter 4

Analysis of Spatially and

Temporally Overlapping

Events

4.1 Introduction

The problems of counting overlapping objects in an image and estimating their
shape-size features are common in many real applications. In the previous chapter
we show how Boolean models explicitly consider and assume this overlapping.
Moreover, we describe a methodology to analyze some of the components of the
process of endocytosis.

In spite of the considerable number and variety of applications of Boolean
models, the problem of analyzing spatially and temporally overlapping events in
image sequences remains largely elusive. More sophisticated models are needed,
i.e. hybrid models that capture both time and geometric properties while for-
malizing a configuration of independent randomly placed particles with random
durations in time. Recent advances in microscopy allow us to capture image
sequences of dynamic processes with very high spatial and temporal resolution,
such as biological processes. Furthermore, the growth in the volume of data re-
quires specialized methods for effective data analysis, in particular for extracting
useful information and for the interpretation of results.
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In this chapter, we aim at studying the dynamics of the clathrin-GFP protein
which is involved in the endocytosis process. In general, we are concerned with
the analysis of overlapping short-lived events from image sequences. Tradition-
ally, obtaining this kind of data has been a very time-consuming process where
much of the work had to be done manually, making it virtually impossible in
large image sequences. We are interested not only in the study of the static pa-
rameters obtained image by image, but in the dynamic parameters of the process
as the mean number of endocytic spots per unit area and time as well as their
duration distribution. This would permit to obtain an estimation of the duration
distribution of Clathrin-GFP from image sequences and should help lead the way
to new automated high content endocytic screens. In order to obtain these new
spatial temporal estimates, we have extended the classical concept of Boolean
model, defining what we call the spatio-temporal Boolean model, a particular case
of a non-isotropic 3D Boolean model. Roughly, a spatio-temporal Boolean model
(from now on STBM) is a Poisson point process (producing the locations of germs)
coupled with an independent random shape process (the grains) and an indepen-
dent time duration process for grains (the durations). In the following sections we
will examine some of the probabilistic properties of the proposed model and will
study the estimation of different characteristics of the model from a time-lapse
image sequence. The methodology and the estimators proposed can be safely
applied to the study of other proteins or similar spatial temporal patterns.

In Section 4.2 the STBM is introduced, some probabilistic properties and a
statistical analysis are given. A wide simulation study to show the relative errors
of the proposed estimators is given in Section 4.3. In Section 4.4 an application
of the model to Cell Biology is detailed. Finally, conclusions are given in Section
4.5.

4.2 Spatio-Temporal Boolean models

In this section we consider a particular Boolean model defined in R3. The primary
grain Ξ0 is the product of a 2D random setA0 and an independent random interval
[0, d0] i.e. Ξ0 = A0 × [0, d0]. The i-th germ is yi = (xi, ti) where xi is the spatial
location and ti is the birth time of the i-th event.
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4.2.1 Boolean model

As we showed in the previous chapter, a basic problem in the statistical analysis
of Boolean models is the estimation of: (i) the intensity λ of the germ pro-
cess; (ii) the mean area of the primary grain, a0; and (iii) the mean perime-
ter, u0 = EU(A0), where U(A) denotes the perimeter. The minimum contrast
method consists of the minimization of the difference between an estimated ag-
gregate parameter (e.g. the capacity functional) and an approximation expressed
in terms of the intensity, mean area and mean perimeter (38; 62). An alternative
is the method of moments based on the coverage fraction, mean area, bound-
ary length and Euler-Poincare characteristic. This method is computationally
easy but leads to biased estimators. Other methods have been presented to es-
timate the intensity, among them one based on Monte Carlo approximations of
the likelihood function, and another on a stochastic version of the EM algorithm
(34; 42).

In this section, Boolean models are extended to incorporate the temporal
dimension. Graphically, a spatio-temporal Boolean model consists of a set of
events with location xi, occurrence time ti and duration di, as shown in Fig.
4.1. In a given cross-section (frame) si, each event is observed as a random
area located around the position of the germ as in a ’static’ Boolean model (see
Fig. 4.3 (a)). Cylinders correspond to the different events in the sequence. It is
important to note that there is overlapping in space and time and that the degree
of overlapping in a given frame is not only dependent upon the sizes of the grains
but also upon their durations. See videos 4.1, 4.2 and 4.3 in the supplementary
material (more details in appendix C).

Our primary information is the superposition of the different events in space
and time associated to the black areas in the image sequence. Fig. 4.2 displays
several consecutive frames of a realization of a spatio-temporal Boolean model.
Grains appear in the image, stay for a while and then disappear. For example,
the grain numbered 1 is visible from frame 2 to frame 8. The grain numbered
2 lasts from frame 4 to 7. These frames belong to an image sequence which
was generated using uniform disks with radii in the interval [8, 12] pixels and
an exponential duration distribution with a mean of 6 seconds. The intensity of
grains is 0.00008. Images are 256 × 256 in pixels and were sampled at 2 frames
per second.

We will assume that the locations xi’s, the occurrence times ti’s and the
durations di’s are independent. This is a basic hypothesis that seems natural for
many applications and convenient because it simplifies the stochastic model.
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Figure 4.1: An example of a spatio-temporal Boolean model. Cylinders
represent the grains.

Definition 2 (Spatio-temporal Boolean model) Let Ψ = {(xi, ti)}i≥1 be a
stationary Poisson point process in R2 × R+ with intensity λ. Let {Ai}i≥1 be
a sequence of independent and identically distributed (as A0) random compact
sets in R2. Let {di}i≥1 be a sequence of independent and identically distributed
(as D) positive random variables. We assume that Ψ, {Ai}i≥1 and {di}i≥1 are
independent and that Eν3(A0 × [0, D]⊕ Ǩ) < +∞ for any compact subset K of
R3. The spatio-temporal Boolean model is the random set defined as

Φ = ∪i≥1(Ai + xi)× [ti, ti + di]. (4.1)

The set (Ai + xi)× [ti, ti + di] is a cylinder in R2 × R+, the i-th event. Fig. 4.1
displays a realization of a spatio-temporal Boolean model where A0 is a random
disc. Nonetheless, the primary grain could adopt arbitrary shapes. The temporal
cross-sections are (static) 2D Boolean models. Fig. 4.3 (a) displays some con-
secutive temporal cross-sections. We have spatially and temporally overlapping
among the different events.
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Figure 4.2: Several shots of a spatio-temporal Boolean model.

(a) (b)

Figure 4.3: Extraction of cross-sections. (a) Three consecutive temporal
cross-sections derived from Fig. 1. (b) The three Boolean models derived.
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4.2.2 Statistical analysis

Our data consist of a discrete set of temporal cross-sections of the model corre-
sponding to the observation times s1 ≤ . . . ≤ sk. Let us denote the temporal
cross-section at time s as Φs = Φ ∩ (R2 × {s}).

Each Φsi is contained in the product space W × [0, T ], where W is the obser-
vation window and [0, T ] is the total time interval observed. The projection of
Φs over R2 (that with an abuse of notation will be denoted Φs) is given by

Φs = ∪{i:ti≤s≤ti+di}(Ai + xi), (4.2)

i.e. Φs is the binary image observed at frame s with the superposition or union of
the different black areas associated to those events started before s but remaining
at that time s.

The point process Ψ is a (spatially and temporally) stationary Poisson point
process in R2 ×R+. Let λ be the intensity of this process, i.e. the mean number
of points per unit area and time. Let us first consider the temporal point process
composed of the times ti’s whose xi is located within W . Note that this point
process is a random thinning of the original point process. It is well-known that a
random thinning of a Poisson point process is a Poisson point process (66). This
fact will be a basic argument in the following proofs. The temporal point process
is a (temporally) stationary Poisson point process defined in R+ with temporal
intensity given by

λ0 = λν2(W ). (4.3)

Analogously, the point process defined as the locations xi’s such that the corre-
sponding times are in the interval [0, T ] is a (spatially) stationary Poisson point
process in R2 with spatial intensity

λ1 = λT. (4.4)

The set Φs, the cross-section at time s, is composed of those xi’s such that their
associated time ti and duration di verify that ti ≤ s ≤ ti +di. Note that ti and di

are independent of each other and are independent of their location xi, therefore
we again have a random thinning of the original point process and the following
results hold.

If Φ is a spatio-temporal Boolean model with intensity λ and primary grain
A0 × [0, D], then the temporal cross-section Φs is a 2D Boolean model with
primary grain A0 and intensity

λs = λED. (4.5)
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This result can be found in (35; 62).

A 2D cross-section of a 3D Boolean model is also a Boolean model (36; 66).
Since Φ has as primary grain A0 × [0, D], it is obvious that Φs has as primary
grain A0. The random sets Φ and Φs have the same area fraction, therefore
1− exp{−λEν2(A0)ED} = 1− exp{−λsEν2(A0)} and Eq. (4.5) follows.

Let us consider the estimation of the distribution of the random duration for
the events, D. For s1 ≤ s2, we will consider the following three random sets:

Φs1,s2 = ∪i:ti≤s1≤s2≤ti+di
Ai + xi, (4.6)

Φs1,s−2
= ∪i:ti≤s1≤ti+di<s2Ai + xi, (4.7)

Φs−1 ,s2
= ∪i:s1<ti≤s2≤ti+di

Ai + xi. (4.8)

Φs1,s2 corresponds to the union of the grains which are in Φs1 and Φs2 , Φs1,s−2
to

the grains in Φs1 but not in Φs2 , and finally Φs−1 ,s2
to the grains in Φs2 but not

in Φs1 (see Fig. 4.3 (b)). This restriction combines two cross-sections of the 3D
Boolean model to obtain new information of the underlying model, in contrast
with other studies in which sections are analyzed separately (16; 55).

Fig. 4.4 illustrates of these sets. Indeed, Fig. 4.4 shows three different
cross sections corresponding to two frames plus an intermediate frame. This
intermediate frame has been included in order to better explain the meaning of
the formulae, but it would not available since it do not correspond to a sampling
time. The frames correspond to three cross sections of a spatio-temporal Boolean
model, where there are some events which last more than the three sections
(actually 2 frames) and therefore are part of boolean model Φs1,s2 . An example
of an event taking part in this boolean model is shown in Fig. 4.4 (white dot),
where an event starts at time ti−1, before s1, and dies after an unspecified time
(after frame s2). On the other hand, there are events that have appeared before
frame s1 but died before s2. Those events define the Boolean model denoted by
Φs1,−s2 . In Fig. 4.4 (black dot) the event that appears at ti and dies at ti + di

belongs to Φs1,−s2 . Finally, there is one last Boolean model denoted by Φ−s1,s2

(dashed dot) which contains all those events that appear between frames s1 and
s2 and die whenever over the remaining time (or simply never dies). In Fig. 4.4
there is an event that appear at time ti+1 and dies at some time after frame s2,
therefore it belongs to the Boolean model Φ−s1,s2 .

Theorem 1 Let Φ be a spatio-temporal Boolean model. The random sets Φs1,s2,
Φs1,s−2

and Φs−1 ,s2
are then independent 2D Boolean models. Let us denote β(s2−
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Figure 4.4: Definition of the different boolean models from a spatio-
temporal Boolean model and two cross sections.

s1) the intensity of Φs1,s2 (the mean number of germs that are alive in the time
interval [s1, s2]), which is given by

β(s2 − s1) = λp(s2 − s1), (4.9)

where p(s) =
∫ +∞
s P (D ≥ v)dv. Moreover, under stationarity, Φs1,s−2

and Φs−1 ,s2

have the same intensity, α(s2 − s1) (the mean number of germs that died in a
time interval [s1, s2]) given by

α(s2 − s1) = λED − λp(s2 − s1) = λs − β(s2 − s1). (4.10)

Proof 1 Let ξ = {tn}n≥1 be a Poisson point process in R with intensity θ, let
{dn}n≥1 be a sequence of independent and identically distributed (as D) non-
negative random variables. Let s0 = −∞ < s1 < s2 < . . . < sk < sk+1 = +∞
be fixed points in R and N (sj−1,sj ]

(si−1,si]
= #{n : si−1 < tn ≤ si, sj−1 < tn + dn ≤ sj},

i.e. the number of points of ξ which were born in the time interval (si−1, si]
and died in the time interval (sj−1, sj ] where j > i. Let us consider the point
process {tn ∈ ξ : tn ≤ s1 < si < tn + dn < si+1}, a thinning of ξ, and therefore
an inhomogeneous Poisson point process with intensity function r(t) = θP (si ≤
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t+D < si+1) if t ≤ s1 and 0 if t > s1. The total number of points of the thinned
process, N (si,si+1)

(−∞,s1] , is a Poisson random variable with mean

EN
(si,si+1)
(−∞,s1] = θ

∫ +∞

−∞
r(v)dv =

θ

∫ s1

−∞
P (si ≤ D + v < si+1)dv = θ

∫ +∞

0
P (si − s1 ≤ D − v < si+1 − s1)dv =

θ

∫ +∞

si−s1

P (D ≥ v)dv − θ

∫ +∞

si+1−s1

P (D ≥ v)dv = θ(p(si − s1)− p(si+1 − s1)).

(4.11)

Let Ψ = {(xi, ti)}i≥1 be a stationary Poisson point process in R2×R+ of inten-
sity λ, and {di}i≥1 a sequence of independent and identically distributed random
variables. If B is a Borel subset of R2 then ΨB = {xi : (xi, ti) ∈ Ψ, (ti, di) ∈ B} is
a random thinning of Ψ and, as is well-known, the point process ΨB is a Poisson
point process. If we take B = {(u, v) : u ≤ s1 < s2 ≤ u + v}, then ΨB is the
germ process associated to Φs1,s2. The intensity of this process, β(s2−s1), follows
from Eq. (4.11) by taking si = s2 and si+1 = +∞. As the different grains Ai are
independent and identically distributed random closed sets and the corresponding
germ process is a Poisson point process, the proof is completed.

We can similarly prove that Φs1,s−2
is a Boolean model by considering now

B = {(u, v) : u ≤ s1 ≤ u+ v < s2}. The addition of the intensities of Φs1,s2 and
Φs1,s−2

is equal to the intensity of Φs1 (equal to the intensity of Φs2), i.e. equal to
λs = λED. The same proof applies to Φs−1 ,s2

.

It holds that λs = α(s) + β(s), i.e. the mean number of grains per unit area
that appear and remain through a time interval of length s is constant and is
equal to the mean number of germs per unit area in each frame. The sets Φs1,s2 ,
Φs1,s−2

and Φs−1 ,s2
cannot be observed due to the overlapping between the different
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events, however we can observe

Φs1 = Φs1,s2 ∪ Φs1,s−2
,

Φs2 = Φs1,s2 ∪ Φs−1 ,s2
,

Φs1 \ Φs2 = Φc
s1,s2

∩ Φs1,s−2
∩ Φc

s−1 ,s2
,

Φs2 \ Φs1 = Φc
s1,s2

∩ Φs−1 ,s2
∩ Φc

s1,s−2
,

where A \B = A ∩Bc denotes the set subtraction.

Proposition 1 Let Φ be a spatio-temporal Boolean Model and Φs1 and Φs2 two
temporal cross sections with s1 < s2. The probability that a point is covered only
in one of the cross section, i.e, s1 but not s2 or s2 but not s1, is given by the
following expression,

P (0 ∈ Φs1 |0 /∈ Φs2) = P (0 ∈ Φs2 |0 /∈ Φs1) = 1− exp{−α(s2 − s1)a0}. (4.12)

Proof 2 Φs is a Boolean model with intensity λs and primary grain A0. By
taking into account Theorem 1 it follows that

P (0 ∈ Φs1 \ Φs2) = P (0 ∈ Φc
s1,s2

)P (0 ∈ Φs1,s−2
)P (0 ∈ Φc

s−1 ,s2
) =

exp{−β(s2 − s1)a0}(1− exp{−α(s2 − s1)a0}) exp{−α(s2 − s1)a0} =

exp{−λsa0}(1− exp{−α(s2 − s1)a0}), (4.13)

and

P (0 ∈ Φs1 |0 /∈ Φs2) =
P (0 ∈ Φs1 \ Φs2)
P (0 /∈ Φs2)

= 1− exp{−α(s2 − s1)a0}. (4.14)

Let φsi be the binary image observed at time si, then P (0 ∈ Φs1 |0 /∈ Φs2) will be
estimated as

P̂ (0 ∈ Φs1 |0 /∈ Φs2) =
P̂ (0 ∈ Φs1 \ Φs2)
P̂ (0 /∈ Φs2)

=
ν2(φs1 ∩ φc

s2
∩W )

ν2(φc
s2
∩W )

, (4.15)

and by using Eq. (4.12) and Eq. (4.15), we will estimate δ(s2−s1) = α(s2−s1)a0

by solving the equation

1− exp{−δ̂(s2 − s1)} =
1
2

(
ν2(φs1 ∩ φc

s2
∩W )

ν2(φc
s2
∩W )

+
ν2(φs2 ∩ φc

s1
∩W )

ν2(φc
s1
∩W )

)
. (4.16)
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The mean area (a0) and the mean perimeter (u0) of A0 and λs were estimated
from each image in the sequence by using the minimum contrast method (38).
For a compact set K we can estimate the capacity functional T (K) using the
minus-sampling estimator from a given realization (i.e. from each binary image
of the sequence) by

T̂W (K) =
ν2((Φ⊕ K̆) ∩ (W 	K))

ν2(W 	K)
, (4.17)

where W is the sampling window and A 	 K̆ = {x ∈ A : x + K ⊂ A}.
We estimate T (B(0, t)) for different t values and fit a quadratic polynomial to
− log(1− T̂ (B(0, t))). If c0 + c1t+ c2t

2 is the fitted function then the parameters
can be estimated as

λ̂ =
c2
π
, û0 =

c1

λ̂
and â0 =

c0

λ̂
. (4.18)

The different estimates are correlated values of the same parameters since the
model is stationary. The different estimates over the image sequence were then
combined by using the batch-mean method (33). Let â0 and λ̂s be the estimates,
the functions α(s) and β(s) can be estimated as

α̂(s) =
δ̂(s)
â0

and β̂(s) = λ̂s − α̂(s). (4.19)

From Eq. (4.10), it follows that α′(s) = λ(1 − FD(s)) and α′′(s) = −λfD(s)
where α′ and α′′ are the first and second derivatives of α, whereas FD and fD

are the cumulative distribution function and the density function of the random
variable D, respectively. The function α(s) is estimated at the observation points
{s1, . . . , sn}. We will estimate its first and second derivatives at any point, making
use of functional data analysis.

A functional datum is a set of discrete measured values {(sj , yj)}j=1,...,n. First,
it is necessary to convert these values to a function which is computable for
any value. We did not use an interpolation process because we assumed that
the discrete values may include some observational error. Instead, we used a
smoothing technique to transform the raw data {(sj , yj)}j=1,...,n to a function
y(t) =

∑K
k=1 ckΦk(t), being {Φk(t)}k=1,...,K a basis functions possessing a certain

number of derivatives. We chose a polynomial spline basis where each Φk(t) is a
piecewise cubic function. We obtained the coefficients ck of the expression y(t)
by minimizing the least squares criterion

SMSSE(y/c) =
n∑

j=1

(yj −
K∑

k=1

ckΦk(δj))2.
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A detailed presentation of this method is given in (50). This procedure has
been applied to the estimated values {(sj , α̂(sj))}j=1,...,n to obtain an estimated
function α̂(s) and to calculate the first and second derivatives of the fitted val-
ues. The spatial-temporal intensity λ was estimated by taking into account that
α′(0) = −λp′(0) = λP (D ≥ 0) = λ, yielding

λ̂ = α̂′(0). (4.20)

The probability density of D, fD, was estimated as

f̂D(s) = − 1

λ̂
α̂′′(s). (4.21)

4.3 A simulation study

In this section we evaluate the precision of the proposed estimators. The param-
eters to be estimated are: λ, the spatial-temporal intensity of germs; a0 and u0,
the mean area and perimeter of the primary grain; ED, the mean duration; λs,
the intensity of the Boolean model Φs; the functions α and β and the density
function fD of the durations.

In order to design the simulation study it is convenient to take into account
the spatial temporal volume fraction p. This volume fraction p depends on the
spatial temporal intensity λ, the expected duration ED, and the mean area of
the primary grain a0 and is given by

p = 1− exp{−λa0ED}. (4.22)

Nine different simulations, combinations of the volume fractions p = {0.10,
0.15, 0.20} and the mean durations ED = {6, 9, 12} seconds were generated, fif-
teen replica for each (see supplementary material and appendix C). That was done
for three different duration distributions (uniform, exponential and Gamma),
thereby analyzing a total of 9 × 15 × 3 = 405 simulated image sequences with
fixed λ = 0.00006. Mean areas a0’s were derived from Eq. (4.22) for each combi-
nation of ED, p and λ. Radii were assumed to follow a uniform distribution in
the interval [ER − 2, ER + 2]. Table 4.1 summarizes all parameter combination
used to generate the image sequences generated in the simulation study. Image
sequences were 512×512 pixels in size, 150 seconds long and sampled at 2 frames
per second. We analyzed more than 120000 frames.
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Table 4.1: Parameters for the simulations

Simulation Vol. Frac. a0 r0 ED

#1 0.10 318.34 U(8,12) 6
#2 0.10 205.25 U(6,10) 9
#3 0.10 158.13 U(5,9) 12
#4 0.15 456.58 U(10,14) 6
#5 0.15 318.34 U(8,12) 9
#6 0.15 205.25 U(6,10) 12
#7 0.20 619.94 U(12,16) 6
#8 0.20 384.32 U(9,13) 9
#9 0.20 318.34 U(6,10) 12

(a) (b) (c)

Figure 4.5: Three frames corresponding to three different STBM with
low, medium and high volume fractions.

Fig. 4.5 (a), (b) and (c), correspond to three images generated with low,
medium and high volume fractions, with radii drawn from a uniform distribution
with a mean of 10, 12 and 14 and a uniform duration with a mean of 6 seconds.

With regard to the random durations D, if D ∼ U(a, b) then ED = a+b
2 and

ED2 = (b−a)2

12 + (a+b)2

4 ; if D ∼ Exp(θ) then ED = 1
θ and ED2 = 2

θ2 ; and if

D ∼ Ga(θ1, θ2), i.e. it is Gamma distributed, then ED = θ1
θ2

and ED2 = θ1+θ2
1

θ2
2

.
In particular, for our simulation study with ED = 6, 9 and 12, the variances
of the duration distribution for the uniform cases were 37.3, 82.3, 145.3, for the
exponential were 72, 162, 288, and for the Gamma 42, 90, 156, respectively.
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In order to assess the errors of the proposed estimators, we used the relative
error. If ξ is the parameter to estimate and ξ̂ the corresponding estimator, the
relative error is defined as

RE(ξ̂) =
ξ̂ − ξ

ξ
.

Tables 4.2 and 4.3 show a summary of the observed relative errors for λ, λs, a0

and u0 with respect to the duration distribution and the volume fractions for the
fifteen replica generated. The mean values were very small for all the parameters.
In particular, the maximum bias in λ was larger when compared with the other
parameters studied. We guess that this may be due to the estimation method
which is based on the first derivative at the origin of α(s). The observed bias
was more severe for higher volume fractions, though these errors would be good
enough in many real-life applications.

Table 4.2: Relative errors with respect to the duration distribution

Parameter Distribution Min. 1st Qu. Median Mean 3rd Qu. Max.

λ Uniform -0.084 -0.003 0.022 0.022 0.047 0.125
Exponential -0.057 0.016 0.053 0.055 0.090 0.153
Gamma 0.127 -0.010 0.013 0.017 0.044 0.159

λs Uniform -0.086 -0.020 0.004 0.000 0.022 0.090
Exponential -0.093 -0.020 0.008 0.009 0.034 0.109
Gamma -0.109 -0.026 0.004 0.000 0.022 0.096

a0 Uniform -0.087 -0.049 -0.028 -0.025 -0.005 0.073
Exponential -0.105 -0.057 -0.031 -0.032 -0.010 0.074
Gamma -0.093 -0.047 -0.030 -0.027 -0.007 0.066

u0 Uniform -0.055 -0.014 0.005 0.009 0.028 0.096
Exponential -0.078 -0.023 0.002 0.002 0.025 0.113
Gamma -0.062 -0.010 0.006 0.007 0.027 0.087

We estimated the confidence intervals for λs, a0, u0 and α(s) by using the
batch-mean method since we had correlated data (33). The block size obtained
was around 7 images each. For the minimum contrast method, we used a square
structuring element which gave us better results because of its digital approxima-
tion (38; 62). These confidence intervals were very small as shown in Table 4.4,
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Table 4.3: Relative errors with respect to the volume fraction

Parameter Vol. Frac. Min. 1st Qu. Median Mean 3rd Qu. Max.

λ 0.10 -0.056 0.004 0.028 0.033 0.059 0.151
0.15 0.083 -0.005 0.030 0.030 0.059 0.158
0.20 0.127 0.001 0.033 0.031 0.067 0.144

λs 0.10 -0.086 -0.019 0.003 0.003 0.024 0.109
0.15 -0.094 -0.019 0.005 0.004 0.025 0.100
0.20 -0.109 -0.027 0.008 0.003 0.031 0.096

a0 0.10 -0.092 -0.055 -0.032 -0.034 -0.016 0.057
0.15 -0.103 -0.052 -0.032 -0.029 -0.006 0.040
0.20 -0.105 -0.046 -0.024 -0.021 0.001 0.074

u0 0.10 -0.062 -0.012 0.002 0.003 0.019 0.093
0.15 -0.075 -0.020 -0.000 0.004 0.027 0.071
0.20 -0.078 -0.010 0.010 0.011 0.035 0.113

where a summary of the observed ratios between the half-width of the confidence
intervals and the mean of the estimates is displayed. We observed very small
ratios due to the short confidence intervals. Mean ratios were around 5% for
the three distributions, those of the exponential being the highest ones, rising to
values of 12% due to its higher variances compared with the uniform and Gamma
distributions.

In the α(s) estimation each replica provided us with an estimated function and
its corresponding confidence interval. The theoretical expression of α(s) in Eq.
(4.10) changes according to the p(s) expression which depends on the temporal
distribution used. In our study we applied 20 cubic bases to transform raw data
estimated into a piece-wise function, which was appropriate for functions like
α(s) re-sampled at 40 values.

Let us see the exact expression of the function p(s) for the particular distri-
butions of the random variable D used later in the simulation study.

If the random duration D has an exponential distribution with parameter θ
(i.e. its density function is f(t) = θ exp{−θt} for t ≥ 0 and zero otherwise) then
p(s) = exp{−θs}/θ.
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Table 4.4: Summaries of the ratios between the half-width of the confidence
Intervals and the mean.

Unif (min/mean/max) Exp (min/mean/max) Gamma (min/mean/max)

λs 0.024/0.051/0.089 0.026/0.055/0.124 0.024/0.051/0.103

a0 0.020/0.042/0.069 0.022/0.046/0.127 0.019/0.043/0.091

u0 0.021/0.041/0.068 0.021/0.045/0.129 0.020/0.042/0.084

If D is uniform in the interval [a, b], then we have p(s) = a+b
2 − s if 0 ≤ s ≤ a;

p(s) = (b−s)2

2(b−a) if a ≤ s ≤ b and zero if s ≥ b.

Finally, a Gamma distribution with parameters θ1 and θ2 has a density func-
tion given by

f(t) =
θθ1
2

Γ(θ1)
tθ1−1e−θ2t if t > 0, (4.23)

and 0 otherwise. It can be proved that

p(s) =
Γ(θ1 + 1)
θ2Γ(θ1)

(1−G(θ2s, θ1 + 1))− s(1−G(θ2s, θ1)), (4.24)

where Γ(θ) is de Gamma function defined as,

Γ(θ) =
∫ +∞

0
tθ−1 exp{−t}dt,

and G(s, θ) is the incomplete Gamma function defined as,

G(s, θ) =
1

Γ(θ)

∫ s

0
tθ−1 exp{−t}dt.
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Because,

p(s) =
∫ +∞

s

∫ +∞

t

θθ1
2

Γ(θ1)
uθ1−1e−θ2ududt

=
∫ +∞

0

∫ +∞

0
1[s,+∞)(t)1[t,+∞)(u)

θθ1
2

Γ(θ1)
uθ1−1e−θ2ududt

=
∫ +∞

0

∫ +∞

0
1[0,u](t)1[s,+∞)(u)

θθ1
2

Γ(θ1)
uθ1−1e−θ2ududt

=
∫ +∞

0
(u− s)1[s,+∞)(u)

θθ1
2

Γ(θ1)
uθ1−1e−θ2ududt

=
∫ +∞

s

θθ1
2

Γ(θ1)
uθ1e−θ2ududt− s

∫ +∞

s

θθ1
2

Γ(θ1)
uθ1−1e−θ2ududt

=
Γ(θ1 + 1)
θ2Γ(θ1)

(1−G(θ2s, θ1 + 1))− s(1−G(θ2s, θ1)).

The last equality follows from the equation

G(s, θ) = 1− 1
Γ(θ)

∫ +∞

s
uθ−1e−ududt, (4.25)

∫ +∞

s

θθ1
2

Γ(θ1)
uθ1e−θ2udu =

Γ(θ1 + 1)
θ2Γ(θ1)

(1−G(θ2s, θ1 + 1)), (4.26)

and ∫ +∞

s

θθ1
2

Γ(θ1)
uθ1e−θ2udu. (4.27)

Figs. 4.6 (a), 4.7 (a) and 4.8 (a) correspond to simulated frames with low area
fraction (0.10) following uniform, exponential and Gamma distribution, respec-
tively. Fig. 4.6 (b) displays (solid line) the mean of the centers (the estimates of
the α functions) and the corresponding means for the upper and lower extremes
of the confidence intervals (dashed lines) for the 15 replica with duration uni-
formly distributed from 4 to 8. Figs. 4.7 (b) and 4.8 (b) show the same function
using different temporal distribution, in particular, exponential and Gamma dis-
tributions with mean 6. For each replica we fit a polynomial spline function over
the raw data and then we obtained the mean and interval functions, by averaging
the function coefficients instead of the estimated values. Figs. 4.6 (c), 4.7 (c)
and 4.8 (c) correspond to the first derivative of α. Figs. 4.6 (d), 4.7 (d) and 4.8
(d) display f̂D by applying Eq. (4.21).
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(a) (b)

(c) (d)

Figure 4.6: Analysis of the 15 replica for uniform duration. (a) A frame
of a simulated video; (b) α-function; (c) α′-function; (d) probability density of
durations, f̂D.

Since the duration distribution is obtained from α(s), it is interesting to an-
alyze its relative error with respect to the duration distribution and the different
volume fractions. The columns in Fig. 4.9 correspond to the duration distribu-
tion (uniform, exponential and Gamma) and the rows to the volume fractions
p = 0.10, 0.15, 0.20. Each plot displays the minimum and maximum (dot-dashed
lines), upper and lower quartile (dashed line) and the mean (solid lines) relative
errors. The 3 × 15 image sequences generated for each combination of volume
fractions and duration distributions were pooled to obtain each plot. The mean
relative errors were really small and did not depend on p, though they did on the
distribution. The worst case corresponded to the exponential and it is likely to
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(a) (b)

(c) (d)

Figure 4.7: Analysis of the 15 replica for exponential duration. (a) A frame
of a simulated video; (b) α-function; (c) α′-function; (d) probability density of
durations, f̂D.

be due to the higher variance of the simulated durations.

Finally, Table 4.5 shows the errors for the mean of D (estimated as p̂(0)) with
respect to the duration distribution. In general, mean relative errors stayed small
and were comparable with those in the other parameters.

A library of functions for the generation and estimation of STBM has been
written in MATLAB (a trademark of The MathWorks Inc, USA) and is available
on request. The toolbox FDA for MATLAB developed by J.O. Ramsay was used
to perform the functional data analysis.
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(a) (b)

(c) (d)

Figure 4.8: Analysis of the 15 replica for gamma duration. (a) A frame
of a simulated video; (b) α-function; (c) α′-function; (d) probability density of
durations, f̂D.

4.4 An application to Cell Biology

STBMs were applied to the study of the biological process of endocytosis. En-
docytosis happens in discrete events, in which cargo-loaded vesicles detach from
the plasma membrane and are trafficked inside the cell. We employed STBMs to
estimate the number of discrete endocytic events per unit area and time and their
duration distribution. Clathrin-mediated endocytosis is one of the main endo-
cytic routes. Endocytosis has recently been imaged in real time, by conjugating
clathrin and other endocytic accessory proteins to fluorescent molecules and imag-
ing cells with specialized microscopy techniques such as Total Internal Reflection
Fluorescence Microscopy (TIRFM) (69). TIRFM allows selective illumination of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Relative error of α-function and confidence region with respect
to the duration distribution (columns) and volume fraction (rows).

the cellular plasma membrane, thereby providing superior signal-to-noise. Under
TIRFM, the assembly of fluorescently-labeled clathrin at a site of ongoing endo-
cytosis results in the appearance and steady growth of a diffraction-limited spot.
The time elapsed between the appearance and the disappearance of a fluorescent
clathrin spot is defined as the duration of a discrete endocytic event. The areas of
fluorescence associated to the different endocytic spots overlap, forming random
clumps of different sizes, shapes and durations. The duration of discrete endo-
cytic events, and their distribution in space and time, are influenced by many
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Table 4.5: Relative errors for ED. Values Min/Mean/Max

ED Uniform Exponential Gamma

6 −0.031/0.002/0.042 −0.117/0.124/0.217 −0.044/0.047/0.170

9 −0.042/− 0.013/0.014 −0.021/0.068/0.163 −0.158/− 0.029/0.031

12 −0.057/− 0.020/− 0.003 −0.130/− 0.061/0.009 −0.105/− 0.035/0.003

biological factors.

It is common practice in endocytosis literature to use shape and size criteria
from consecutive frames of a time-lapse movie in order to select the clumps that
are presumably composed of a single endocytic vesicle (19; 71). These techniques
based on segmentation and labelling of the connected components lead to an
underestimation of the number of vesicles and the duration of endocytosis (17).

We applied our estimators to six image sequences in which clathrin-GFP
proteins had been previously segmented. The acquisition rate was 1 frame every
four seconds. Table 4.6 describes these image sequences obtained from three cells.

Table 4.6: Description of the six sequences expressing clathrin-GFP
Cell Seq. Frames ν2(W )

1 1 408 171 × 165
2 408 222 × 184

2 3 306 147 × 205
4 306 85 × 287

3 5 432 141 × 149
6 432 132 × 224

The estimates and their confidence intervals obtained were obtained for the six
sequences. Table 4.7 summarizes these results. Data obtained manually (30; 71)
showed that the average life time of clathrin events was 73.8± 31.5 seconds. Fig.
4.10 shows four binary consecutive frames of clathrin images and the duration
distribution obtained.

The estimated α functions and probability density of durations, fd for each
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Table 4.7: Estimated obtained for the six sequences expressing clathrin-GFP
Cell Seq. λ ED (sec.)

1 1 0.000118 84.57
2 0.000099 85.39

2 3 0.000325 70.81
4 0.000117 83.07

3 5 0.000110 73.46
6 0.000108 69.80

(a) (b) (c) (d)

Figure 4.10: Snapshots of a cell expressing clathrin.(a)-(d) are the frames
of a clathrin video taken at times 1, 40, 80 and 120 s, from left to right.

cell is shown in Figs. 4.11, 4.12 and 4.13.

4.5 Conclusions

We have proposed a new approach for the analysis of objects that overlap spa-
tially and temporally in image sequences. Here, from the original binary image
sequence, we have stacked them into a 3D binary image. We have modelled
this 3D object as a realization of a spatio-temporal Boolean model, a particular
case of a non-isotropic 3D Boolean model. It brings significant improvements
for the analysis of this kind of data, enabling us to estimate the mean number
of grains per unit area and time, as well as the density function of the random
duration, among other things. The proposed procedure is both robust and easy
to implement. Functional data analysis techniques have permitted more accurate
estimated functions, as well as in deriving and averaging them.
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(a) (b)

(c) (d)

Figure 4.11: Estimated functions of cell 1.(a) and (c) Estimated α function;
(b) and(d) probability density function of durations, f̂d. (a) and (b) correspond
to sequence 1, and (c) and (d) to sequence 2.

A simulation study was performed to show the errors of the proposed esti-
mators. More than 400 image sequences (120000 frames) were simulated with
different duration distributions, volume fractions and grain size distributions.
The relative error was calculated for all the parameters simulated. Results from
the simulation study showed that the bias obtained was small enough to apply
the proposed estimators on real-life applications.

We think this errors could be due to the spatial and temporal discretization
of the image sequence. On the one hand, images were 512 × 512 pixels in size,
with grain radii ranging from 2 to 14 pixels. Grains with such radii under that
resolution are not really disks. On the other hand, the sampling rate was 2 frames
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(a) (b)

(c) (d)

Figure 4.12: Estimated functions of cell 2.(a) Estimated α function; (b)
probability density function of durations, f̂d. (a) and (b) correspond to sequence
3, and (c) and (d) to sequence 4.

per second, and the mean durations simulated ranged from 6 to 12 seconds. A
study of the relative error behavior with respect to the image size and acquisition
rate is still to be done. Lower values could be expected if higher acquisition rates
and higher spatial resolution were used.

Our study implies dealing with functions estimated at a discrete set of values.
An approach based on functional data analysis was used in order to obtain a
precise estimation of the second derivative.

The use of STBMs can provide a powerful tool to analyze the behavior of the
clathrin-dependent endocytic machinery across a range of different conditions in
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(a) (b)

(c) (d)

Figure 4.13: Estimated functions of cell 3. (a) Estimated α function; (b)
probability density function of durations, f̂d. (a) and (b) correspond to sequence
5, and (c) and (d) to sequence 6.

a fast, accurate and automated way. In particular, the application of STBM to
real image sequences of cells expressing clathrin protein allowed us to get accurate
information never obtained before, such as the probability density function of
durations of clathrin. STBM could be used as a robust screening tool to study the
dynamics of in-vivo cells expressing certain proteins under different treatments.
An important factor to take into account before applying the spatio-temporal
Boolean model is the acquisition rate. If the rate is not fast enough a considerable
part of the events may be born and dead between two consecutive frames, and
so the estimation of the parameters would be biased.

Potential extensions to the proposed model include to assume a non-homogeneous
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distribution of germs or occurrence times, since these hypotheses could not be
tenable in some real applications. Following previous research concerning Boolean
models (41; 48), it could be reasonable to estimate the covariance function of the
STBM and, from it to estimate (assuming a parametric model for the primary
grain) the distribution of the primary grain. These will be considered in future
research.

We have implemented a software tool in MATLAB for simulating and estimat-
ing of spatio-temporal Boolean models. This tool is freely available on request.
For more detail see appendix B.
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Chapter 5

Estimation of STBMs by 2D

Boolean Model Aggregation

5.1 Introduction

As we discussed in the previous chapter, the Boolean model is a static stochastic
model, no temporal component is incorporated into its definition. A natural ex-
tension of this model has been proposed by adding the temporal dimension and
it has been used to study some biological mechanisms in cell plasma membranes.
Boolean models are extended in order to capture both temporal and spatial prop-
erties while formalizing a configuration of independent randomly placed particles
with random durations in time. Hence, this model allows us to study jointly
the spatial and temporal behavior of overlapping short-lived events from image
sequences.

The estimation procedure that we propose in this chapter is based on the
analysis of the image sequences generated after iteratively aggregating several
frames of the original sequence into one frame. Such an addition of frames brings
a new spatio-temporal Boolean model with different parameters, due to the prop-
erties of temporal Boolean models. In fact, in the aggregated model the grains
keep the same size distribution whereas the spatial temporal intensity increases.
The study of such an increment allows us to obtain the distribution of the du-
rations. In previous chapter, the estimation of the parameters was based on the
joint analysis of only two frames. Now, we base our estimators on the union of
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more than two temporal cross sections of the original spatio-temporal Boolean
model. Each temporal cross section is a Boolean model and, as is well-known,
the union of Boolean models is again a Boolean model (see Section 5.2). This is
our approach here.

Let Φ be a temporal Boolean model and Φs1 , . . . ,Φsk
temporal cross sections

where s1 < s2 < . . . < sk then Φs1 ∪ . . .Φsk
is a Boolean model too. Perhaps it

is simpler to illustrate the result with k = 2. Then

Φs1 ∪ Φs2 = Φs1,s2 ∪ Φs1,s−2
∪ Φs−1 ,s2

where the three random sets in the right hand side of the equation are independent
random sets. Note that s− indicates that the primary grain considered does not
belong to the temporal cross section at s. For k = 3, we have

Φs1 ∪ Φs2 ∪ Φs3 = Φs1,s2,s3 ∪ Φs1,s2,s−3
∪ Φs1,s−2

∪ Φs−1 ,s2,s3
∪ Φs−1 ,s2,s−3

∪ Φs−2 ,s3
.

All the random sets at the right hand side of the former equation are independent
Boolean models. Similarly it can be formulated a similar equation for the general
case.

This new methodology to estimate the parameters of a STBM is more robust
against noise because the estimates are obtained from group of frames instead
of pairs of them. In the previous chapter, the estimation procedure was based
on differentiation of couples of frames over time in order to observe changes in
intensity. Now we propose to study this intensity change not by using couples of
frames but several frames to avoid noise problems.

An example of a spatio-temporal Boolean model is shown in Fig. 5.1(a). The
vertical axis corresponds to the time whereas the horizontal plane is the image
plane. The union of these cylinders is the realization of the spatio-temporal
Boolean model. Fig. 5.1(b) shows some temporal cross sections. Germs are
represented as black dots whereas grains are the disks shifted to the germs. It is
important to note that there is temporal and spatial overlapping. The degree of
overlapping depends on both the number of grains per unit area and time and
their durations. Another important remark is that due to the time discretization,
a given grain could be born between two consecutive temporal cross sections and
it would not be observed (if it was still alive) until the next cross section (frame).

The outline of this chapter is as follows. In Section Section 5.2 considers the
statistical analysis of the spatio-temporal Boolean model by aggregation. A sim-
ulation study designed to evaluate the estimators proposed is given in Section 5.3.
Finally, some conclusions and further developments are summarized in Section
5.4.

98



5.2 Statistical analysis based on frame aggregation

(a) (b)

Figure 5.1: A realization of a spatio-temporal Boolean model with a
circular primary grain. (a) Cylinders correspond to events in the sequence.
(b) Five consecutive cross-sections.

5.2 Statistical analysis based on frame aggregation

Here we based our analysis on the fact that the union of independent Boolean
models is a new Boolean model. As it was shown in Chapter 4, Section 4.2.2, our
spatio-temporal Boolean model can be considered as the union of the different
and independent spatio-temporal Boolean models (see 4.6).

Let Φ be a temporal Boolean model and Φs1 , . . . ,Φsk
temporal cross sections

where s1 < s2 < . . . < sk then Φs1 ∪ . . .Φsk
is also a Boolean model. An

illustration with k = 2 follows,

Φs1 ∪ Φs2 = Φs1,s2 ∪ Φs1,s−2
∪ Φs−1 ,s2

where the three random sets in the right hand side of the equation are independent
random sets. Note that s− indicates that the primary grain considered does not
belong to the temporal cross section at s. For k = 3, we have

Φs1 ∪ Φs2 ∪ Φs3 = Φs1,s2,s3 ∪ Φs1,s2,s−3
∪ Φs1,s−2

∪ Φs−1 ,s2,s3
∪ Φs−1 ,s2,s−3

∪ Φs−2 ,s3
.

All the random sets on the right hand side of the equation are independent
Boolean models. Similarly it can be formulated for the general case.
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Again, we will consider the estimation of the spatial temporal intensity, the
area and perimeter of the primary grain, and the distribution of the random
durations.

Our approach is based on the accumulation of different frames. A given
temporal cross section of a STBM is a (static) Boolean model. If we accumulate
different frames of a STBM, the resulting random set is again a STBM with
higher intensity. In this section we will prove it and the corresponding intensity
will be determined. Given a sequence of temporal cross sections of a given STBM,
we will construct different accumulated versions by choosing different lags and
different numbers of frames to be accumulated. For each accumulated video
the corresponding intensity will be estimated by using the well-known minimum
contrast method (38; 62). These estimated intensities allow us to provide a non-
parametric estimator of both the probability density of the random durations
of grains and the spatial temporal intensity, λ, of the original spatio-temporal
Boolean model. These are the key points of this chapter. Subsection 5.2.1 gives
the basic probabilistic results needed later. Basically, we will use different results
concerning Poisson point process (11; 14; 66; 67). Subsection 5.2.2 contains a
detailed presentation of the estimation procedure.

5.2.1 Previous results

Let Ψ = {tn}n≥1 be a Poisson point process in R with intensity θ and let {dn}n≥1

be a sequence of independent and identically distributed non-negative random
variables. If the n-th grain is born at time tn and dies at time tn + dn, then the
grain will be alive during the time interval [tn, tn + dn]. Let s0 = −∞ < s1 <
s2 < . . . < sk < sk+1 = +∞ be a set of fixed (previously specified) points in
R, the sampling times. Let N (sj−1,sj ]

(si−1,si]
denote the number of points tn such that

tn ∈ (si−1, si] and tn + dn ∈ (sj−1, sj ] with j > i. In short, the random variable
N

(sj−1,sj ]

(si−1,si]
counts the number of events in Ψ being born in (si−1, si] and dying in

(sj−1, sj ]. Let us consider the point process in R defined as

Ψ[si,si+1)
(−∞,s1] = {tn ∈ Ψ : tn ≤ s1 < si ≤ tn + dn < si+1}. (5.1)

In particular, we define

Ψs = {tn : tn ≤ s < tn + dn} (5.2)

i.e. the events alive at time s. We have the following results:

100



5.2 Statistical analysis based on frame aggregation

Proposition 2 The point process Ψ[si,si+1)
(−∞,s1] is an inhomogeneous Poisson point

process with intensity function given by

r(tn) = θP (si ≤ tn + dn < si+1) if tn ≤ s1 and 0 if tn > s1. (5.3)

Note that we are applying a thinning to the original Poisson point process. The
probability of a given point being removed depends on its temporal location and
duration. It is well-known that the resulting point process is a non-homogeneous
Poisson point process (11; 66). The total number of points in Ψ[si,si+1)

(−∞,s1] i.e.

N
(si,si+1)
(−∞,s1] is a Poisson variable with mean given by the following proposition.

Proposition 3 The mean number of events which were born before s1 and died
between si and si+1 is equal to

EN
[si,si+1)
(−∞,s1] = θ

( ∫ +∞

si−s1

P (D ≥ t)dt−
∫ +∞

si+1−s1

P (D ≥ t)dt
)
. (5.4)

Proof 3 (Proposition 3)

EN
[si,si+1)
(−∞,s1] = θ

∫ +∞

−∞
r(t)dt =

θ

∫ s1

−∞
P (si ≤ D + t < si+1)dt = θ

∫ +∞

0
P (si − s1 ≤ D − t < si+1 − s1)dt =

θ

∫ +∞

0
P (D ≥ t+ (si − s1))dt− θ

∫ +∞

0
P (D ≥ t+ (si+1 − s1))dt =

θ

∫ +∞

si−s1

P (D ≥ t)dt− θ

∫ +∞

si+1−s1

P (D ≥ t)dt. (5.5)

From now on, we will denote

p(s) =
∫ +∞

s
P (D ≥ t)dt. (5.6)

Note that p(0) =
∫ +∞
0 P (D ≥ t)dt = ED as it is well-known. Then,

EN
[si,si+1)
(−∞,s1] = θp(si − s1)− θp(si+1 − s1). (5.7)

In general, we have the following corollary.
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Corollary 1 The mean number of points born before s and dead after s is equal
to

EN
(s,+∞)
(−∞,s] = θ

∫ +∞

0
P (D ≥ t)dt = θp(0) = θED. (5.8)

Proposition 4 Let s0 = −∞ < s1 < s2 < . . . < sk < sk+1 = +∞ be the
observation times and N

(sj−1,sj ]

(si−1,si]
be the number of points tn which were born in

the time interval (si−1, si] and died in the time interval (sj−1, sj ] where j > i.
Then

EN
(sj−1,sj ]

(si−1,si]
= θp(si−1, si; sj−1, sj), (5.9)

where

p(si−1, si; sj−1, sj) = p(sj−1−si)−p(sj−1−si−1)−p(sj−si)+p(sj−si−1). (5.10)

Proof 4 (Proposition 4) We have

N
(sj−1,sj ]

(si−1,si]
|N(si−1,si] = n ∼ B(n, p̃), (5.11)

where
p̃ = P (sj−1 ≤ T +D < sj) (5.12)

being T a uniform random variable in the interval [si−1, si) and T and D being
independent. We have

P (sj−1 ≤ T +D < sj) =
∫ si

si−1

P (sj−1 − t ≤ D < sj − t)
1

si − si−1
dt =

1
si − si−1

( ∫ si

si−1

P (D ≥ sj−1 − t)dt−
∫ si

si−1

P (D ≥ sj − t)dt
)

=

1
si − si−1

( ∫ sj−1−si−1

sj−1−si

P (D ≥ v)dv −
∫ sj−si−1

sj−si

P (D ≥ v)dv
)

=

1
si − si−1

(
p(sj−1−si)−p(sj−1−si−1)−p(sj−si)+p(sj−si−1)

)
= θp(si−1, si; sj−1, sj).

(5.13)

Finally,

EN
(sj−1,sj ]

(si−1,si]
= E

[
E

[
N

(sj−1,sj ]

(si−1,si]
|N(si−1,si]

]]
= E

[
N(si−1,si]

]p(si−1, si; sj−1, sj)
si − si−1

ψ(si − si−1)
p(si−1, si; sj−1, sj)

si − si−1
= θp(si−1, si; sj−1, sj). (5.14)
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We are interested in the mean number of points of the point process ∪k
i=1Ψsi

i.e. the union of all points alive in some si’s. Note that the (random) number of
points in ∪k

i=1Ψsi is equal to
∑k

i=1

∑k+1
j=i+1N

(sj−1,sj ]

(si−1,si]
. We will denote

ψ(s1, s2, . . . , sk) = E

[ k∑
i=1

k+1∑
j=i+1

N
(sj−1,sj ]

(si−1,si]

]
=

k∑
i=1

k+1∑
j=i+1

E

[
N

(sj−1,sj ]

(si−1,si]

]
. (5.15)

We have the following result.

Proposition 5

ψ(s1, s2, . . . , sk) = θ

[
kp(0)−

k∑
i=2

p(si − si−1)
]
. (5.16)

Proof 5 (Proposition 5) Let us see a graphical proof of the result. See Fig.
5.2. At s1 we have a mean number of points given by θp(0). In the interval
[s1, s2) the mean number of deaths is given by p(s1)− p(s2). The signs + and −
in the bottom-left cell refer to +p(s2) and p(s1). A similar comment applies to
the left cells in Fig. 5.2. The interpretation of the rest of the signs follows. In the
node corresponding to si and sj each sign corresponds to the term p(si)− p(sj).
The different terms cancel each other out except for a few terms.

ψ(s1, . . . , sk) = E

k∑
i=1

k+1∑
j=i+1

N
(sj−1,sj ]

(si−1,si]
= θ

[
kp(0)−

k∑
i=2

p(si − si−1)
]
. (5.17)

In particular, if the times si are equally spaced, as usual, with si − si−1 = δ,
then Eq. (5.16) becomes

ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ) = θ

[
kp(0)− (k − 1)p(δ)

]
. (5.18)

5.2.2 Estimation

Our data consist of the sequence of binary images corresponding to {Φsi ∩W}n
i=1

where Φ is the underlying spatio-temporal Boolean model, W is the sampling
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Figure 5.2: Signs of the p(si − sj).

window (the region of R2 where we can observe the random set) and s1 < . . . < sn

are the sampling (or observation) times. Note that Φ denotes the stochastic
model. From now on, we will denote the realization of Φ as φ. The sequence of
binary images really observed will correspond to {φsi ∩W}n

i=1.

If Ψ denotes now the homogeneous Poisson point process associated with
the spatio-temporal Boolean model Φ, then the point process composed of the
times ti’s such that the corresponding location belongs to W , Ψ2 = {ti : (xi, ti) ∈
Ψ, xi ∈W}, is a homogeneous Poisson point process in the real line with intensity
θ = λν2(W ).

Given the original sequence {Φsi ∩ W}i=1,...,n with si − si−1 = δ we will
consider the accumulated sequence defined as,

Φ̃si = ∪i+k
j=iΦsj (5.19)

with i = 1, . . . , n − k + 1 and k being a fixed integer. If Φ is a spatio-temporal
Boolean model, then the different Φ̃si are (static) Boolean models. The proof is
obvious by using the arguments given in (6).

If we assume that si−si−1 = δ, we will denote the intensity of Φ̃si as λs(k, δ).
Note that this intensity only depends on the lag δ and k (the number of frames
that we are accumulating). In particular, if δ = 0 and k = 1, we have λs(1, 0) =
λν2(W ) = θ. For each frame in the aggregated sequence, we can estimate the
intensity by using the minimum contrast method. Afterwards, we apply the
batch-mean method (33) over the estimates obtained from each frame in the
aggregated sequence in order to calculate the spatial intensity of the whole image
sequence, λ̂s(k, δ). We repeat this procedure for different values of k and δ.
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Eq. (5.18) becomes

ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ) = λν2(W )
[
kp(0)− (k − 1)p(δ)

]
. (5.20)

From the definition of λs(k, δ) is clear that

λs(k, δ) =
ψ(s1, s1 + δ, . . . , s1 + (k − 1)δ)

ν2(W )
= λ

[
kp(0)− (k − 1)p(δ)

]
. (5.21)

Let us rewrite Eq. (5.21) as

λs(k, δ) = (λp(0)− λp(δ))k + λp(δ), (5.22)

If we consider the right hand side of this equation as a function of the number
of frames k, then the coefficient associated with k and the constant have simple
interpretations. Let

α(δ) = λp(0)− λp(δ), (5.23)

and
β(δ) = λp(δ). (5.24)

It was proved in Eq. 4.10 that α(δ) is the mean number of new grains between
two frames δ apart. Note that due to the stationarity of the process, it can also
be interpreted as the mean number of dead grains between these two frames.
The function β(δ) represents the mean number of germs which are alive between
two frames separated by δ frames. Then Eq. (5.22) can be reformulated as
reformulated as

λs(k, δ) = α(δ)k + β(δ). (5.25)

The left hand side of the previous equation is estimated for different δ and k
values. Now, we fixed the δ value and consider the estimates λ̂s(k, δ) for this fixed
δ. A weighted least square fit is then performed where the predictor is k and the
dependent variable is λ̂s(k, δ). We repeat that fit for different δ ∈ {δ1, . . . , δn}.
This gives rise to the estimated functions α̂(δi) and β̂(δi) with i = 1, . . . , n.

Finally, estimates of α̂(δi) and β̂(δi) with i = 1, . . . , n will be used, in turn,
to obtain estimates of the spatial temporal intensity λ̂ and the density function
of the random duration, fD. In particular, as we showed in Chapter 4 we have

α′(0) = −λp′(0) = λP (D ≥ 0) = λ, (5.26)

where α′(0) denotes the derivative at the origin of the function α(δ). Furthermore,
the function p(δ) can be obtained as

p(δ) =
λs(1, 0)− α(δ)

λ
, (5.27)
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because λs(1, 0) = λED. Moreover, it holds that

p′(δ) = −P (D ≥ δ) = −(1− P (D ≤ δ)) = FD(δ)− 1,

and

p′′(δ) = fD(δ), (5.28)

where p′′(δ) is the second derivative of p(δ). From the previous equations it is
clear that a good estimation of the function α will give us good estimators of λ
and fD.

From here on, we adopt an approach based on functional data analysis. We
fitted a functional object to the data {(δj , α̂(δj))}n

j=1 and, by using Eq. (5.26), we
estimated the spatial temporal intensity λ. Let λ̂ be the estimated value. Then,
by replacing the parameters λ and λs(1, 0) in Eq. (5.27) with the corresponding
estimates and the function α with the previously fitted functional object, we had
the corresponding functional object for the function p(δ). By taking into account
Eqs. (5.27) and Eq. (5.28) we obtained the non-parametric estimator of fD.
Finally, the mean duration ED was estimated as the value of p at zero.

5.3 Results

In this section we describe the results obtained after performing a study on sim-
ulated spatio-temporal Boolean models. These experiments allow us to find out
the precision of the proposed estimators and to obtain the error levels expected
before running a real application.

In order to obtain more realistic results we performed the study over different
spatio-temporal Boolean models. This brought us the possibility of studying
several scenarios which could be comparable to some real applications. The
parameters of interest to be estimated from the binary image sequences were: the
spatial temporal intensity of the germ process, λ, the mean number of germs per
unit area in a given frame, λs; the mean duration of the events, ED; and finally
a functional parameter fD which is the density of durations. The mean area and
perimeter of the primary grain, a0 and u0, were obtained as well. Though they
do not refer to purely temporal information, we present a summary description
of their relative errors.
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5.3.1 Simulation Study

Note that the proposed procedure is based on the accumulation of different de-
pendent Boolean models and the estimation of their corresponding parameters
by using the minimum contrast method. The behavior of this method depends
heavily on the area fraction of the Boolean model i.e. the mean area covered by
the Boolean model per unit area. Therefore, we had to take into account the
final area fraction after the accumulation of the frames.

Let pv be the volume fraction i.e. the mean volume covered by the spatio-
temporal Boolean model per unit volume (unit area per unit time). By taking into
account the properties of the Boolean model, we have pv = 1 − exp{−λa0ED}.
We set λ to 0.000035 and the volume fraction pv to 0.11. That allowed us to study
the estimator performances as a function of the probability distribution chosen
for the duration and the mean of the corresponding distribution. Three different
probability distributions were used for the random durations (uniform, exponen-
tial and Gamma) and two different values for their means (6 and 8 seconds). The
primary grain was circular with uniform distribution for the radius. In particular,
a uniform radius in [11, 15] was used when the mean duration chosen was equal to
six seconds and a uniform radius in [9, 13] when the mean duration was set to 8
seconds. Note that the mean area of the primary grain a0 is equal to a0 = πER2.
Six videos of 600 frames each were generated for the different experimental setups
previously described. Table 5.1 summarizes the parameter combination used to
generate all the videos. The column headed Distribution refers to the duration
distribution and the column headed R0 contains the distribution of the random
radius of the primary grain. Note that a uniform distribution is specified giving
the maximum and minimum of the support. If D follows an exponential distribu-
tion, D ∼ Expo(a), the parameter a is the mean. When a Gamma distribution is
assumed, D ∼ Gamma(a, b) then ED = a/b. We simulated image sequences of
512× 512 pixels in size (each image) and 150 seconds long. Videos were sampled
at 4 frames per second, so we had 600 frames for each sequence. Fig. 5.3 displays
four consecutive subimages of the two simulated spatio-temporal Boolean models
where the random duration follows a uniform distribution.

In order to illustrate the aggregation effect, Fig. 5.4 shows both original
frames (see Video 5.1 in supplementary material) and accumulated ones for dif-
ferent values of k and δ. These frames correspond to simulation #1 described
in Table 5.1. The first row corresponds to three frames of the original sequence;
the remaining rows are frames generated by unions. Specifically, the second row
corresponds to k = 2 and δ = 3 (see Video 5.2 in supplementary material). Note
that the number of grains here is higher compared with the original frames. The
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Table 5.1: STBMs used in the study.
Distribution R0

#1 Unif(4,8) Unif(11,15)
#2 Expo(6) Unif(11,15)
#3 Gamma(6,1) Unif(11,15)

#4 Unif(6,10) Unif(9,13)
#5 Expo(8) Unif(9,13)
#6 Gamma(8,1) Unif(9,13)

(1) (2) (3) (4)

(1) (2) (3) (4)

Figure 5.3: Four consecutive frames of two image sequences with dif-
ferent parameters. The first row corresponds to simulation #1 with ED = 6
seconds. The second row corresponds to simulation #4 in which ED = 8 seconds.
Here, subimages of 256 × 256 pixels in size are shown in order to highlight the
differences between grain radii.

addition effect depends not only on the number of frames accumulated but also
on the δ chosen. This fact can be observed when comparing rows two (k = 2,
δ = 3) (see Video 5.2 in supplementary material) and three (k = 2, δ = 6)
(see Video 5.3 in supplementary material). This behavior is due to the fact that
for higher values of δ the dependency between the generated Boolean models is
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less and more new grains appear. In summary, a greater area fraction can be
expected. For really large δ values, the generated Boolean models are then com-
pletely independent and the area fractions is a constant value. Finally, the fourth
row corresponds to a higher area fraction, with k = 5 and δ = 9 (see Video 5.4
in supplementary material). Here, the increment in intensity and overlapping is
clearly observable.

Let us see in-depth the results obtained for one of the simulations, simulation
#1. We saw the estimators used for the functions α and β in previous sections.
In Fig. 5.6 (a) these estimates are plotted. Note that function α(δ) should be
equal to λs for large δ values because p(δ) goes to zero when δ increases. The
reverse comment applies to β. Moreover, the sum of α(δ) + β(δ) should be equal
to λs. The estimated sum is plotted along with its theoretical value. A slight
overestimation of λs is appreciable with respect to the theoretical value. This is
due to an overestimation of β that did not reach the expected null value. We
guess this error is mainly due to the spatial and temporal discretization of the
image sequence. On the one hand, since images were 512×512 pixels in size, with
grain radii ranging from 9 to 15 pixels, the grains were not really disks. On the
other hand, the sampling rate was 4 frames per second, and the mean durations
simulated were as short as 6 and 8 seconds. In this example, with D ∼ Unif(4, 8)
the function p(δ) = 0 for δ ≥ 8 and α(δ) should be equal to λs for δ values greater
than 8 seconds. Fig. 5.6 (b) shows p(δ) for a time interval of [0, 11] seconds.

We used an approach based on functional data analysis in order to obtain a
precise estimation of the second derivative, the duration density fD. Estimations
of p(δ) at different δ’s were used to construct a continuous function which repre-
sented the data more smoothly and allowed us to perform a continuous derivation
over time. Because the basis functions are not themselves smooth everywhere,
they will not give rise to smooth basis expansions either. From among several
possibilities we chose a polynomial spline basis {Φk(t)}k=1,...,K , where each Φk(t)
is a piecewise cubic function, since splines are a good basis for the representation
of smooth functions.

A total of 20 different cubic b-spline functions were used to fit the functions
on the 44 discrete estimations for the uniform distribution case, and 100 for
the exponential and Gamma distributions. It was necessary to impose some
constraints on the roughness. In particular, a roughness penalty factor of 0.10
was used for the uniform simulations, 2 for the exponential ones and 0.50 for the
Gamma ones. The criterion used to fit a smooth curve then had two terms. The
first assessed the fidelity of the curve to the observed data. The second term, the
penalty term, measured the extent to which the fitting function was smooth. The
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(1) (2) (3)

(1)+(4) (2)+(5) (3)+(6)

(1)+(7) (2)+(8) (3)+(9)

(1)+(10)+...+(35) (2)+(11)+...+(36) (3)+(12)+...+(37)

Figure 5.4: Aggregation effect. The first row shows three frames of original
sequence. The second row shows a sequence made up by aggregating frames with
k = 2 and δ = 3. The third row corresponds to k = 2 and δ = 6. The last row
shows a higher aggregation effect with k = 5 and δ = 9. For this case the area
fraction reached a value of 26.2%.
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smoothing was performed over the second derivative because it was the function
we were searching for. We realized that we could not have a perfect data fit
and a smoothness function at the same time, so the smoothing parameter had
to be selected on a per simulation basis. After smoothing and fitting, we applied
Eq. (5.28) and obtained the second derivative of p(δ), that is, fD. The estimated
duration density is shown in Fig. 5.6 (c) along with the corresponding theoretical
function.

(a) (b)

(c)

Figure 5.5: Estimated temporal functions for uniform distribution. (a)
α(δ) (solid line), β(δ) (dashed line) and the theoretical value of λs (dashed-
dotted line) along with the estimated one (dotted line). (b) The estimated p(δ)
(solid line) and theoretical one (dashed line). (c) Estimated density function of
durations (solid line) and theoretical one (dashed line).
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(a) (b)

(c) (d)

Figure 5.6: Estimated temporal functions for exponential and gamma
distributions. (a) and (c) show the estimated p(δ) (solid line) and theoret-
ical one (dashed line) for simulations with Exponential and Gamma distribu-
tion, respectively. (b) and (d) show the estimated density function of durations
(solid line) and theoretical one (dashed line) for simulations with Exponential
and Gamma distribution, respectively.

5.3.1.1 Relative errors

In order to evaluate the errors in the estimators proposed, we analyzed the results
of the simulation study by using again the relative error. We would like to
remark that we found out that when a heavy aggregation of frames was performed
(k larger than 4), λs(k, δ) was underestimated. This effect may be due to the
minimum contrast method. This method behaves poorly for high area fractions.
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Table 5.2: Relative errors for area of the primary grain, a0

k ED Min. 1st Qu. Median Mean 3rd Qu. Max.

2 6 -0.0612 -0.0594 -0.0554 -0.0488 -0.0383 -0.0243
3 6 -0.0607 -0.0577 -0.0420 -0.0397 -0.0273 -0.0088
4 6 -0.0604 -0.0489 -0.0372 -0.0335 -0.0154 0.0036
5 6 -0.0604 -0.0470 -0.0241 -0.0231 -0.0099 0.0329
6 6 -0.0612 -0.0441 -0.0120 -0.0153 0.0115 0.0427
7 6 -0.0604 -0.0416 -0.0099 -0.0126 0.0149 0.0262
8 6 -0.0604 -0.0387 -0.0085 -0.0106 0.0112 0.0372

2 8 -0.0569 -0.0530 -0.0510 -0.0471 -0.0422 -0.0280
3 8 -0.0668 -0.0602 -0.0564 -0.0532 -0.0495 -0.0289
4 8 -0.0685 -0.0638 -0.0582 -0.0549 -0.0482 -0.0298
5 8 -0.0704 -0.0644 -0.0574 -0.0520 -0.0388 -0.0207
6 8 -0.0703 -0.0641 -0.0563 -0.0461 -0.0230 -0.0090
7 8 -0.0704 -0.0640 -0.0482 -0.0387 -0.0084 0.0135
8 8 -0.0703 -0.0616 -0.0387 -0.0287 0.0120 0.0372

This underestimation causes an underestimation of α(δ). Therefore, for larger
values of δ, the numerator of Eq. (5.27) was never null since α(δ) never reaches
λs and so the p(δ)-function was overestimated.

Firstly, the characteristics of the primary grain are supposed to be constant
even though an aggregation of frames is performed. In order to see if this un-
derestimation effect was also present in other parameters of the Boolean model
such as the area and perimeter of the primary grain, we studied their relative
errors. Tables 5.2 and 5.3 show a summary description of the relative errors
for the uniform distribution. The different columns correspond to the minimum,
first quartile, median, mean, third quartile and maximum. It seems that higher
k-values have associated smaller relative errors in the estimation of the mean area
a0. However, there is no clear trend in the estimation of the mean perimeter u0.
Generally, we think that the errors are very small.

Secondly, since the probability density of the duration is estimated from α(δ),
it seems interesting to analyse its relative error by taking into account the dis-
tribution used. Fig. 5.7 shows the relative errors of α as a function of δ. For
the three cases these errors are quite small. The worst case corresponds to the
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Table 5.3: Relative errors for perimeter of primary grain, u0

k ED Min. 1st Qu. Median Mean 3rd Qu. Max.

2 6 -0.0250 -0.0224 -0.0183 -0.0124 -0.0037 0.0109
3 6 -0.0250 -0.0207 -0.0066 -0.0036 0.0084 0.0285
4 6 -0.0250 -0.0134 0.0003 0.0019 0.0194 0.0362
5 6 -0.0235 -0.0116 0.0096 0.0104 0.0258 0.0627
6 6 -0.0244 -0.0094 0.0193 0.0157 0.0384 0.0692
7 6 -0.0250 -0.0077 0.0212 0.0162 0.0378 0.0487
8 6 -0.0233 -0.0085 0.0215 0.0169 0.0354 0.0559

2 8 -0.0154 -0.0116 -0.0094 -0.0058 -0.0026 0.0127
3 8 -0.0253 -0.0187 -0.0155 -0.0125 -0.0087 0.0120
4 8 -0.0278 -0.0229 -0.0172 -0.0154 -0.0105 0.0113
5 8 -0.0313 -0.0261 -0.0177 -0.0141 -0.0047 0.0127
6 8 -0.0313 -0.0257 -0.0162 -0.0093 0.0105 0.0229
7 8 -0.0310 -0.0244 -0.0104 -0.0027 0.0223 0.0434
8 8 -0.0310 -0.0225 -0.0006 0.0070 0.0407 0.0709

exponential distribution, which we think could be due to the higher variance of
durations.

(a) (b) (c)

Figure 5.7: Relative errors for α(δ). (a) using a uniform distribution, (b)
an exponential distribution, and (c) a Gamma distribution. Dashed lines corre-
sponds to ED = 6 and solid lines to ED = 8.

Finally, Table 5.4 shows a summary of the observed relative errors for the
spatial temporal intensity λ and the mean duration ED. The rows in that table
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Table 5.4: Relative errors for function α, spatial temporal intensity, λ and ED

Parameter ED Uniform Exponential Gamma

α 6 0.0021 0.0009 0.0011
8 0.0019 0.0012 0.0008

λ 6 0.0170 0.0046 0.0491
8 0.0029 0.0040 0.0326

ED 6 0.0027 0.0687 0.0531
8 0.0071 0.0346 0.0625

corresponding to α display the integral of the relative error along the time interval
used.

5.3.2 Biological application

We applied our estimators to the six biological image sequences described in the
previous chapter, Table 4.6. These sequences were derived from three movies of
fibroblast (COS7) cells, acquired at 1 frame every 4 seconds. The cells expressed
clathrin coupled to the Green Fluorescent Protein (GFP). The estimates obtained
are summarized in Table 5.5. (see Video 5.5 in supplementary material)

Table 5.5: Estimates for the three cells analyzed
Cell Seq. λ̂s (µm−2) λ̂s|W | λ̂ (µm−2 sec−1) ED (sec)

1 1 0.3625 ± 0.0225 281.86 ± 17.49 0.0052 70.27
2 0.3085 ± 0.0210 347.20 ± 23.69 0.0361 85.42

2 3 0.3342 ± 0.0087 277.54 ± 7.23 0.0058 57.48
4 0.3502 ± 0.0120 235.41 ± 8.05 0.0054 65.37

3 5 0.2939 ± 0.0359 170.17 ± 20.88 0.0039 74.95
6 0.2724 ± 0.0044 220.28 ± 3.54 0.0032 83.70

The column headed λ̂s in Table 5.5 gives the point estimates with a 95%
confidence interval for the intensity and the mean intensity in any cross-section,
for the different image sequences. In our study, the application of the batch-
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mean method implies a minimum number of frames. Sequences of 300 lead to 15
batches of 20 images, which allowed us to use the method. The column headed
λ̂s|W | gives the estimate of the mean number of endocytic spots per frame for
each sequence. The columns headed λ̂ and ED give the estimates obtained on
the 3 different cells that were analyzed. The column headed λ̂ provides the mean
number of events per unit micrometer and second for each cell. Similar values
are observed for all the cells. We compared our results with those obtained
manually for a small subset of clathrin spots belonging to the same group of
cells. Manual data analysis showed that average endocytosis durations where
between 75− 90 seconds and matches the results obtained from our analysis (see
Table 5.5). Results for one of the sequences analyzed are shown in detail in Fig.
5.8 (a), (b) and (c).

(a) (b) (c)

Figure 5.8: Estimated functions for the sequence 1 from cell 2. (a) α(δ). (b) The
estimated p(δ). (c) Estimated density function of durations.

5.4 Conclusions

As it was shown in the simulation study, the relative errors of the estimated
parameters are reasonably low. The behavior of this method depends heavily on
the area fraction of the Boolean model. We found that when a heavy aggregation
of frames was performed (k larger than 4), λ̂s(k, δ) was underestimated, which
may be due to the minimum contrast method. This method behaves poorly for
high area fractions, the underestimation causing in turn an underestimation of
α(δ). Nevertheless, as was shown in the simulation study, the relative errors of
the estimated parameters ranged from 0.0008 to 0.0625, that is, errors of around
5%, which could be considered small enough in many real applications. Lower
values could be expected if higher acquisition rates and higher spatial resolutions
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were used. Another important comment is that due to the time discretization, a
given grain could be born between two consecutive temporal cross-sections and
it would not be observed until the next cross-section (frame).

We think this new method can aid the study of complicated processes such
as those observed in molecular biology. Specifically, the spatio-temporal Boolean
model based on aggregation might be successful applied in the study of pro-
tein expression on videos obtained using Total Internal Reflection Fluorescent
Microscopy, as was previously shown in previous chapter.

Due to the data source, we would like to remark the need for the functional
data analysis. A simple approach for obtaining functional data would be to inter-
polate the raw values obtained for p(δ), but because of the skewness introduced
this would give worse estimators in the derived functions p′(δ) and p′′(δ). It is
highly advisable to turn the discrete estimated samples into a functional data
object in order to obtain smooth derivatives. Here, we show how a function was
fitted over the data so that the derivation could be performed on the continuous
real line, and results were more accurate. Moreover, the smooth step allowed us
to get clean curves and avoid the noise introduced by slight changes in the slope
of p(δ) function.

We should point out that the methodology of aggregation described has cer-
tain limitations. The limitations are due to the poor behavior shown by the
minimum contrast method when estimating the spatial intensity with large area
fractions (around 50%) and small grain sizes, since the overlapping among events
is then very large.

It is also important to bring up a matter related to the lag range. The longer
the lag is (with respect to the durations), the higher the relative errors are. On
the one hand, the longer the lag is the larger the number of events being born
and dying in such interval is and we could then expect a higher variability in the
intensity estimated. On the other hand, when aggregating several cross sections,
the longer the lag is the higher the area fraction is, since the probability of the
events in one frame surviving until the next added frame would be really small.
In this way, each aggregated frame will increase the intensity in the accumulated
image and so the area fraction.

Finally, the analysis of the spatial temporal coverage in our model remains to
be done. For instance, this analysis would be interesting for possible applications
in the field of sensor networks in which there is overlapping among sensors and
the sensor life time needs to be considered.
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Chapter 6

Conclusions and Future Work

In this work we have proposed different statistical methodologies to deal with
stochastic spatial temporal processes. Either methodologies have been applied to
study well-known important Biological processes working in cells, the exocytosis
and the endocytosis.

Both processes are different in nature and generate different kind of infor-
mation, so we have approached them using different statistical modelling in the
framework of stochastic processes. From a biological point of view, it is known
that this processes should be coupled to a certain extent, though direct visual-
ization and subsequent modelling of the phenomenon is still missing.

Firstly, a methodology to study exocytic spatio-temporal patterns, in which
hypothesis of stationarity and isotropy are assumed, is suggested and used for
the study of a real process in Chapter 2. We showed a methodology to analyze
whether a given pattern of fusion events follows a clustered distribution or on the
contrary presents a random arrangement of its events. In particular, we make use
of several distance functions to study the spatial, temporal and spatio-temporal
dependence between the points of a pattern, F, G and K-functions. The procedure
to test whether a given realization shows a clustered pattern involves the use of
Monte Carlo simulations. It consists in the application of one of the mentioned
functional descriptors on a number of random simulations, where events have been
generated by a Poison process, and its comparison with the observed pattern. A
p-value to measure the significance of the outcome is given.

We have applied these functions to test whether the patterns of exocytosis
observed are randomly placed over the plasma membrane or on the contrary
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there are ’hotspots’ where exocytosis are more likely to happen. The analysis has
also been performed to study the existence of temporal clustering, i.e, exocytosis
happen in bursts or in a steady stream, and spatio-temporal clustering, i.e the
exocytic events are produced in specific regions of the cell at given periods of time.
Here, the methodology has been shown with illustrative purposes, although it is
flexible enough to be applied to a wide range of real processes in which spatial,
temporal or spatio-temporal behaviors need to be formally tested.

For the application showed in this thesis, we have developed an image pro-
cessing algorithm in order to extract the locations and times of occurrence of
exocytosis events on the plasma membrane. The algorithm allowed us to obtain
semi-automatically and in a fast way the data needed to analyzed the behavior
of the process.

Secondly, in Chapters 4 and 5 we have defined and studied a particular case
of Boolean model, called the spatio-temporal Boolean model, which formalizes
the configuration of independent, randomly placed events with independent du-
rations. Moreover, spatially and temporally overlapping among different events
is considered and assumed. This approach enables us to obtain information of
stochastic processes producing random shapes with random durations following
a given distribution. Locations of these events are assumed to be the outcome
of a realization of a spatial temporal Poisson Point Process. In this model no
particular parametric model for the shape or duration has to be assumed.

Two different approaches are described to study spatio-temporal Boolean
models. The first one, presented in Chapter 4, based its estimates on the differ-
ence between pairs of temporal cross-sections of the model, which are temporally
away. In this way, we can study how this difference in intensity changes depend-
ing on the temporal lag. The second approach, presented in Chapter 5 is based
on the aggregation of sets of cross-sections of the model separated by a given lag
into one cross-sections in order to study the increment of intensity on each frame.
Different aggregation and lag combinations give rise to different intensities which
permit us to study the model. Specific estimators has been defined to infer the
parameters of the original spatio-temporal Boolean model from its respective ag-
gregated sequences. The aggregation method requires to build up as many image
sequence as parameter combinations (aggegation and lag) used which, in turn,
have to be analyzed to obtain the estimates. Therefore, the aggregation method
requires more time to obtain the estimates of the model. We do not consider
this fact as an important drawback, since the same process performed manually
is highly time-consuming when compared with either method. Nonetheless, we
observed a limitation of the aggregation method when the aggregated image se-
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quences displayed high volume fractions. Under this circumstances the estimation
method, the minimum contrast method, underestimate the real intensity of the
aggregated process, so the final estimations are also biased. This effect depends
heavily on the original model to be aggregated. In our sequences this effect could
be observed after aggregating 5 frames or more.

Estimators for the mean number of events per unit area and time, the mean
size of the events and their density function of duration from a realization of a
spatio-temporal Boolean model are defined. A wide simulation study has been
done in order to test the proposed estimators. In particular, 135 image sequences
of spatio-temporal Boolean models were created using 9 different combinations
of parameters replicated 15 times each. The relative errors obtained after their
analysis range 0.3%− 15%, though most of the errors were smaller than 5%. In
this study, techniques based on functional data analysis were applied since some
estimators were obtained by derivatives of other functions making them really
sensible to the noise introduced during the image analysis step. No significative
differences were showed between both estimation methods. We expected a more
robust behavior in the aggregation method, since small noise introduced in the
images will not affect much this method, whereas it does in the method based on
differences.

To illustrate the application of the spatio-temporal Boolean models, we study
the spatial temporal properties of a Biological process, the endocytosis. Accurate
information about positions and times of occurrence of endocytosis could not
be obtained by means of image processing techniques, specifically due to the
spatial an temporal overlap of the events, therefore Point Process theory could
not be applied. The approach based on spatio-temporal Boolean models was
applied successfully to study the kinetics of endocytosis in living cells. This
methodology enabled us to estimate in a robust way parameters including: i) the
mean number of events per unit area and time and ii) the density function of
the durations of endocytic events. Classical techniques based on the labelling of
connected components lead to an underestimation of both the number of grains
and the mean duration. Spatio-temporal Boolean Models provided a powerful
analysis tool. The distribution of duration was shown to be in excellent agreement
with the same parameter, measured manually from the same data set. To our
knowledge, this is the first automated measurement of the number of endocytic
events per unit area and time. This type of measurement is usually difficult
to obtain manually from large data sets. In the future this methodology could
even be applied to imaged based screening assays - such as drugs that inhibit
endocytosis. The proposed method provides the experimenter with a robust
and formal methodology for the quantitative study of cell endocytic behavior
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in response to different levels of stimulation, treatments, etc. Moreover, this
type of analysis may provide mechanistical information on the endocytic process.
For instance, the role of GTPase dynamin in the endocytosis of clathrin-coated
vesicles may be better elucidated.

Even though exocytosis and endocytosis are thought to be coupled, a formal
analysis remains to be done. Results here showed that constitutive exocytosis
happens clustered over the plasma membrane whereas endocytic spots are con-
sidered to be scattered uniformly over the plasma membrane. These assumption
are still safe, since it is not known if an endocytic spot can produce several en-
docytosis in the same area, thus showing a clearly clustered behavior.

There are further interesting extensions to both methodologies that could
bring more information about the analyzed processes. In general, these improve-
ments require more sophisticated models that sometimes could be difficult to
apply, specially because more specific data is needed from the process and more
complicated hypothesis have to be proposed.

Further extensions to the methodology of spatio-temporal point processes
described in Chapter 2 are detailed below:

• One of the plausible extensions to the spatial temporal analysis performed
on point processes would be to introduce a new variable to study. That
could give rise to the study of marked spatial temporal point processes
in which the mark would be either the gray intensity of the fusion or the
docking times of the vesicles. Hence, more complex hypothesis could be
addressed. As we pointed out, it is the difficulty to obtain the data for
applications which can take advantage of it.

• Another variation of the described methodology could be assume a different
underlying model for the events, e.g. a Cox process. Depending on the
initial hypothesis defined by the researcher, more realistic models could be
considered and tested.

Extensions to the spatio-temporal Boolean model described in Chapters 4 and
5 include:

• An interesting direct extension of the spatio-temporal Boolean model is the
analysis of fluorescence in grey-level images. This approach will allow us
to estimate whether the fluorescence associated to an event (i.e. whether
there exists a minimal ”unit”, which is used as building block for larger
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structures), and to determine the quantal of fluorescence associated to a
single event. This improvement could be useful for applications like protein
fluoresce study, or sensor networks, in which the energy produced for an
event would be considered as the radiating energy of the sensor. It is
important to note that this framework is flexible and general enough, as
well as intuitive and direct enough, to incorporate other hypotheses and
applications.

• Further extensions non-directly related with the estimation procedure de-
scribed here could be considered. One interesting approach to estimate the
probability density of durations of a spatio-temporal Boolean model would
be the use of an extension of the Covariance so as to take into account the
space and time dimension, C(r, t). This method would allow us to obtain
estimates for the same parameters of the proposed methodologies. Never-
theless, it is important to take into account that the covariance is obtained
performing operations pixel by pixel, so its results are really sensitive the
any kind of noise.

• In the specific biological application described herein either models assume
that the events are homogenously scattered over the plasma membrane.
Although this hypothesis seems to be accepted for most cells expressing
clathrin, it can not be applied to the study of exocytosis since we show
that this process is spatially and temporally clustered in hotspots. Then
a methodology to model non-homogeneous point processes in space and
time needs to be developed. In the same way, an extension to the non-
homogenous Boolean model in space and time remains to be done. This
would be useful to model other proteins taking part in the endocytic process
which are know to be clustered, and so could not be modelled with the
current spatio-temporal Boolean model.

All the methodologies and methods described in this thesis have been pro-
grammed in Matlab and R software. An interface for the study and segmentation
of exocytosis has been developed completely in Matlab in order to extract the
information needed for the statistical analysis. A toolbox for Matlab have been
designed to simulate and estimate parameters from a spatio-temporal Boolean
models. Either methods described in this document have been developed and are
available under request.

To sum it up, we have defined and presented a methodology to estimate
spatial temporal parameters of stochastic models which enable the research to
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test hypothesis of a given model formally. The methodologies and models de-
scribed herein could bring information of temporal distributions, intensities and
size measures of stochastic processes observed in the spatio-temporal space. The
proposed estimators have been tested by simulation studies and applied on real
biological sequences to obtain information of the underlaying process which can
not be obtained manually.
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Appendix A

Experimental Procedures

A.1 Live Microscopy

Time-lapse images were acquired by Total Internal Reflection Fluorescent Mi-
croscopy (TIRFM). In this technique, a laser beam illuminates the sample be-
yond a critical angle and generates an evanescent wave. Namely, as the beam
of light traveling through a high refractive index medium (e.g. glass; R.I. 1.51)
encounters another media with a lower refractive index (i.e., water or cell cytosol;
R.I. 1.3-1.4), the beam undergoes total internal reflection. As a consequence, a
small excitation wave called an Evanescent Field is generated. This field is only
100−200 nm thick and decays exponentially away from the coverslip. Therefore,
only objects which are within 100 − 200 nm of the bottom plasma membrane
of the cell are illuminated, while the nucleus, inner cytosol and upper plasma
membranes are not illuminated. In this way, it is possible to image membrane-
associated events, such as endocytosis and exocytosis, with superb signal-to-noise
(5; 69). The setup employed for this study was an objective-based TIRFM (63X
magnification) implemented on an inverted IX70 microscope (Olympus) and cou-
pled to a 488-nm laser line (Melles Griot). The laser power output was between
80 and 100 mW.
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A.2 Cell Culture

A.2.1 Exocytosis

PtK2 cells were grown in MEM, 100U/ml penicillin, 100µg/ml streptomycin,
2 mM L-glutamine, 1x nonessential amino acids (GIBCO BRL), and 10% FCS
(complete medium). Cells used for microscopy were grown on 1-mm-thick, 30-
mm-diam sapphire slides (Rudolf Brügger AG) in complete medium without phe-
nol red. Infection with Recombinant Adenoviruses VSVG3-SP-YFP is based on
previously described temperature-sensitive VSVG3-GFP (68), and differs from it
by having a longer spacer between the last amino acid of VSVG and the start of
YFP. PtK2 cells were infected for 1 h at 37 degrees Celsius in 1ml of complete
medium. After changing the medium, the cells were incubated for 6 − 20 h at
39.5 degrees Celsius to accumulate the protein in the ER, and then used for mi-
croscopy. Sapphire slides with PtK2 cells were transferred to a closed perfusion
chamber (POC), which contained a glass coverslip (0.17 × 42mm), a 25 − µm
Teflon spacer, and complete medium with 20µg/ml cycloheximide. Samples were
imaged 20 − 50 min after a shift to 32 degrees Celsius, conditions under which
VSVG3-SP-YFP can exit the ER.

A.2.2 Endocytosis

Clathrin. COS7 cells were grown in MEM, 100 U/ml penicillin, 100µg/ml strep-
tomycin, 2 mM L-glutamine, and 10% FCS (complete medium). Cells were trans-
fected with a DNA vector encoding for GFP-Clathrin Light Chain (GFP-LCa)
using the Amaxa Nucleofector Kit, at 1ug of DNA/100000 cells. Cells were then
plated onto MatTek glass bottom culture dishes (MatTek Corp.) at 20 − 50000
cells/dish. The next day, complete medium was replaced with imaging buffer,
containing 136mM NaCl, 2.5mM KCl, 2mM CaCl2, 1.3mM MgCl2, 10mM
HEPES at pH 7.4 in double-distilled water. Cells were imaged at 37 degC. Under
these conditions, cells maintained their viability for up to 8 hours.
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Algorithms Details

We used Matlab environment to perform the image analysis of the sequences.
Specifically, we used two libraries designed for image analysis named Images and
Mmorph.

B.1 Statistical Analysis of Point Patterns

This section briefly describes some implementation details for carrying out the
statistical analysis of point patterns.

The statistical analysis was performed by using R software (49), an environ-
ment specifically designed for data analysis. That software can be freely down-
loaded from http://cran.r-project.org.

Statistical analysis to compare counts of fusions has been performed using the
function glm from MASS library of the software package R.

If counts contains the counts observed and volume the spatio-temporal vol-
umes, then the following R-code provides us with the statistical analysis given in
the paper.

null.fit<- glm(counts~offset(log(volume)),

family=negative.binomial(theta=1,link="log"))

cells.fit <- glm(counts~cells+offset(log(volume)),

family=negative.binomial(theta=1,link="log"))
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summary(id.fit) anova.glm(null.fit,cells.fit,test="F")

For the spatial analysis we used a package for R called Spatstat (7). This package
allows us the definition of objects representing spatial point patterns through
the function called ppp(), whose inputs are the positions of the points of the
pattern (fusion locations) and observation window (cell membrane border in our
case). After building a ppp object one can evaluate spatial point patterns with
the following functions: Fest(), Gest() and Kest(), which calculate the empty
space function, the nearest neighbor function and the K-function, respectively.

The following R-code was used to create the point pattern and the window
associated. The (x, y)-locations of the fusion events are stored in the variables X
and Y. Variable win corresponds to the observe window defined by a polygonal
line stored in the variable edge. If the fusions are marked, variable M stores that
value.

win <- owin(poly=list(edge[,1],edge[,2]));

exos <-ppp(X,Y,marks=M,window=win);

For the temporal and spatial temporal analysis a package called Splancs (53)
for R was used. Function kernel2d() was used to obtain the plot of the spatial
estimated intensities of the point pattern. Function stkhat() was used to calculate
both temporal and spatial temporal K-functions. The Monte Carlo test of spatial
temporal was performed by means of function stmctest(). Spatstat and Splancs
can be freely downloaded from the website http://cran.r-project.org.

B.2 Functional Data Analysis

The toolbox FDA for MATLAB developed by J.O. Ramsay was used to perform
the functional data analysis.

First of all, the function create bspline basis was used for creating the func-
tional object. This functional object was used to convert our estimates in a
continuous function by means of the function data2fd. Next, function smooth fd
was applied over the function representing the data so as to smooth it. We use
a penalty factor in the second derivative of the function. Finally, function deriv
was used to obtain first and second derivative of the smoothed curves.

bsBasisObj=create_bspline_basis([t(1) t(end)],nbasis,norder,breaks);
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derivsmooth=2;

penaltyFactor=0.5;

pEstfd=data2fd(pEst,t,bsBasisObj);

fdParObj=fdPar(bsBasisObj,derivsmooth ,penaltyFactor);

pEstfd2=smooth_fd(pEstfd,fdParObj);

D2pEst=deriv(pEstfd2,2);

The basis of bsplines used comprised 15−20 basis of order 3 in all the studies.
This values should be modified depending on the kind of data.
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Appendix C

Description of Supplementary

Material

Supplementary videos have been generated in order to visually show the kind of
data we are dealing with. In particular, Chapters 2, 4 and 5 which study spatial
temporal data refer to these image sequences. All the videos are in QuickTime
format ’mov’.

Table C.1 summarizes some details of these image sequences. First Column
corresponds to the exact name of the video included in the supplementary ma-
terial. Second and third columns display the chapter in which the videos are
referenced and the protein that motivated this particular study. Finally, last
column gives the length of the image sequence in minutes and seconds.

A description in detail of each image sequence follows.

V ideo 2.1, A cell which was transfected to permit the exocytosis visualization.
Exocytosis were automatically detected. A white color square is shown
in the video at the position where exocytosis have been observed. The
membranes of the cell have been manually delineated in white color for
better visualization.

V ideo 2.2, A cell which was transfected to permit the exocytosis visualization.
Exocytosis positions are marked with a color dot. The colors of the dots
represent the time when the exocytosis was observed, and so similar colors
denote exocytosis which have happened close in time. This permit to test
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Table C.1: Description of supplementary material
Name Chapter Studying Length

Video 2.1 2 Exocytosis 4′10′′

Video 2.2 2 Exocytosis 1′40′′

Video 2.3 2 Exocytosis 3′′

Video 2.4 2 Exocytosis 3′′

Video 4.1 4 Endocytosis 1′40′′

Video 4.2 4 Endocytosis 1′40′′

Video 4.3 4 Endocytosis 1′40′′

Video 5.1 5 Endocytosis 25′′

Video 5.2 5 Endocytosis 24′′

Video 5.3 5 Endocytosis 23′′

Video 5.4 5 Endocytosis 16′′

Video 5.5 5 Endocytosis 60′′

possible spatial temporal clusters by visual inspection.

V ideo 2.3, Three dimensional profile of an exocytosis over time, where the z-axis
represents the gray intensity of the fusion and the x-y plane the membrane
surface of the cell.

V ideo 2.4, Two dimensional profile of an exocytosis over in real size.

V ideo 4.1− 4.3, are simulated image sequence of temporal Boolean models gen-
erated for the simulation study. Videos were constructed using different
parameters to observe how these differences affect the estimation proce-
dure. Table C.2 summarizes the combination of parameters used. The
distribution function for the durations was uniform for all the examples.

V ideo 5.1, corresponds to a realization of a TBM in which the grains are disks
with uniform radii in the interval [11, 15] pixels, the durations are uniformly
distributed (with a mean of 6 seconds) and the spatial temporal intensity
(mean number of germs per unit area and time) is 0.000035. Images are
512× 512 pixels in size and the sampling rate is 4 frames per second.
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Table C.2: Combination of parameters used as an example of TBMs
Name Vol. fraction p Radii Duration

Video 4.1 0.10 U(8,12) U(4,8)
Video 4.2 0.15 U(8,12) U(7,11)
Video 4.3 0.20 U(6,10) U(10,14)

V ideo 5.2− 5.5, are accumulated videos generated by aggregation of frames
of Video 5.1 for different values of k and δ. Table C.3 summarizes the
combination of parameters used in the aggregation process.

Table C.3: Combination of parameters used to generate aggregated TBMs
Name k Lag

Video 5.2 1 0
Video 5.3 2 3
Video 5.4 2 6
Video 5.5 5 9
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