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Up until now there has been no agreement on what a mental model of a 
physical system is and how to infer the mental model a person has. This 
paper describes research aimed at solving these problems by proposing that a 
Mental Model is a dynamic representation created in WM by combining 
information stored in LTM (the Conceptual Model of the system) and 
characteristics extracted from the environment. Three experiments tested 
hypotheses derived from this proposal. Implications for research on Mental 
Model are discussed.  
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When a person learns to interact with a system it means she/he 

acquires knowledge about its operation and about the structural 
relationships between its components. Researchers have called this 
knowledge the 'Mental Model' of the system (Moran, 1981). The existence 
of Mental Models, and their importance during the interaction with the 
system, has been demonstrated in numerous experiments  (e.g., Kieras and 
Bovair, 1984; Cañas, Bajo and Gonzalvo, 1994). Research on group co-
operation has also acknowledged the importance of mental models. When 
members of a group share similar and accurate mental models of group 
interaction, the group interacts more efficiently and performs more 
effectively (Cannon-Bowers et al, 1993). The concept of Mental Model is 
particularly important for research on Team behaviour. Teams are groups in 
which the members work together on the same task to solve a common 
problem and there is no division of work responsibilities (Cannon-Bowers 
et al, 1993). To perform the task, members of teams must develop a 
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common body of knowledge that has been called Team Mental Model 
(Klimoski and Mohammed, 1994) . 

Because of this, in the current investigations on design, learning new 
interfaces, group co-operation, etc., it is common practice to try to infer 
which  mental model a person or group has. However, the investigation on 
mental models is blocked at present by two problems. First, a theoretical 
problem exists, which is reflected in the great confusion concerning the 
definition of a Mental Model.  Though this problem has been stressed for a 
long time (Rouse and Morris, 1986) it still has not been solved 
satisfactorily. Secondly, a methodological problem exists that, in part, is a 
consequence of the definition problem. Although many methods have been 
proposed for inferring which model users have, all have been criticized as 
being unreliable (Sasse, 1991). 

The term Mental Model has been used by researchers that work in 
different areas and study different tasks. Johnson-Laird  (1983) has 
formulated his mental model definition in his attempt to explain the 
reasoning processes in tasks of syllogisms and language comprehension. To 
execute these tasks, a person forms in Working Memory a mental 
representation of the world, combining the information stored in Long-Term 
Memory with the information on the task characteristics extracted by 
perceptual processes. This representation is called the Mental Model in this 
context  and is, by nature, dynamic. Though the information retrieved from 
LTM, the knowledge that a person has about the world, is important, 
Johnson-Laird (1983) gave greater importance to the information extracted 
by perceptual processes  of the characteristics of the task (Rasmussen, 
1990). 

The research on the interaction with physical systems also considers 
that a person forms a representation in WM by combining the knowledge 
stored in LTM and the information extracted from  the task characteristics 
(Gentner and Stevens, 1983). However, in this case the information stored 
in LTM that is relevant for these researchers is related to the knowledge of 
the structure and the operation of the physical system. Therefore, the 
emphasis is on this representation, which is called Mental Model of the 
Physical System, and the efforts are placed on investigating how it is 
acquired and  extracted from LTM. 

Therefore, there are two uses of the term Mental Model. For some 
researchers, a Mental Model is a representation stored in Working Memory, 
while for others it is the knowledge stored in Long Term Memory.  
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The definition problems arise when researchers play with these two 
definitions and do not make clear to which of them they refer when using 
the Mental Model concept. 

To solve this definition problem, we could  reserve the term Mental 
Model for the dynamic representation that is formed in WM, combining the 
information stored in LTM and the extracted information from the 
environment (task). Then, we could use some other terms  for referring to 
the information stored in LTM like, for example, Conceptual Model 
(Young, 1993). Solving the definition problem in this way would make it 
possible to emphasise  the more important characteristic of a Mental Model: 
the function of a Mental Model is to simulate the reality in WM. 

The dynamic nature of the mental models has an important 
consequence when considering the methods that have been used to measure 
them. As Staggers and  Norcio (1993) have indicated, if a Mental Model is a 
knowledge structure that is simulated in WM, we must speak of the Mental 
Model as a process and as the result of that process. When we measure the 
Mental Model we are measuring the result of the simulation process. This 
result we take as a reflection of the knowledge structure that  is stored in 
LTM, the Conceptual Model. However, the simulation is accomplished by 
selecting the part of the permanent knowledge that is relevant for the task. 
That is to say, not all the knowledge is selected. The part that is selected 
will depend on the task, the context, the intentions, etc. It is also possible 
that the mental model, as measured, might be affected not only by selection 
but also by transformations performed on the knowledge in order to comply 
with the elicitation task. 

An additional problem with the knowledge elicitation methods that 
have been used is that subjects are requested to accomplish a different task 
from the one they would accomplish in the real situation. Therefore, when 
we measure the mental model with a knowledge elicitation task, the person 
simulates the real task in her/his WM and responses  are given based on this 
simulation. Therefore, we did not measure the knowledge stored in LTM, 
but rather the knowledge which is put into WM depending on the elicitation 
method  we use. 

When the dynamic nature of Mental Models is ignored, researchers 
run into some common and unexpected results found in Mental Model 
literature: experts in a field that are supposed to have good and similar 
knowledge seem to have different Mental Models (Cooke and Schvaneveldt, 
1987; Navarro, Cañas and Bajo, 1996). For example, Cooke and 
Schvaneveldt (1987) found that expert computer programmers had less 
similar mental representations of computer concepts than novices.  These 
results could be easily explained: even when two people share the same 
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Conceptual Model, they can appear to have different  Mental Models 
because when tested individually they execute different tasks in their WM.   

Take for example a knowledge elicitation task such as relationship 
judgements that has been widely used in interface design (Cooke, 1994). 
This task is similar to the classical similarity task, but instead of asking for 
similarity, subjects are asked to judge how related two components of the 
interface are.  

In the similarity task, it has been shown that subjects could compare 
objects along different dimensions. For instance, The United States and 
Cuba are very related when we compare them taking their geographical 
location into account. However, they are unrelated when we think of their 
political regimes (Tversky, 1977). For the same reason, we could assume 
that the dimension on which two components are judged to be related would 
depend on the task the subjects simulate in their WM. 

A judgement of relationship is the result of processing the 
characteristics of the two concepts or objects to be compared. Since the 
comparison is done in WM, the capacity limitation of WM forces the person 
to select one or two among all possible dimensions (Halford, Wilson and 
Phillips, 1998). Then, the context effects found in the similarity task 
(Tversky, 1977; Medin, Golstone and Gentner, 1993) could be explained by 
assuming that context biases the selection process of dimensions. The same 
contextual effects, and for the same reasons, could be expected in the 
relationship task.  

The purpose of the three experiments reported here was to 
demonstrate that task characteristics would affect what a person simulates in 
her/his Working Memory while performing a knowledge elicitation task 
and, therefore, what is inferred about his/her knowledge of the system. 

The basic hypothesis tested in the experiments was that a Mental 
Model is a dynamic representation created in Working Memory (WM) by 
combining information stored in Long-Term Memory (LTM) and 
characteristics extracted from the environment. Methods  proposed to infer 
the Mental Model a person holds must keep this in mind. The methods that 
are currently used require that the persons perform a task that is different 
from the real task they perform when interacting with the system or co-
operating with other team members. We assume that the person being tested 
with these methods simulates the real task in her/his WM to perform the 
elicitation task. Therefore, what is inferred is the result of this simulation. 

The experimental rationale of the experiments was as follows: If 
several people are taught to interact with a system in such a way that all of 
them are capable of accomplishing any task we give them, we can assume 
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that they will all have stored the same knowledge (Conceptual Model) about 
the components of the system and the relationships among them in their 
LTM. Then, when they are requested to perform a task in which we infer  
their Mental Model, e.g.,  to give us a  relationship judgement between two 
components, they will simulate a task in their WM where those two 
components are implicated. Their judgement will reflect the relationship 
between the two components as a function of that task. However, on many 
occasions two components  are implicated in several tasks  and in each  the 
relationship between them will be different. Therefore, judgements will be 
made based on the particular task that subjects simulate on their WM.  

In the experiments that follow, participants learned to interact with the 
system until they performed without any errors. They also passed a 
declarative test in which they answered a set of questions regarding all 
aspects of the system. Then, they performed a knowledge elicitation task 
(relationship judgements) in which changes were introduced to affect the 
operation in Working Memory. If performance on the elicitation task 
depends on these changes, we will be able to say that it was the result of 
what happened in Working Memory and not of the Conceptual Model  the 
participants have, the Conceptual Model being perfect and the same for all 
of them. 

EXPERIMENT 1 

A commonly used knowledge elicitation technique in interface design 
has been the relationship judgement task (Cooke, 1994). This task is similar 
to the classical similarity task, but instead of asking for similarity, 
participants are asked to judge how related two components are. 

Researchers that have worked with the topic of similarity know that 
the context in which the similarity between two concepts is judged 
influences the judgements that a subject gives (Goldstone, Medin and 
Halberstadt, 1997). For example, Medin, Goldstone and Gentner (1993) had 
groups of subjects rating the similarity of sunrise and sunset and sunrise and 
sunbeam. In one condition of their experiment, one group of subjects rated 
the pair sunrise-sunset and another group rated sunrise-sunbeam. In this 
condition, sunrise-sunset was rated as less similar than sunrise-sunbeam. 
However, in other condition of the experiment, subjects rated both pairs 
simultaneously. In this condition, sunrise-sunset was rated as more similar 
than sunrise-sunbeam. Medin et al (1993) argued that since sunset and 
sunrise are antonyms, they are considered to be not very similar when they 
are judged in isolation. However, this some characteristic causes them to be 
considered very related when they are judged in the context of sunrise-
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sunbeam. Therefore, the context influences how we judge the similarity of 
two concepts. 

In a typical relationship judgement task, item pairs are presented in a 
sequence. The person sees a pair and judges it, then sees other pair and 
judges it, etc. The sequence in which the pairs are presented can have an 
effect on the judgements. When a pair is presented, the person simulates in 
his/her Working Memory a task in which that item pair intervenes, and, 
depending on the task that he/she simulates, will issue his/her judgement. 
After issuing the judgement, a trace of the simulated task remains in 
Working Memory. When the following pair is presented, the person returns 
to simulate a task in his/her WM. However, the task simulated to judge this 
second pair would depend on the task simulated for the first pair. For 
example, let us suppose that we are evaluating the mental model of two 
MSWORD users. Then, we present two sequences, one to each user: 

1. User One: 1. "Print-File" ; 2. "Search-Edit"; 3. "Search-File" 
2. User Two: 1.  "Save-File";  2. "Open-File; 3. "Search-File" 
We could predict that the similarity of "Search-File" would be rated 

higher by b user Two than by user One.  File is a menu and an object. The 
first sequence would let the expert think about the relation “it is in the 
menu”. However, the second sequence points to the relation “things  you 
can do with a file”.  

In this experiment, we manipulated the presentation sequence of the 
system’s pairs of components on which the participants were giving 
relationship judgements. For one group, the sequence was random and 
different for each participant. For the other group, all the participants were 
presented with only one random sequence.  The hypothesis was that the 
group that had the same sequence would show greater within-group 
similarity in their judgements than the group with different sequences. 

METHOD 

Participants. Fifty-six students from the University of Granada 
participated in the experiment. After eliminating those participants that did 
not pass the declarative test, results from forty-three participants were 
analysed. Eighteen participants performed the elicitation task in the same 
sequence condition and twenty-five in the different sequence condition. 

Apparatus. Participants learned to operate a control panel device 
displayed on the computer screen. The device was a modified version of the 
one used by Kieras and Bovair (1984) consisting of switches, pushbuttons, 
and indicator lights (See Figure 1). We told the participants that the device 
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was a control panel  of an electrical circuit. Their task consisted of making 
the current  flow from panel S1 to  panel S3.  They were instructed on the 
three possible action sequences that allowed them to complete the task: 

Route X: press button ON in panel S1 (light I1 turned on); switch 
toggle switch in panel S2 to X (light I2 turned on; press button B1 in panel 
S3 (light I3 turned on). 

Route Y: press button  ON in panel S1 (light I1 turned on); switch 
toggle switch in panel S2 to Y (light I2 remained off); press button B2 in 
panel S3 (light I3 turned on). 

Route Z: press button On in panel S1 (light I1 turned on); switch 
toggle switch in panel S2 to Z  (lights I2 and I3 turned on). 

This system was sufficiently simple so that the participants could  
learn it easily in a short period of time. 

Experimental design. The design was a One-way between-subjects 
design. Two groups of participants performed the elicitation task in one of 
two conditions: (1) Same Sequence; (2) Different Sequence.  

Procedure. Participants performed three tasks during the 
experimental session:  

The Learning Task: In the first phase of the experiments the 
participants learned to operate the system until they were capable of 
executing the three action sequences two times without making any 
mistakes. 

The Declarative Task: Then, they passed a test in which they 
answered ten questions on the operation of the interface. The purpose of this 
test was to have a measure of the declarative knowledge that participants 
had and to assure us that they had actually learned to interact with the 
interface and that, therefore, we could suppose that they had acquired the 
conceptual model of the system.  We eliminated from the experiment all the 
participants that failed on one or more questions from the questionnaire.  

The Elicitation Task: Finally, participants completed a relationship 
judgement task concerning 11 interface items. They were to assign ratings to 
pairs of items presented on the computer screen according to how related 
they thought the items were. The scale ranged from 1 to 6. A rating of one 
indicated that the items were unrelated, and a rating of six indicated a high 
degree of relatedness. The participants were to indicate their responses by 
pressing the numbers corresponding to their ratings on the keyboard. The 
instructions emphasised that they should work fast, basing their ratings on 
their first impression of relatedness.  
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Figure 1. Device set. 
 
For the Same Sequence group, one sequence of pairs was generated at 

random and all the participants in that group rated the pairs in that sequence. 
For the Different Sequence group, the computer generated a different 
random sequence for each participant. 
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RESULTS 

The judgements matrices were transformed into network 
representations using the Pathfinder algorithm (Schvaneveldt, 1990). 
Pathfinder is a graph-theoretic technique that derives network structures 
from proximity data. Pathfinder algorithm takes proximity matrices and 
produces a network in which concepts are represented as nodes and 
relations between concepts are represented as links between nodes. 

Pathfinder analysis provided us with a measure of the similarity 
between two networks called C. This value reflects the degree to which the 
same node in the two graphs is surrounded by a similar set of nodes. A C 
value of 0 corresponds to two complementary graphs and a value of 1 
corresponds to equal graphs.  

We calculated the network similarity between all pairs of subjects 
within one group. Then those C values (253 from the Same Sequence group 
and 300 from the Different Sequence groups) were submitted to a One-Way 
ANOVA.  

The results of this analysis showed that when participants judged the 
concept pairs in the same sequence their ratings had more similar network 
representations (Mean C = 0,563) than when they judged them in different 
sequences (Mean C = 0,531), F(1,451) = 8,25, MSe = ,013, p< ,01. 
Therefore, we can say that the task simulated to judge a pair leaves a track 
in the Working Memory that influences the rating of the following pair. 

EXPERIMENT 2 

If the result of the first experiment could be explained by the trace left 
in Working Memory of the task simulated to judge a pair of items, 
introducing an interference task after a participant’s response to one pair 
could eliminate that trace. 

In this second experiment, all participants were presented with the 
same sequence of pairs. However, one group  saw a number on the 
computer screen after they rated one pair of items. They had to count 
backward from that number for 2 seconds. The other group performed the 
task without counting backward. 

We hypothesised that counting backward would erase the WM trace. 
Therefore two participants that rated the items with this interference task 
would have less similar network representation than two participants that 
performed the elicitation task without counting backward. 

Participants. Forty-eight students from the University of Granada 
participated in the experiment. After eliminating those that did not pass the 
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declarative test, results from forty participants were analysed. Twenty 
students performed the elicitation task with the retention interval and twenty 
without the interval.  

Apparatus and experimental design. The apparatus was the same as 
in Experiment 1. The experimental design was also a One-way between-
subjects design.  One group of participants performed the elicitation task 
with the retention interval and the other group performed without the 
interval. 

Procedure. As in Experiment 1, participants performed three tasks. 
First, they learned to operate the system. Then they answered questions 
about the system components and functioning.  Finally, they performed the 
knowledge elicitation task. All participants performed the task with the 
same sequence. For the group with the retention interval, a number appeared 
on the screen after the subject’s response. Subjects had to count backward 
from that number for 2 seconds. Then the following pair appeared on the 
screen. 

RESULTS 

As in the first experiment, we calculated the network similarity 
between all pairs of subjects within each group. The C values (190 from 
each group) were submitted to a One-Way ANOVA. 

The group that performed the elicitation task without counting 
backward showed more within-group similarity (Mean C = 0,602) than the 
group that performed the task counting backward (Mean C = 0,555) , 
F(1,378) = 16,28, MSe = ,21, p< ,01. Therefore, counting backward after 
rating a pair of items erased the trace that the simulated task had left in 
WM. Then, when a new pair of items had to be rated, the probability that 
two participants simulated the same task decreased. 

When the C values are compared with those found in Experiment 1, 
we could see an increase that came as a surprising result.  We would expect 
that with more WM load (especially in the group that counted backward), 
the C values should be lower.  Although this could be due only to individual 
differences, it is difficult to find an explanation based on the type of data 
obtained in these two experiments. After all, that data showed only how 
similar ratings were across participants, not what mental model they 
simulated in their WM.  Therefore, we ran a third experiment in which we 
tried to deal with this problem by forcing participants to pay attention to one 
dimension of the physical system by manipulating the sequence of pairs. If 
our general hypothesis was correct, the type of mental model simulated by 
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the participants should be affected by this manipulation of the task 
characteristics. 

EXPERIMENT 3 

In our system, the components were related in three dimensions. First, 
they could be in the same panel (i.e. both were in the S2 panel), be the same 
class of component (i.e. both were lights), or have a functional relation (i.e. 
X turned I2 on). In the two previous experiments,  the sequence of 
presentation had an effect on the ratings the participants assigned to pairs of 
components. However, since the sequence was constructed at random, the 
control that we had on the role the three dimensions could play was only 
relative.   

In this experiment, two groups of subjects performed the elicitation 
task with two different sequences of pairs. One group rated the pairs 
presented in one sequence that was constructed at random, as in the 
previous experiments, and was the same for all participants. The other group 
performed the elicitation task with a sequence of pairs in which pairs of 
components that could be related due to being in the same panels were 
presented first. With this manipulation, we tried to force participants in this 
second group to focus attention on the dimension ‘Being in the same panel’.  

Participants. Forty students from the University of Granada 
participated in the experiment. After eliminating those that did not pass the 
declarative test, results from thirty-two participants were analysed. Fifteen 
students performed the elicitation task with the ‘Panel-relation-first 
sequence’ and seventeen with a random sequence.  

Apparatus and experimental design. The apparatus was the same as 
in Experiment 1. The experimental design was also a One-way between-
subjects design.  One group of participants performed the elicitation task 
with the ‘Panel-relation-first’ sequence and  the other group with the 
random sequence. 

Procedure. As in Experiments 1 and 2, participants performed three 
tasks. First, they learned to operate the system. Then they answered 
questions about the system components and functioning.  Finally, they 
performed the knowledge elicitation task. All participants within each group 
performed the task with the same sequence. 

RESULTS 
Three vectors were constructed, one for each dimension. Each pair 

was scored in each vector depending on whether they had or did not have a 
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relationship on that dimension. A value of one meant that the pair could be 
related on the dimension, otherwise a value of zero was assigned to that 
pair. The ratings were averaged for each group. Two regression analyses 
were performed on the data, one for each group. In the analysis, the vector 
with the ratings was the dependent variable and the three vectors with the 
scores on the three dimensions were the independent variables. 

 Panel and Function dimensions were good predictors of the ratings 
in the panel-relation-first group, R2 = 0.520, F(3,51) = 18.47, p< 0.001. 
Tolerance values for the three variables were 0.996, 0.941, and 0.944, for 
Class, Panel and Function, respectively. For the random group, all three 
dimensions were significant predictors, R2 = 0.316, F(3,51) =  7.875, p < 
0.001. Tolerance values were 0.996, 0.941, and 0.944, for Class, Panel and 
Function, respectively. 

 
 The results of these analyses showed the following regression 

equations. For the panel-relation-first group the equation was 
Ratings = 3.25 + 1.45 Panel + 1.38 Function 
and for the random group it was 
Rating = 3.90 – 0.50 Class  + 0.64 Panel + 0.93 Function 
Having a class relationship was a significant predictor for the rating of 

the random group only, t(51)  =  2.07, p < .05. However, for both groups 
being in the same panel and having a functional relation between 
components were significant predictors of the rating, t (51) = 5.28, t(51) = 
3.69, t(51) = 2.57, and t (51) = 2.75 respectively, all with p < 0.02 . But 
more relevant for our hypothesis, the comparison between the Beta values 
for the panel dimension was more important for the ‘Panel-relation-first’ 
group (z = 1.63, p = 0.05). Therefore, focusing the attention of the 
participant on the panel dimension increased the probability that that 
dimension influenced his/her rating. 

DISCUSSION 
The variables that were introduced to affect the contents of WM had 

an effect on  the participants' execution on the elicitation task. Though all 
participants learned perfectly to interact with the system and  were capable 
of answering questions that were presented to them, their ratings of 
relationship were affected by what occurred during the elicitation task. 
Since the inferences that are made on the mental model are based on these 
judgements, those inferences would be affected by these variables, and, as 
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we claim, what we measure with our elicitation tasks is the content of WM, 
the Mental Model, and not the Conceptual Model stored in LTM. Therefore, 
these results would have broad theoretical and methodological implications 
for further research. 

To understand these implications, we should start considering the role 
that knowledge representation plays in Cognitive Science. Cognition refers 
to how knowledge is acquired, stored and processed. In Cognitive Science, 
behaviour is explained as being determined by the knowledge that a person 
has acquired from the environment. Therefore, since the beginning of the 
Cognitive Revolution, the development of methods for inferring the 
knowledge acquired by one person has been within the research agenda of 
the cognitive scientists.  

The research carried out to develop these methods has been conducted 
after taking for granted the Cognitive Architecture broadly accepted in 
Cognitive Science. Then, most models in Cognitive Science (e.i. SOAR, 
ACT-R) take the computer metaphor to assume that there are two memory 
stores: a permanent store in which knowledge is represented in semantic 
structures, and a temporal store in which knowledge retrieved from the 
permanent store is combined with that acquired from the environment. 

Therefore, most of the research effort has been dedicated to 
identifying how knowledge is represented in the permanent store. During 
the last 30 years there have been many proposals on the possible semantic 
structures (e.i. categories, concepts, mental models, plans, schemes, etc.) 
that have generated a lot of discussion on how the information is 
represented in long-term memory. However, as Anderson (1978) said some 
years ago, what we observed in our experiments is the result of both a 
knowledge structure and a process that works on it. Therefore, it is 
impossible to have a unique picture of the knowledge represented in Long-
term Memory without considering the task subjects have to perform. Our 
results were consistent with this proposal: we cannot study representation 
independently from how knowledge is used on a particular task. In our 
experiments, when a pair of items was presented, the subject judged the 
degree of their relation by doing some computation based on how they were 
represented in Long-term Memory. However, as the results suggested, this 
computation was affected by the task characteristics. 

Two methodological implications follow from these results. First, 
research on Mental Model should be conducted with a model of the 
elicitation task that is used for inferring it. This model should take into 
account the experimental results that have been obtained when the task has 
been used in previous research. For example, our results were related to the 
context effects in similarity judgements. The data found in the three 
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experiments are another example of the diagnosticity principle (Tversky, 
1997): The more salient features weigh more when judging for similarity or 
relatedness. In our case, the more salient features for judging one pair of 
components were the ones that were used for judging the previous pair. 

Second, these results also implied that an elicitation task only 
provides a partial picture of the Conceptual Model  and that what we get 
depends on the particular task performed by our subjects. Therefore, we 
suggest that when conducting research to prove hypotheses about the 
knowledge stored in LTM (the conceptual model), elicitation tasks should 
be used along with other experimental techniques in which that knowledge 
is used to perform a task that is relevant to the particular domain in which 
that knowledge is required.  

A recent experiment conducted by Navarro and Cañas (2000) 
illustrates how knowledge elicitation techniques could be combined with 
semantic priming tasks to study how knowledge is stored and used in the 
particular domain of Psychology of Programming. These authors were 
interested in explaining why and under what circumstances visual 
programming languages would be easier to understand than textual 
programming languages. Towards this goal, they brought together research 
from Psychology of Programming and Image Processing.  

When they linked these two lines of research, image processing and 
Psychology of Programming, it was possible to propose a hypothesis about 
the advantages of visual languages over textual languages. On the one hand, 
according to the more accepted theories of Program Comprehension 
(Pennington, 1987), programmers go through two phases when they are 
understanding a program. In the first phase, programmers develop a 
knowledge structure representation, ‘program model’, based on the control 
flow relationships. In later stages of program comprehension, under 
appropriate task conditions, programmers develop a plan knowledge 
representation based on the data flow of the program. This representation 
contains the main functions of the program, the domain model, and the key 
information to understand what the program does. It also includes 
information about the programming situation. The programmer's mental 
representation seems to depend on his or her experience, the task goal, the 
length of the program, and the programming language characteristics.  

Therefore, Navarro and Cañas (2000) hypothesised that if the role of 
imagery is to enhance access to meaningful information, then Visual 
Programming Languages should allow quicker access to data flow 
information. Therefore visual programmers should more quickly develop a 
representation based on data flow relationships, even in easier tasks, in 
comparison with other non-visual programming languages. This hypothesis 
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tried to reconcile these two lines of investigation, which have emphasised 
either the effects of the organisation of the programmer’s knowledge 
representation or the role played by features of the notation of the task 
language on the emergence, development, and support of particular forms of 
programming strategy (Davies, 1991). 

To test this hypothesis, they designed an experiment in which C and 
Spreadsheet programmers were assessed on their mental representations of 
programs, under different comprehension conditions. Their hypothesis 
predicted differences in the type of information represented in the 
programmers’ mental models; differences that depend upon the 
programming language in which the program to be understood is written. 
Programmers also performed a primed recognition task.  

In the experiment, programmers went through with three phases  of 
the experimental session. First, they were asked to read or modify a program 
in the language of their expertise. Then, they were presented with small 
segments of the program and they were asked to group  those segments 
together according to their relation in the program. This grouping data was 
submitted to an analysis using the Pathfinder technique to assess the 
programmers’ mental representation of the program. Results from this task 
showed that C programmers grouped segments following mainly the 
Control Flow structure, while Spreadsheets programmers followed the Data 
Flow structure.  

Finally, they performed a primed recognition task. In each trial, 
subjects were presented with a program segment (target) taken either from 
the program that they had read or modified, or from a different program. 
Their task was to decide as quickly as possible whether or not the segment 
was part of the program they had already seen. The target segment was 
preceded by another program segment (prime). The underlying assumption 
was that if the prime and the target were related in the mental model, the 
activation of the prime would facilitate the activation of the target. The 
critical manipulation was the prime-target relationship. To test whether the 
mental models developed by the subjects were based on data or Control 
Flow relationships, segments were selected from the two theoretical 
networks (one Control Flow network and another Data Flow network) to 
create four priming conditions:  

1. Data Flow related Condition: A target segment in the test was 
preceded by a prime close in the theoretical Data Flow network and far in 
the Control Flow theoretical network.  
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2. Control Flow related Condition: A target segment in the test was 
preceded by a prime close in the theoretical Control Flow network and far in 
the Data Flow theoretical network. 

3. Unrelated condition: the target segment was preceded by a segment 
from the same program, but hypothesised to be far away in both the control 
and Data Flow theoretical networks. 

4. Non-Program condition: the target segment was from a different 
program than the prime segment.  

The Unrelated and Non-program were the control conditions. 
Recognition accuracy and time were recorded. As the authors predicted, a 
priming effect was found. Response times to the target segment preceded by 
a prime close in the network structure were faster (and with better accuracy) 
than response time  to the same target preceded by a prime which was not as 
close in the cognitive structure. This priming effect was observed in the 
control and/or Data Flow conditions depending on the mental model 
developed by the subject.  

Thus, the results from both tasks confirmed the authors’ hypothesis in 
showing that spreadsheet programmers developed Data Flow based mental 
representations in all situations, while C programmers seemed to access first  
Control Flow and then Data Flow based mental representations.  

Therefore, the combination of primed recognition and Knowledge 
Elicitation Techniques could give us complementary information, which 
would allow us a deeper understanding of both the mental representations 
and the processes beneath them. In this experiment, the use of Knowledge 
Elicitation Techniques, such as the grouping task, allowed the authors to 
infer the subject’s representation and test whether programmers acquired a 
type of information or not. On the other hand, the primed recognition task 
provided detailed time and accuracy data about whether these relationships 
were used to make decisions about the original code. Primed recognition is 
a task related to what programmers do when they are reading and 
comprehending a program. Therefore, it is a task that would reflect the 
mental model that programmers develop when they are performing a task 
that is relevant to their domain.  

 

RESUMEN 

El papel de la Memoria Operativa en la medición de los modelos 
mentales de los sistemas físicos. Hasta ahora no ha existido un acuerdo 
sobre la definición correcta de Modelo Mental de un sistema físico y sobre la 
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forma como podemos inferir el Modelo Mental que una persona tiene del 
sistema con el que está interactuando. En este artículo se describe una 
investigación encaminada a solucionar estos problemas con la propuesta de 
una definición según la cual un Modelos Mental es una representación 
dinámica creada en la Memoria Operativa, combinando la información 
almacenada en la Memoria a Largo Plazo y las características extraídas del 
ambiente. Las hipótesis derivadas de esta propuesta se prueban en tres 
experimentos y se discuten las implicaciones que sus resultados tienen para 
la investigación futura sobre Modelos Mentales. 

Palabras clave: Modelo Mental, Representación, Memoria Operativa, 
Memoria a Largo Plazo. 
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