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This paper proposes a new method to obtain estimates of the NAIRU, the core inflation rate and

the trend investment rate for the United States using an unobserved components model which is

compatible with the usual decomposition of real gross domestic product into trend and cycle. The

model includes an Okun’s law, a forward-looking Phillips curve and an accelerator-type investment

equation, and accounts for some volatility breaks in two components. The unknown parameters in

the model are estimated by maximum likelihood using a Kalman filter initialized with a partially

diffuse prior, and the unobserved components are estimated using a smoothing algorithm. Our

results show that the output gap is positively correlated with the deviations of the investment

rate from its trend and the inflation rate from core inflation, and negatively correlated with the

deviations of the unemployment rate from the NAIRU.

KEY WORDS: Output gap, forward-looking Phillips curve, Okun’s law, investment, Kalman filter,

volatility breaks.
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1 Introduction

A useful decomposition of output into its trend and cyclical components should account

for three central stylized facts in modern macroeconomics:

1. The negative correlation between the deviation of output from its trend and the

deviation of the unemployment rate from the structural rate of unemployment, or

NAIRU (non–accelerating inflation rate of unemployment) as it is sometimes called.

This relationship between the cyclical components of output and unemployment is

usually referred to as Okun’s Law.

2. The trade-off in the short run between inflation and unemployment, which leads

Mankiw (2001) to assert that “it is impossible to make sense of the business cycle

... unless we admit the existence of such a trade-off”.

3. The comovement of output and investment. This is one of the most important

regularities of business cycles, independently of the detrending method (Stadler,

1994, Canova, 1998, Burnside, 1998). Since investment is more volatile than the

gross domestic product (GDP), the investment rate increases in expansions and falls

in recessions.

Taking these facts together, it seems that the unemployment, inflation and investment

rates contain very important information about the cyclical position of the economy and,

therefore, of the output gap. In this paper, we take all this evidence into consideration

and propose an unobserved components model for the United States which will allow us to

obtain time-varying estimates of the NAIRU, core inflation and the structural investment

rate which are compatible with the usual decomposition of the GDP into trend and cycle.
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The different cyclical components in the model are specified in terms of the output gap.

The model is estimated by maximum likelihood through the use of the Kalman filter

initialized with a partially diffuse prior. A smoothing algorithm is used to obtain estimates

of the unobserved components based on the whole sample together with their mean squared

errors. We also account in our model for some volatility breaks in the output gap (and,

therefore, in the cyclical components of the unemployment and investment rates) and core

inflation components. Our results are in agreement with those reported by Stock and

Watson (2002) and Sensier and Van Dijk (2003).

In contrast to our approach, previous research trying to obtain alternative estimates of

the output gap for the US or the European countries has omitted at least one of the three

facts mentioned above. For example, Kuttner (1994) uses only the information contained

in inflation through a simple backward-looking version of the Phillips curve. Apel and

Jansson (1999), Camba-Méndez and Palenzuela (2003) and Fabiani and Mestre (2004) do

not consider the investment rate and their estimated Phillips curve does not include any

time-varying component which proxies core or expected inflation. Alternatively, Gerlach

and Smets (1999) consider only a backward-looking Phillips curve and an aggregate de-

mand equation which relates the output gap to its own lags and the real interest rate.

Laubach (2001) has proposed a model consisting only of a Phillips curve linking the first

difference of inflation to cyclical unemployment and the equations necessary to model

the two unobservable components (the NAIRU and the gap) of the unemployment rate.

Their model is similar to the one proposed by Gordon (1997), but allowing the NAIRU

to be a non-stationary process in some countries. Using a similar framework, Staigner,

Stock and Watson (2001) take advantage of the information contained in the inflation
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rate and the growth of real wages to compute a time-varying estimate of the NAIRU.

Roberts (2001) decomposes output into labor productivity and hours, obtaining the trend

and cyclical components using the additional information of the inflation rate through the

estimation of a backward-looking version of the Phillips curve. More recently, Rünstler

(2002) estimates the real-time output gap in a supply curve, but he further investigates

alternative extensions including the unemployment rate, capital stock, productivity and

capacity utilization.

In short, to the best of our knowledge, previous research has made no use of the

rich information about the business cycle simultaneously contained in the GDP and the

unemployment, inflation and investment rates to obtain a better decomposition of these

four variables into trend and cyclical movements. However, our results show that the

output gap estimated as a latent variable is very significant in the three equations that

we use to specify the relationships among the previous four variables, namely, the Okun’s

law, a forward-looking Phillips curve and an accelerator-type investment equation.

Besides the contribution in terms of the model specification to include additional in-

formation from relevant macroeconomic variables, we use a very flexible methodology

that has a solid foundation and is specially designed for nonstationary state-space mod-

els, where the initial conditions for the Kalman filter are not well defined. Specifically,

the initial state vector is modelled as partially diffuse and a “diffuse Kalman filter” (De

Jong, 1991) is used for prediction and likelihood evaluation. At a later stage, we use

a smoothing algorithm to obtain estimates of the unobserved components together with

their confidence intervals. This contrasts with the situation usually found in the literature

as regards the initialization problem in the Kalman filter in the presence of nonstationary
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series. More often than not the model assumptions are not elucidated, the initial state

is not explicitly defined, and the initial conditions for the Kalman filter are obtained by

using some approximation such as a backcasting device. This may cause problems in the

optimization routine and many parameters may have to be fixed to some pre–specified,

and somewhat arbitrary, values.

Other contributions of the article are: i) a thorough theoretical discussion of the new

hybrid Phillips curve as defined by Gaĺı and Gertler (1999, p. 203), and the result that

it can be given a model–based interpretation according to which the model behind it is

a simplified version of our proposed Phillips curve equation, ii) the possibility of incorpo-

rating volatility breaks in our model, and iii) a theoretical result showing that the recent

filter proposed by Cogley (2002) to estimate the core inflation also admits a model–based

interpretation.

The paper is structured as follows. In section two we present the unobserved compo-

nents model used to decompose each variable into a trend and a cyclical component, and

we discuss some estimation issues. The third section presents the results of the estimation

of our model and some basic features of the estimated unobserved components. In order

to evaluate the validity of our decomposition, the fourth section analyzes some properties

of our estimates in terms of revisions and inflation forecasts, compared with alternative

procedures. Finally, section four summarizes the conclusions.
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2 The potential output model

2.1 Output decomposition

To model the log of real GDP, yt, we start with Watson’s (1986) decomposition

yt ≡ yt + yc
t , (1)

where ȳt is the trend and yc
t is the cyclical output, that is also used by Kuttner (1994)

and others. The cycle is assumed to follow a stationary AR(2) model with complex roots

yc
t = 2θ1 cos(θ2)yc

t−1 − θ2
1y

c
t−2 + ωyt, (2)

where {ωyt} is assumed to be an i.i.d. N(0, σ2
ωy) sequence, θ2 ∈ [π/20, π/3], and 0 < θ1 < 1.

To model the trend, we first perform some unit root tests to see whether yt is I(0) or I(1),

where I(0) and I(1) refer to integrated processes of order zero and one. In Table 1, we

report the results obtained when we apply some augmented Dickey–Fuller (ADF) tests for

nonstationarity. The tests clearly reject the hypothesis of a stationary process around a

deterministic trend, in agreement with the results of Kuttner (1994). We can also see in

Table 1 the first twelve autocorrelations of the first difference of GDP.

A sufficient condition for model (1) to be identified (Harvey, 1987, p. 206) is that the

order of the moving average component of ȳt is less than that of its autoregressive part,

including the unit roots. The previous considerations then lead to the specification

∇ȳt = γ̄y + ωγt (3)

for the trend ȳt, where ∇ = 1 − L, L is the lag operator, Lyt = yt−1, γ̄y is a drift term,

and {ωγt} is an i.i.d. N(0, σ2
ωγ) sequence uncorrelated with {ωyt}.
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Table 1. Unit-root Tests for Real GDP

ADF t statistics Autocorrelations

Lags Constant Constant, trend Lags Correlation coefficient

2 -1.25 -2.95 1–2 0.34 0.19

4 -1.24 -2.32 3–4 0.00 -0.12

8 -1.80 -2.54 5–8 -0.17 -0.10 -0.08 -0.05

12 -1.64 -2.20 9–12 0.05 0.07 0.03 -0.13

NOTE: Results are based on 225 quarterly observations from 1947:I through 2003:I

It remains to see whether we should include an additional stationary component ys
t

that follows an ARMA model so that yt = ȳt +yc
t +ys

t and the model is identified. To this

end, we have first estimated a univariate model with the two first components and then

we have examined the residuals. The results are reported in Table 2. Some Q statistics

obtained from the residuals are Q(17) = 16.58 and Q(20) = 18.46. The residual sample

autocorrelations show no significant structure and thus the extra component ys
t is not

needed.

Although the residuals seem to have no autocorrelation, they do show some het-

Table 2. Estimated Univariate Model for Real GDP

γ̄y θ1 θ2 σωγ σωy

0.0084 0.7981 0.2845 0.0067 0.0058

(18.33) (15.11) (2.73) (3.46)

NOTE: Results are based on 225 quarterly observations from 1947:I through 2003:I.

t–values are in parenthesis. The parameters σωγ and γ̄y are concentrated out of the

likelihood.
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eroscedasticity. This is in agreement with Stock and Watson (2002), who found no change

in the autoregressive parameters of the output gap, but found a break in the output gap

volatility in 1983:II. One nice feature of our four variables model is that it can incorporate

these volatility breaks. We accomplish this by allowing the parameter σωy to vary with

time. That is, instead of σωy, we use σωyt = σωy1 if t < 1983:II and σωyt = σωy2 if t ≥

1983:II.

A useful insight into our proposal can be obtained by comparing our specification with

that of the Hodrick and Prescott (1997) filter (henceforth HP filter). In the model-based

interpretation of this filter (Gómez, 1999), output is also expressed as a trend–plus–cycle

model (1), but with the trend following the model ∇2yhp,t = ωγt instead of (3) and the

cycle being white noise, yc
t = {ωyt}, instead of following the model (2). In addition, the

noise to signal ratio, σ2
ωy/σ2

ωγ , is assumed to be fixed and equal to 1600. However, it has

been suggested that this value is too small and a larger value should be used. The larger

the value, the smoother the trend.

Instead of using fixed filters, like the HP filter, to estimate the unobserved components,

we propose to use a model–based approach. Some advantages of a model–based approach

are that the filters implied by the model are consistent with each other and with the data.

In addition, they automatically adapt to the ends of the sample and, if desired, root mean

squared errors can be calculated.
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2.2 The Phillips curve

Assuming proportionality between marginal cost and the output gap, a simple specification

of the new Phillips curve is (Gaĺı and Gertler, 1999, p. 201)

πt = αyc
t + βEt(πt+1),

where πt is the inflation rate, yc
t is the output gap, Et(.) is the expectation operator based

on information up to and including time t, and α and β are constants. Thus, the Et(πt+1)

term summarizes the rational expectations of future inflation at time t. A key difference

with the old Phillips curve is that it is Et(πt+1) as opposed to Et−1(πt) (generally assumed

to equal πt−1) that matters.

As stated by Gaĺı and Gertler, (1999), p. 203, some empirical limitations of the new

Phillips curve have led a number of researchers to consider a hybrid version of the new

and old

πt = µEt(πt+1) + (1− µ)πt−1 + δyc
t ,

where 0 ≤ µ ≤ 1. The idea is to let inflation depend on a convex combination of expected

future inflation and lagged inflation.

The previous equation can be generalized by including a white noise term vt uncorre-

lated with yc
t to get

πt = µEt(πt+1) + (1− µ)πt−1 + δyc
t + vt. (4)

This generalization does no harm and, in any case, one can always assume in the discussion

that follows that vt is zero without the main results being affected. It is shown in Appendix

C that if we make some reasonable assumptions, a model–based interpretation of (4) is

obtained. More specifically, the following theorem holds.
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Theorem 1. Under the assumptions 1)–5) in Appendix C, the solution for inflation πt

in equation (4) coincides with the solution given by the model

πt = µ̃πt + (1− µ̃)πt−1 + ηyy
c
t + vπt (5)

∇π̄t = ωπt (6)

φ(L)yc
t = ωyt, (7)

where model (7) coincides with (2), µ̃ = 1− (1− µ)/µ, ηy = δ
√

1 + θ2
1/(µ

√
α), Var(ωπt)

= [(δσyω)2 + (α − 1)2(σv)2]/(µ̃ϕ0)2, Var(vπt) = ασ2
v/ϕ2

0, ϕ0 = 1 − µβ0, and {vπt} and

{ωπt} are uncorrelated white noise sequences with zero mean that are both uncorrelated

with {yc
t}. Also, 0 ≤ µ̃ ≤ 1 in (5).

The previous considerations lead us to propose the following model for inflation

πt = (1−
∑

i≥1

µπi)πt + µπ(L)πt−1 + ηyy
c
t + vπt, (8)

where yc
t is the output gap, that follows model (2), ηy is a constant, {vπt} is an i.i.d.

N(0, σ2
vπ) sequence, µπ(L) =

∑
i≥1 µπiL

i is a polynomial in the lag operator, and πt is the

long-run inflation rate, that follows model (6) with {ωπt} assumed to be an i.i.d. N(0, σ2
ωπ)

sequence. In addition, {vπt}, {ωπt} and {yc
t} are assumed to be mutually uncorrelated.

In equation (8), we use several lags for inflation to account for backward looking

behavior. In addition, the importance of forward looking behavior is measured by the

coefficient 1−∑
i≥1 µπi of core inflation πt. To see this, consider first that πt is unobservable

and is thus different from Et(πt+1) in (4), and also different from its concurrent estimator,

Et(πt). In fact, the precise relationship between the estimator Et(πt) and expected future

inflation is given by the following theorem. The proof is in Appendix C.
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Theorem 2. In model (8), the following relation holds

Et(πt+k) = Et(πt+k) = Et(πt),

where Et(π) denotes conditional expectation of the random variable π with respect to the

information set It = {zs : s ≤ t}, zs are the four dimensional observations of our proposed

model, and k is a sufficiently large integer.

Then, by theorem 2, if we take conditional expectations in (8), we get

πt = (1−
∑

i

µπi)Et(πt+k) + µπ(L)πt−1 + ηyEt(yc
t ) + Et(vπt). (9)

It is clear by inspection of equations (9) and (4) that our specification also includes rational

expectations of inflation, but with a suitable forecast horizon k instead of just one period

ahead. Another consequence of (9) is that it proves our earlier claim about the importance

of forward looking behavior being measured by the coefficient 1 −∑
i≥1 µπi of πt in (8).

We note that it is equation (9) and not equation (8) that should be compared to (4).

We note that, by theorem 2, our concurrent estimator Et(πt) satisfies the usual def-

inition of core inflation π̄t|t of Bryan and Cecchetti (1994), π̄t|t = Et(πt+k), where πt is

actual inflation and k is a suitably long forecast horizon.

We will include later in the simulation experiment the filter recently proposed by

Cogley (2002), that is a very simple one–sided filter depending on one parameter. It

is shown in Cogley (2002) that this filter performs better than the best known and most

widely used measures of core inflation, namely the “ex food and energy” series produced by

the U.S. Bureau of Labor Statistics and Bryan and Cecchetti’s median core and trimmed

mean series. It is interesting to note that the Cogley filter can be given a model–based

interpretation as the following theorem shows. The proof is in Appendix C.
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Table 3. Unit-root Tests for Inflation

ADF t statistics Autocorrelations

Lags Constant Constant, trend Lags Correlation coefficient

2 -2.71 -2.75 1–2 -0.27 -0.31

4 -2.92 -2.98 3–4 0.36 -0.09

8 -2.60 -2.68 5–8 -0.14 0.17 0.05 -0.26

12 -2.04 -2.10 9–12 0.03 0.10 -0.10 -0.06

NOTE: Results are based on 209 quarterly observations from 1951:I through 2003:I

Theorem 3. Given the semi–infinite sample {πs : s ≤ t}, the series filtered with the

Cogley filter,

π̂t =
1 + θ

1 + θL
πt,

coincides with the concurrent estimator of st in the signal plus noise model πt = st + nt,

where st follows the model ∇st = bt and {bt} and {nt} are two white noise series mutually

uncorrelated.

To test our specification for inflation πt for consistency with the data, we first perform

some unit root tests. By visual inspection, we detect some outliers in the first part of the

sample. For this reason, we drop some observations at the beginning of the sample before

performing some ADF tests for nonstationarity. The results are reported in Table 3. The

tests clearly reject the hypothesis of a stationary process around a deterministic trend,

also in agreement with the results of Kuttner (1994).

The ADF tests suggest that we specify for the trend π̄t the model ∇π̄t = ωπt. Table

3 displays the first twelve autocorrelations of the first difference of inflation. To identify

both the outliers at the beginning of the sample and an ARIMA model for inflation, we
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use the automatic identification facility of the TRAMO program of Gómez and Maravall

(1997) (downloadable at http://www.bde.es).

Including as a regressor the filtered estimate of the output gap, Et(yc
t ), obtained with

the previous univariate model for GDP, the program identifies an ARIMA(3, 1, 0)(0, 0, 1)4

model for inflation with some outliers. However, the moving average parameter is not

significant and so we accept the ARIMA(3, 1, 0)(0, 0, 0)4 model. With this last model, the

following outliers were identified: i) AO, 1951:I, ii) TC, 1948:IV, and iii) AO, 1951:III,

where AO and TC stand for additive outlier and temporary change. An additive outlier

is modelled by a dummy variable taking the value one at the appropriate date and zero

otherwise. A temporary change is modelled by a dummy variable taking the value one

at the start T of the effect and .7j at later times T + j, j = 1, 2, . . .. Some Q statistics

obtained from the residuals are Q(17) = 16.43 and Q(20) = 18.27.

We consider the previous ARIMA model as a tentative reduced form specification.

Based on it, we use the specification (8) for inflation πt, but we include the three out-

liers detected with the TRAMO program and we replace the output gap with the filtered

estimate, Et(yc
t ), obtained with the univariate model for GDP. Given the previously men-

tioned identification issues, it remains to see whether {vπt} should be specified as an i.i.d.

sequence or as a stationary component following an ARMA model. As in the GDP case,

we have first estimated a univariate model and then we have examined the residuals. The

results are reported in Table 4.

Some Q statistics obtained from the residuals are Q(17) = 19.09 and Q(20) = 22.98.

The residuals show no autocorrelation and thus we specify {vπt} as an i.i.d. sequence.

As with GDP, although the residuals seem to have no autocorrelation, they do show
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Table 4. Estimated Univariate Model for Inflation

o1 o2 o3 σωπ µ1 µ2 µ3 µ4 ηy σvπ

0.1041 -0.988 -0.0318 0.0123 0.0000 -0.1476 0.2544 0.0000 0.6714 0.0080

(8.54) (-6.95) (-2.61) (4.16) (-2.59) (5.21) (3.85)

NOTE: Results are based on 224 quarterly observations from 1947:II through 2003:I. t–values are

in parenthesis. The parameters σvπ and oi, i = 1, 2, 3, are concentrated out of the likelihood.

some heteroscedasticity. This is in agreement with Sensier and Van Dijk (2003), who

report to have found several volatility breaks for inflation. We have in fact found two

breaks in inflation volatility, in 1972:I and 1983:II, that we have incorporated into our

model. We have accomplished this by allowing the parameter σωπ to vary with time.

That is, instead of σωπ, we use σωπt = σωy1 if t < 1972:I, σωπt = σωπ2 if 1972:I ≤ t <

1983:II, and σωπt = σωπ3 if t ≥ 1983:II.

2.3 Okun’s Law

Some empirical evidence suggests that there is a relationship between movements in output

and unemployment. This relationship, known as Okun’s law, has been used by several

authors to asses the cyclical position of the economy (Clark, 1989, Blanchard and Quah,

1989), and it is also used by the Congressional Budget Office to estimate the output gap.

The previous empirical evidence can be explained by some models, like the one pro-

posed by Blanchard and Quah (1989). According to a more general version of this last

model, in the steady-state balanced growth path, output is on its trend, the unemploy-

ment rate is equal to its structural level, inflation is steady and the investment rate is on

its long-run level. In this model, Okun’s law is simply the relationship between output
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relative to trend and the deviations of the unemployment rate from its trend component.

Although we do not propose a fully fleshed out macro model in this article, we account

for the negative correlation between the output gap and cyclical unemployment by means

of the following equation

Ut = φuUt−1 + (1− φu)U t + φy(L)yc
t + vut,

where U t is the trend component, {vut} is an i.i.d. N(0, σ2
uv) sequence and φy(L) is a

polynomial in the lag operator such that φy(1) < 0. Since the output gap follows an

AR(2) process, our cyclical unemployment specification is rather flexible. In contrast to

the assumptions of Apel and Jansson (1999) and Camba-Méndez and Palenzuela (2003),

we allow in principle the output gap to affect the unemployment rate with some lags,

as suggested by some empirical evidence showing that firms usually adjust employment

slowly.

The non–accelerating inflation rate of unemployment or NAIRU, U t, is allowed to

follow either an I(2) or an I(1) process, where I(2) means that a process is integrated of

order two. That is,

U t = γut + U t−1,

where

γut = ρuγut−1 + ωut,

0 ≤ ρu ≤ 1, and {ωut} is an i.i.d. N(0, σ2
ωu) sequence. Thus, if ρu = 1, then ∇U t is I(1).

But if ρu = 0, then U t is just a random walk. As pointed out by Laubach (2001), the

assumption that the NAIRU follows a random walk could be convenient for the US but

not for other countries such as, for example, the European ones that are believed to have
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NAIRUs following I(2) processes.

Proceeding as in the cases of the GDP and the inflation rate, we have tested whether

the data support this specification. The results (not shown) indicate that U t follows a

random walk without drift and that there are no lags in the polynomial φy(L).

2.4 Investment

One of the most important regularities that the empirical research on business cycles has

found is that investment strongly comoves with output but with more volatility (Canova,

1998, Burnside, 1998, Harvey and Trimbur, 2003). This stylized fact implies that the

deviation of the investment rate, xt ≡ investmentt/outputt (see the data definitions in

Appendix A), from its long-run trend, xt, is markedly procyclical. For this reason, we

model the comovement of the investment rate with the output gap by means of the fol-

lowing equation

xt = βxxt−1 + (1− βx)xt + βy(L)yc
t + vxt, (10)

where {vxt} is an i.i.d. N(0, σ2
xv) sequence and, given that the investment rate is procycli-

cal, βy(L) is a polynomial in the lag operator such that βy(1) > 0.

Note that, although (10) resembles an accelerator investment model, it is not a proper

investment equation, but a reduced form that may help to estimate more accurately the

output gap because it accounts for the correlation between the cyclical components of the

investment rate and output.

We have considered the possibility of including the real interest rate as a regressor in

(10), as suggested by a referee. However, after estimating our full model again with the

additional regressor as described in the next section we found that it was not significant.
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Therefore, we dropped it from the investment rate equation.

As in the case of the NAIRU, the trend component of the investment rate is allowed

to follow either an I(1) or an I(2) process. That is,

xt = γxt + xt−1,

where

γxt = ρxγx,t−1 + ωxt,

0 ≤ ρx ≤ 1, and {ωxt} is an i.i.d. N(0, σ2
ωx) sequence. Note that if ρx = σ2

ωx = 0, then

xt is equal to a constant. Thus, we let the data speak to see how flexible the investment

trend is.

Proceeding as with the previous variables, we have tested whether the data support

this specification. The results (not shown) indicate that xt follows a random walk without

drift and that there is one lag in the polynomial βy(L).

2.5 Model Estimation

Our approach to estimate the unknown parameters in the model is to cast it into state-

space form and use the Kalman filter for likelihood evaluation. Then, at a later stage,

we use a smoothing algorithm to obtain estimates of the unobserved components together

with their mean squared errors. We use quarterly data for the US economy from 1946:I

to 2003:I. The data are described in Appendix A. There are several missing values, but

that poses no problem for the Kalman filter.

Based on the analysis of the previous sections, we specify all four variables as I(1),

with only the output trend having a drift term, and we let the parameters σωy and σωπ

vary with time in the way described in sections 2.1 and 2.2. In addition, we specify degree
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zero for the polynomial φy(L), degree one for the polynomial βy(L), degree four for the

polynomial µπ(L), and we include in the model the three outliers identified for inflation.

Our model, with the previous specification, can be put into state-space form as follows.

Define the following matrices

W =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, T =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 −θ2
1 2θ1 cos θ2




,

αt =




yt

U t

xt

πt

yc
t−2

yc
t−1

yc
t




, Ht =




σ∗ωγ 0 0 0 0 0 0 0

0 σ∗ωu 0 0 0 0 0 0

0 0 σ∗ωx 0 0 0 0 0

0 0 0 σ∗ωπt 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σ∗ωyt




,

Z =




1 0 0 0 0 0 1

0 1− φu 0 0 0 0 φ0

0 0 1− βx 0 0 βy1 βy0

0 0 0 1−∑4
i=1 µπi 0 0 ηy




,
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Xt =




0 0 0 0

0 0 0 0

0 0 0 0

0 o1t o2t o3t




, and G =




0 0 0 0 0 0 0 0

0 0 0 0 σ∗uv 0 0 0

0 0 0 0 0 σ∗xv 0 0

0 0 0 0 0 0 1 0




,

where σ∗ωγ = σωγ/σπv, σ∗ωu = σωu/σπv, σ∗ωx = σωx/σπv, σ∗ωπt = σωπt/σπv, σ∗ωyt = σωyt/σπv,

σ∗uv = σuv/σπv, σ∗xv = σxv/σπv, and the oit variables, i = 1, 2, 3, model the three out-

liers that affect the inflation rate. Then, αt is the state vector, the parameter σ2
πv is

concentrated out of the likelihood, and the state-space equations are

αt+1 = Wγ + Tαt + Htεt

zt = Xtγ + Zαt + Gεt,

where zt = [yt, Ut−φuUt−1, xt−βxxt−1, πt−
∑4

i=1 µπiπt−i]′, γ = (γy, o1, o2, o3)′ is the vector

of regression coefficients and Var(εt) = σ2
πvI. The parameters in γ are also concentrated

out of the likelihood. The filter starts filtering at t = 5, so that we condition on the first

four non missing observations of each series.

The previous state-space model is non-stationary and the initial conditions for the

Kalman filter are not well defined. To overcome this difficulty, we use the approach of

De Jong (1991). According to this approach, the initial state vector α1 is modelled as

partially diffuse and an augmented Kalman filter algorithm called the “diffuse Kalman

filter” (DKF) is used to handle the diffuse part. As shown by De Jong and Chu-Chun-Lin

(1994), the DKF can be collapsed to the ordinary Kalman filter after a few iterations.

The DKF can be used to evaluate the likelihood and thus the model parameters can be

estimated by maximum likelihood.

After having estimated the model parameters, we can use a smoothing algorithm to
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obtain two-sided estimates of the unobserved components and their mean squared errors.

We use the algorithm proposed by De Jong and Chu-Chun-Lin (2003). The diffuse part is

δ = [y0, U0, x0, π0]′, so that the initial state is α1 = Aδ + Wγ + [0, x′1]
′, where A = [I, 0]′

and x1 = [yc
−1, y

c
0, y

c
1]
′ has a known (stationary) distribution. Some technical details on

the methodology and the optimization method are given in Appendix B.

3 Estimation Results

In Table 5 we present the estimates of the different model parameters, together with

their t−statistics in parenthesis. It is seen that our estimation of the output gap is very

significant in the Okun’s law (φy0), the Phillips curve (ηy) and the investment equation

(βyi, i = 0, 1). This suggests that the unemployment, inflation and investment rates

contain very useful information about the cyclical position of the economy. The Q statistics

obtained from the residuals (not shown) indicate no evidence of residual autocorrelation.

The results in the first two columns of Table 5 show that there is indeed a break at

1983:II in the output gap volatility, measured by the standard deviation σωyt, in agreement

with the results of Stock and Watson (2002). This standard deviation has sharply declined

from 0.0092 before 1983:II to 0.0029 afterwards.

The results for the Okun’s law indicate that there is a significant and sizable direct

contemporaneous effect of business cycles on the unemployment rate. Another noteworthy

result is that the magnitude of σvu is so small that Okun’s law almost fits completely the

unemployment rate. In the case of the investment rate, we obtain a similar picture. The

contemporaneous correlation with the output gap is very significant, and there is also a

substantial inertia in the investment rate since βx is relatively high. Because the standard
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Table 5. Maximum Likelihood Parameter Estimates

Equation

Output Okun’s Law Investment Phillips Curve

θ1 0.7673 φy0 -0.2981 βy0 0.6403 ηy 0.2710 o1 0.1073

(20.60) (-14.48) (12.75) (3.05) (8.59)

θ2 0.2412 φu 0.4380 βy1 -.6086 µ1 0.1633 o2 -0.0907

(3.72) (10.42) (-11.97) (2.18) (-7.01)

γy 0.0083 σvu 0.0012 βx 0.8289 µ2 -0.1435 o3 -0.0266

(26.03) (6.09) (13.67) (-2.35) (-2.13)

σωy1 0.0092 σωu 0.0046 σvx 0.0048 µ3 0.2574 σωπ1 0.0068

(7.85) (3.80) (8.47) (4.85) (3.28)

σωy2 0.0029 σωx 0.0027 µ4 -0.1440 σωπ2 0.0161

(5.25) (2.39) (-2.83) (4.38)

σωγ 0.0046 σvπ 0.0106 σωπ3 0.0032

(7.34) (1.96)

NOTE: Results are based on 229 quarterly observations from 1946:I through 2003:I. t–values are

in parenthesis. The parameters σvπ, γy and oi, i = 1, 2, 3, are concentrated out of the likelihood.

deviation of vx is very small (close to 0.5 per cent), the decomposition between trend and

cycle accounts almost entirely for the variation of the investment rate.

The last four columns of Table 5 present the estimation results for the Phillips curve.

Again, the model performs extremely well in explaining the dynamics of inflation in the

United States. The output gap is statistically significant suggesting that most of the

business cycles fluctuations have been associated with a procyclical behaviour of inflation.

Although the models are not directly comparable, the estimated value of ηy is higher than
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that estimated by Rudebusch and Svensson (1999).

As mentioned in Section 2.2, in the Phillips curve we use several lags for inflation to

account for backward looking behavior whereas forward looking behavior is measured by

the coefficient 1−∑4
i=1 µi of πt in (8) or, equivalently, the coefficient of Et(πt+k) in (9).

From the results in Table 5 we see that forward looking behavior is more important than

backward looking behavior, since the estimated forward looking coefficient 1 − ∑4
i=1 µi

= .8668 is well above the estimated backward looking coefficients µi. Note that some of

the coefficients of lagged inflation are negative. This should not be worrisome however

for two reasons. First, economic theory does not predict that the coefficients should all

be positive and second, the negative sign in some lagged values is probably the result of

accounting for some autocorrelation in the error term.

As with GDP, and in agreement with the results of Sensier and Van Dijk (2003), we

have found two breaks in inflation volatility, measured by the standard deviation σωπ. The

breaks occur in 1972:I and 1983:II. From the results in Table 5, a hump–shaped pattern

is observed, with an increase in volatility from 0.0068 to 0.0161 at 1972:I followed by a

sharp decrease to 0.0032 at the second break in 1983:II.

Figure 1 displays the output gap, the NAIRU, the core inflation rate and the trend

investment rate for the US economy, as well as estimated ninety per cent confidence

intervals. In Figure 2, our estimation of the output gap is also compared with the cyclical

component estimated with the HP filter. The correlation between both estimates of the

output gap is relatively high (0.835), but we observe some important discrepancies. Thus,

when we use the HP filter, the 1990–91 recession appears very mild compared to other

post World War II episodes, whereas the growth in GDP during the second part of the
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Figure 1: Output gap, NAIRU, Core inflation rate, and Investment rate trend. United

States, 1947:I–2003:I.

nineties is compatible with a small output gap. However, our estimation of the output

gap shows a more severe recession in 1990–91 and also an important cyclical expansion

after these years, reaching a maximum at the beginning of 2000 that is similar to the one

observed during the latest eighties. In addition, our output gap measure differs from the

cyclical component of GDP estimated with the HP filter at the end of the sixties and

beginning of the seventies, and during the recession of the first half of the eighties, that

was more intense according to our model. In both cases, the differences can be explained

by the behavior of the unemployment rate during these episodes. Thus, at the beginning
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of the seventies the unemployment rate approached the NAIRU from unusually low levels,

whereas after the second oil crisis the unemployment rate reached the highest level in the

second half of the last century.

Figure 1 is also very illustrative about the performance of the NAIRU, which has re-

mained quite stable from mid nineties onwards, around five per cent. This level is similar

to the one observed in the fifties and sixties. Additionally, the confidence intervals indi-

cate that expansions and recessions are precisely identified and, therefore, the difference

between the current unemployment rate and the NAIRU is very useful for the conduct

of economic policy. Our reading of these results is that they cast some doubts on recent

criticisms (Staigner, Stock and Watson, 2001) about the statistical uncertainty in the es-

timation of the NAIRU and its usefulness for policy makers. As regards the performance

of the core inflation rate, Figure 1 shows that disinflationary policies were very aggressive

in the first half of the eighties, as Ball (1997) has pointed out, with a significant reduction

of core inflation. In more recent years, core inflation has remained relatively stable. In

Figure 1, one can also see the changes in volatility in the GDP and in inflation, with the

confidence bands getting broader or narrower in periods of greater or lower volatility.

4 Revision and Simulation Exercises

In this section, we perform two standard additional exercises aimed at analyzing some

properties of our decomposition in comparison to alternative methods. In particular, we

are interested in how important the revisions of our estimates are after new information

becomes available and how good our model is in recovering the unobserved output gap

from a simulated series. We are also interested in investigating whether our model can
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States, 1947:I–2003:I.

generate spurious cycles.

Several authors (Rünstler, 2002, Orphanides and van Norden, 2003, Camba-Mendez

and Rodriguez-Palenzuela, 2003) have proposed comparing alternative models using their

revision properties. That is, analyzing to what extent the availability of new information

introduces changes into the previously estimated unobserved components. Let us define

zt|t+j as the estimator of the unobserved component zt based on all available observations

up to time t + j. Thus, if j = 0 then zt|t is the real–time or concurrent estimate of

zt. As new data become available (j = 1, 2, ...), the model yields newer estimates of

zt|t+j and, therefore, the difference between zt|t and zt|t+j is a measure of the revision

made. As Orphanides and van Norden (2003) have shown, most of the revisions are due

to the unreliability of end-of-sample estimates of the output gap. For this reason, we

are interested in revisions due to the use of the information contained in the full sample,

that is, in zt|t − zt|T , where T is the last observation in the sample. This revision is the

quasi-final time estimate used by Orphanides and van Norden (2003), which is simply the
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Table 6. Revisions 1960:I–1994:IV

(1) (2) (3) (4) (5) (6)

HP BK Our model Our model Kuttner Our model

(λ = 1600) (4,32) 4 vab. 3 vab. 2 vab. 2 vab.

Relative std. dev. of revisions in cyclical components (SR)

Output 0.992 0.696 0.321 0.394 0.672 0.554

Inflation 0.732 0.591 0.401 0.438 0.603 0.463

Unemployment 0.993 0.670 0.346 0.418 − −

Investment 0.771 0.611 0.491 − − −

Correlation between concurrent and full sample estimates

Output gap 0.526 0.718 0.954 0.932 0.805 0.843

∆ Output gap 0.900 0.785 0.979 0.979 0.914 0.964

rolling estimate based on the final data series but holding constant the set of estimated

parameters for the whole sample.

In the revision exercise, we compute the revisions in relative terms according to the

formula SR = σ(zt|t−zt|T )/σ(zt|T ), where σ(x) stands for the empirical standard deviation

of a sample of the variable x, and we compare the results of our model with several

alternatives.

We use the HP filter and the filter proposed by Baxter and King (1995) (henceforth

BK filter) as they have become standard examples of univariate methods. Additionally,

we use two alternative multivariate models. The first one is our model with only two

variables, inflation and output. This model is similar to the model proposed by Kuttner

(1994) and will be referred to as Kuttner’s model in the sequel. The second one is based

on our model but excluding the investment equation.
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In Table 6 we present our measure SR of revisions of the trend components over the

period 1960:I to 1994:IV, therefore excluding more than eight years at the beginning and

at the end of the sample. This sample size allows us to use the HP and BK filters without

ARIMA extrapolations at both ends of the sample. The results are very illustrative. The

revisions for the HP filter are larger than for any other alternative method in each of the

four variables. On the contrary, our preferred unobserved components model with four

variables produces generally the smallest revisions. For the BK filter, the revisions of

the output gap are half way between those obtained with the HP filter and our model,

and close to the ones computed with Kuttner’s model. Therefore, these results show that

the estimates of the trend components are more stable when new observations become

available in our preferred unobserved components model than in the alternative ones.

Sometimes, looking at the magnitude of the output gap revisions is a somewhat mis-

leading way to asses the value–added of incorporating additional variables because the

size of revisions will depend on the degree of “flexibility” in the underlying trend, which is

determined by the ratio of the variances in the innovations to the trend and to the cycle.

To investigate whether it was the degree of “flexibility” that accounted for the reduction

in the size of the estimates’ revisions, as opposed to the inclusion of additional variables,

we have re–done the estimates of the unobservables using the parameter estimates from

the full model but deleting the portions of the measurement equation involving the extra

indicators (the unemployment and the investment rates). The results are presented in

the last column of Table 6. They clearly show that these two variables do account for a

reduction in the revisions.

Table 6 also shows the correlations between concurrent and full sample estimates of the
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Table 7. Revisions 1985:1–1994:4

HP BK Our model

(λ = 1600) (4,32) 4 vab.

Relative std. dev. of revisions (SR)

Output 1.2383 0.6711 0.2520

Inflation 0.7183 0.4226 0.2628

Unemployment 1.3202 0.7441 0.2498

Investment 1.2023 0.8141 0.5155

Correlation between concurrent and full sample estimates

Output gap 0.4288 0.74241 0.9793

∆ Output gap 0.8507 0.77303 0.9726

output gap for the five alternative models considered. The best results correspond to our

unobserved components model with four variables, which exhibits a very high correlation.

It is to be noted that the three unobserved components model yields a higher correlation

than the HP and the BK filters. Finally, the last row in Table 6 shows the correlation

between the change in the concurrent and full sample estimates of the output gap, since

Walsh (2003) has pointed out that monetary policies which focus on the change of the

output gap (speed limit policies) stabilize inflation and economic activity better than

policies that focus directly on the output gap level. Again, our unobserved components

model with four variables yields the highest correlation, making the results of our model

very attractive as an input of stabilization policies.

In the previous exercise, the revisions of the unobserved components model have been

computed using the parameters estimated with the whole sample. Another possibility is

to estimate the parameters using a smaller sample, and then compute the revisions for the

28



rest of the sample. We have estimated our model with observations from 1948:I to 1984:IV,

and then we have repeated the preceding exercise for the period 1985:I to 1994:IV, which

contains a complete cycle according to the three alternative decompositions. Thus, in this

exercise the revisions are computed for quarters that have not been previously used in the

estimation of the parameters of our model. As we can see in Table 7, the results show

again that the smallest revisions of the output gap are obtained with our model.

If we have to evaluate several methods for estimating unobserved components, we be-

lieve that the best way to proceed is to use simulated series. This motivates our simulation

exercise. We have first simulated four series of 250 observations that follow a simplified

version of our model. More specifically, the output series is the sum of a cycle yc
t with

θ1 = .9, θ2 = π/10 (five years) and ωyt ∼ N(0, 1), plus a trend yt with γ̄y = .5 and

ωγt ∼ N(0, .52). The inflation series is the sum of a core inflation πt with ωπt ∼ N(0, .62),

µπ(L) = 0, plus ηyy
c
t with ηy = .8 plus vπt ∼ N(0, .42). The unemployment series is the

sum of a trend U t with {ωut} ∼ N(0, .72) plus φy0y
c
t with φy0 = −.5 plus vut ∼ N(0, .52).

Finally, the investment series is the sum of a trend xt with ωxt ∼ N(0, .82) plus βy0y
c
t with

βy0 = .5 plus vxt ∼ N(0, .32).

Then, we have estimated our four variables model. The parameters that are zero are

estimated as not significant. After setting nonsignificant parameters to zero, we have

estimated the model again. The fit is rather good. We do not present the results for

lack of space but they are available upon request. All estimated parameters are close to

the true ones and the residuals show no autocorrelation and can be accepted as normally

distributed.

We compare our results with the results obtained when we apply the HP filter, the
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Table 8. Correlations between original and estimated cycles

HP BK Cogley Our model

(λ = 1600) (4,32) 4 vab.

Output gap 0.8837 0.8611 0.7845 0.9816

Core inflation 0.7543 0.7259 0.7518 0.9622

Baxter and King filter and the Cogley filter. The goal of the experiment is to see how

well the different methods recover core inflation πt and the output gap yc
t . In Table 8 we

can see the correlations between the original variables and the estimates obtained with

the different methods. It is seen that our model gives the highest correlations.

Our second simulation experiment investigates which of the alternative methods that

we are comparing can produce spurious cycles. To this end, we have simulated four series

of 250 observations that follow the same model of our first simulation experiment but with

the cycle yc
t replaced with a white noise series distributed N(0, 102). Proceeding as before,

we have estimated our four variables model. The parameters that are zero are estimated as

not significant. After setting nonsignificant parameters to zero, except those of the cycle,

we have estimated the model again. The fit is rather good. Again, we do not present all of

the results for lack of space but they are available upon request. All estimated parameters

are again close to the true ones and the residuals show no autocorrelation and can be

accepted as normally distributed. The parameters estimated for the cycle are θ1 = 0.0240,

and θ2 = 0.1963, with t–values of 0.78 and 0.13. It is clear that we would not estimate a

cycle with our model in this case because it is not significant. However, all the alternative

procedures would estimate spurious cycles.
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5 Conclusions

In this paper we have proposed an unobserved components model that provides estimates

of the NAIRU, core inflation and the output gap for the United States. The model exploits

the rich information about the business cycle simultaneously contained in the GDP and

the unemployment, inflation and the investment rate, to decompose these four variables

into trend and cyclical movements. The unknown parameters in the model have been

estimated by maximum likelihood using a Kalman filter initialized with a partially diffuse

prior, and the unobserved components have been estimated using a smoothing algorithm.

Although the correlation between the output gap estimated with this method and that

obtained with the HP filter is relatively high, there are some important discrepancies,

particularly in the second half of the nineties. Contrary to the HP filter, our method also

works well at the end of the sample and, thus, it is very appropriate to infer how current

economic conditions affect output, inflation and the unemployment rate.

Our results also show that the output gap estimated with our model is a very significant

variable in Okun’s law, the Phillips curve and the investment rate equation. These results

confirm that the dependent variables in these equations improve the precision of the GDP

decomposition into its trend and output gap components. Finally, we have verified that

the revisions of output gap estimates when new information becomes available are lower

with our preferred model than with the HP and the BK filters. The results obtained in

this paper illustrate the usefulness of our decomposition for the conduct of stabilization

economic policies in real time.
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APPENDIX A: DATA SOURCES

The data set is available at http://iei.uv.es/˜rdomenec/output/output.htm.

There are 229 quarterly observations from 1946:I to 2003:I. The variables contained in

this file are the following:

• ln GDP : log of Real Gross Domestic Product, Billions of Chained 1996 Dollars,

SAAR. Source: BEA, Table 1.10, Line 1.

• π: quarterly inflation rate, defined as 4(lnPt − ln Pt−1), where Pt is the geometric

average of the monthly price levels. Source: BLS, CPI Urban Consumer, all items,

1982-84=100, SA.

• U : unemployment rate, defined as the average of the monthly unemployment rates.

Source: BLS, household survey, SA.

• x: nominal investment rate, defined as I/Y , where I is the nominal gross private

domestic investment (Bil. $, SAAR), source: BEA, Table 5.4, Line 1, and Y is the

nominal gross domestic product, (Bil. $, SAAR), source: BEA, Table 1.9 Line 1.

APPENDIX B: TECHNICAL DETAILS
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To implement the methodology used in this paper, we have used a set of MATLAB

programs written by V. Gómez. The code and the data sets are available at the Internet

address: http://iei.uv.es/˜rdomenec/output/output.htm.

The estimation of the model parameters is performed by maximizing the so called

“diffuse likelihood” (De Jong, 1991). It can be shown that maximizing the concentrated

log–likelihood is equivalent to minimizing a nonlinear sum of squares function. To this

end, a routine has been written in MATLAB that implements the Levenverg–Marquardt

method, although the standard MATLAB routine lsqnonlin of the OPTIMIZATION

TOOLBOX can also be used.

Letting θ be the vector of parameters to be estimated, the nonlinear sum of squares

function that is minimized can be written as F (θ) = e′(θ)e(θ), where e(θ) is a vector of

residuals that can be computed by the diffuse Kalman filter. In terms of F (θ), the log–

likelihood L(θ) can be expressed as L(θ) = const.−n lnF (θ)/2, where n is the total number

of observations. Under the usual assumptions, the estimator θ̂ of θ is asymptotically

distributed as N(θ, I−1/n), where I is the information matrix. This last matrix can be

estimated by Î= − 1
n

∂2L(θ)
∂θ∂θ′ |θ=θ̂

= 1
2

∂2 ln F (θ)
∂θ∂θ′ |θ=θ̂

, where the derivatives can be computed

numerically. This is the method that has been implemented in MATLAB and used to

compute standard errors for the model parameters.

The smoothing algorithm provides the standard errors of the unobserved components,

with which the confidence intervals can be calculated. Other sources of uncertainty, like

that due to parameter estimation could be taken into account through simulation, but

this has not been implemented for this paper.

APPENDIX C: ASSUMPTIONS AND PROOFS
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To obtain a model–based interpretation of (4), we will make the following reasonable

and unrestrictive assumptions

1) .5 ≤ µ ≤ 1

2) yc
t and vt are unobserved components. {yc

t} follows the model φ(L)yc
t = ωyt, where

L is the lag operator, Lyc
t = yc

t−1, {ωyt} is a white noise sequence with zero mean

and Var(ωyt) = σ2
y , φ(z) = 1− 2θ1 cos(θ2)z + θ2

1z
2, 0 < θ1 < 1 and θ2 ∈ [π/20, π/3].

{vt} is a white noise sequence with zero mean and Var(vt) = σ2
v uncorrelated with

{yc
t}.

3) the rational expectations Et(πt+1) are linear in {πs : s ≤ t}. That is,Et(πt+1) =

∑∞
j=0 βjπt−j with

∑∞
j=0 |βj | < ∞

4) 0 < β0 < 1/µ

5) α = 1/µ− β0 = 2φ(1)

Some remarks on the previous assumptions are in order. First, assumption 1) seems

reasonable because it gives at least the same weight to expected future inflation than to

past inflation. Note that this assumption implies 1 ≤ 1/µ ≤ 2 and 0 ≤ (1 − µ)/µ ≤ 1.

Second, the interval [π/20, π/3] corresponds to the quarterly frequencies usually accepted

as appropriate for the output gap, namely those with periods between a year and a half

and eight years. Thus, the output gap yc
t is assumed to follow a stationary autoregressive

process of order two that has two complex roots to ensure a cyclical behavior. Third,

assumption 3) is obvious if one wants to keep the model linear and assumption 4) is

necessary to avoid having πt on both sides of (4). Fourth, by lemma C1 later in this
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appendix, 0 ≤ φ(1) ≤ 1 for all 0 ≤ θ1 ≤ 1 and θ2 ∈ [π/20, π/3]. Thus, 0 ≤ α ≤ 2 in

assumption 5), what is in agreement with assumptions 1) and 4). Some motivation for

assumption 5) will be given later in this Appendix.

The following three lemmas will be useful to prove theorem 1.

Lemma C1. The function φ(1) = 1 − 2θ1 cos(θ2) + θ2
1, where 0 ≤ θ1 ≤ 1 and θ2 ∈

[π/20, π/3], satisfies 0 ≤ φ(1) ≤ 1 for all θ1 and θ2.

Proof. First note that − cos(π/20) ≤ − cos(θ2) ≤ − cos(π/3) = −√3/2. Then, φ(1) ≤

1 − √
3θ1 + θ2

1. Define f(θ1) = 1 − √
3θ1 + θ2

1. Then, f ′(θ1) = 2θ1 −
√

3 implies that

f is decreasing in [0,
√

3/2] and increasing in [
√

3/2, 1]. Since f(0) = 1, f(
√

3/2) < 1,

f(1) = 2−√3 < 1 and φ(1) = (1− θ1)2 + 2θ1[1− cos(θ2)] ≥ 0, the lemma is proved. ¤

Lemma C2. Under assumptions 1)–4), let α = 1/µ−β0 and let φ̃(z) = 1+(φ1−α)z+φ2z
2,

where φ(z) = 1+φ1z+φ2z
2, φ1 = −2θ1 cos(θ2), and φ2 = θ2

1. Then, the following equality

∣∣∣∣∣
φ̃(e−ix)
φ(e−ix)

∣∣∣∣∣
2

=

∣∣∣∣∣
φ̃(1)
φ(1)

∣∣∣∣∣
2

+ k

∣∣∣∣
1− e−ix

φ(e−ix)

∣∣∣∣
2

holds if, and only if, α = 2φ(1). In this case, k = 2φ(1)(1 + φ2) > 0, |φ̃(1)/φ(1)|2 = 1

and the function |φ̃(e−ix)/φ(e−ix)|2 has a global minimum at x = 0 that is equal to 1.

Proof. Let φ̃1 = φ1−α. Then, |φ̃(e−ix)|2 = (1+φ̃2
1+φ2

2)+2φ̃1(1+φ2) cos(x)+φ2 cos(2x),

|φ(e−ix)|2 = (1 + φ2
1 + φ2

2) + 2φ1(1 + φ2) cos(x) + φ2 cos(2x) and the equality of the lemma

is satisfied if, and only if, φ2 − k0φ2 = 0, φ̃1 + φ̃1φ2 − k0(φ1 + φ1φ2) = −k, and 1 + φ̃2
1 +

φ2
2 − k0(1 + φ2

1 + φ2
2) = 2k, where k0 = |φ̃(1)/φ(1)|2. The first equation implies k0 = 1

and it is not difficult to verify that the unique solution is α = 2φ(1). In addition, k =

2φ(1)(1 + φ2) > 0 is the only number that satisfies the last two relations when k0 = 1. ¤
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Lemma C3. Let α > 0 and let ut = vt − αvt−1, where {vt} is a white noise process with

zero mean and Var(vt) = 1. Then, the function f(x) = |1−αe−ix|2 satisfies |1−αe−ix|2 =

(α−1)2+α|1−e−ix|2 and thus f(x) has a global minimum at x = 0 that is equal to (α−1)2.

Proof. Since f(x)= 1 + α2 − 2α cos(x), f(0) = (α − 1)2, f ′(x) = 2α sin(x) ≥ 0, and

f is increasing in [0, π]. It is not difficult to verify that k satisfies 1 + α2 − 2α cos(x) =

(α− 1)2 + 2k(1− cos(x)) if, and only if, k = α. ¤

Proof of Theorem 1. By assumption 3), Et(πt+1) =
∑∞

j=0 βjπt−j . Therefore, we can

write πt − µEt(πt+1)− (1− µ)πt−1 =
∑∞

j=0 ϕjπt−j ,
∑∞

j=0 |ϕj | < ∞.

By stationarity, δyc
t + vt = δ

∑∞
j=0 ψjωy,t−j + vt and, from equation (4), it is obtained

that
∑∞

j=0 ϕjπt−j = δ
∑∞

j=0 ψjωy,t−j + vt. Inverting the previous equation yields πt =

δ
∑∞

j=0 ψyjωy,t−j +
∑∞

j=0 ψvjvt−j , where ψy0 = ψv0 = 1/ϕ0 and, by assumption 4), ϕ0 =

1− µβ0 > 0. Letting at+1 = πt+1 − Et(πt+1), we can write

at = (δ/ϕ0)ωyt + (1/ϕ0)vt. (C.1)

Replacing Et(πt+1) by πt+1 − at+1 in (4), we get πt = µπt+1 − µat+1 + (1− µ)πt−1 + δyc
t ,

and we can write

πt =
1
µ

πt−1 − 1− µ

µ
πt−2 − δ

µ
yc

t−1 −
1
µ

vt−1 + at. (C.2)

Since 1 − (1/µ)z + [(1− µ)/µ]z2 = {1− [(1− µ)/µ]z}(1− z), from (C.1) and (C.2), it is

obtained that

(1− 1− µ

µ
L)∇πt = − δ

µ
yc

t−1 −
1
µ

vt−1 +
δ

ϕ0
ωyt +

1
ϕ0

vt

=
δ

ϕ0

[
ωyt − ϕ0

µ
yc

t−1

]
+

1
ϕ0

[
vt − ϕ0

µ
vt−1

]

=
δ

ϕ0

[
φ(L)− αL

φ(L)

]
ωyt +

1
ϕ0

[vt − αvt−1] , (C.3)
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where α = ϕ0/µ = 1/µ − β0. Let φ̃(L) = φ(L) − αL. Then, under assumptions 1)–5),

by lemmas C2 and C3, we get the canonical decompositions (Hillmer and Tiao, 1982)
[

φ(L)−αL
φ(L)

]
ωyt =

√
k∇yc

t + ωct and vt − αvt−1 =
√

α∇vt + ωvt, where {ωct} is a white

noise sequence with zero mean and Var(ωct) = σ2
y , uncorrelated with yc

t , {ωvt} is a white

noise sequence with zero mean and Var(ωvt) = (α− 1)2σ2
v , uncorrelated with vt, and k =

2φ(1)(1 + φ2). Substituting the previous expressions into (C.3) yields (1 − 1−µ
µ L)∇πt =

δ
ϕ0

[√
k∇yc

t + ωct

]
+ 1

ϕ0
[
√

α∇vt + ωvt]. Define ω̃πt = (δ/ϕ0)ωct +(1/ϕ0)ωvt and let µ̃ =

1 − (1 − µ)/µ. Then, {ω̃πt} is a white noise sequence with zero mean and Var(ωπt) =

[(δσy/ϕ0)2 + (α − 1)2(σv/ϕ0)2] that is uncorrelated with both {yc
t} and {vt} and we can

write [1− (1− µ̃)L]∇πt =
√

kδ
ϕ0
∇yc

t +
√

α
ϕ0
∇vt + ω̃πt. Defining ωπt = ω̃πt/µ̃, vπt = (

√
α/ϕ0)vt

and ηy =
√

kδ/ϕ0, and dividing by ∇ in the previous equation, the theorem is proved. ¤

Assumption 5) ensures that the first term on the right hand side of equation (C.3),

that is a cyclical component, has a global minimum in the spectrum at the zero frequency.

This seems a reasonable assumption, since inflation appears on the left hand side in first

differences and, therefore, all low frequency components should have been removed.

Proof of Theorem 2. Taking first conditional expectations in (6), we get Et(πt) =

Et(πt+k). Then, taking conditional expectations in (8) yields Et(πt+k) = (1 −∑4
j=1 µj)

×Et(πt+k) +
∑4

j=1 µjEt(πt+k−j), since, due to the damping factor θ1 < 1 in the cycle

equation, Et(yc
t+k) is zero for k sufficiently large. From this it is concluded that Et(πt+k)

= Et(πt+k). ¤

Proof of Theorem 3. The model yt = st + nt can be cast into state space form

by defining the state vector αt = st. The state space equations are yt = αt + nt and
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αt+1 = αt + bt+1. The reduced form model of yt is ∇yt = (1 + θL)at, where θ and Var(at)

= σ2
a can be obtained by equating the covariances in bt +∇nt = (1 + θL)at. Proceeding

as in Burridge and Wallis (1988), pp. 71–73, setting φ = 1 in that article, we can show

that ŝt|t = (1 + θ)/(1 + θL)πt. ¤
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