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Cognitive Diagnostic Models (CDMs) aim to provide information about the
degree to which individuals have mastered specific attributes that underlie
the success of these individuals on test items. The Q-matrix is a key element
in the application of CDMs, because contains links item-attributes
representing the cognitive structure proposed for solve the test. Using a
simulation study we investigated the performance of two model-fit statistics
(MAD and LSD) to detect misspecifications in the Q-matrix within the least
squares distance modeling framework. The manipulated test design factors
included the number of respondents (300, 500, 1000), attributes (1, 2, 3, 4),
and type of model (conjunctive vs disjunctive). We investigated MAD and
LSD behavior under correct Q-matrix specification, with Q-
misspecifications and in a real data application. The results shows that the
two model-fit indexes were sensitive to Q-misspecifications, consequently,
cut points were proposed to use in applied context.

Cognitive Diagnostic Models (CDMs) aim to provide information
about the degree to which individuals have mastered specific attributes
(e.g., cognitive operations and processes or skills) that underlie the success
of these individuals on test items. Interest in CDMs has been growing
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rapidly over the past years and many different models have been developed
(e.g., de la Torre, 2009; de la Torre & Douglas, 2004; DiBello, Stout, &
Roussos, 1995; Dimitrov, 2007; Dimitrov & Atanasov, 2011; Henson &
Douglas, 2005; Junker & Sijtsma, 2001; Templin & Henson, 2006). Some
of these models are based on log-linear models (Henson, Templin & Willse,
2009), other on deterministic inputs, noisy and gate models (de la Torre,
2009; de la Torre & Douglas, 2004), others are more general (von Davier,
2010) and some are based on Item Response Theory (IRT; Dimitrov &
Atanasov, 2011; Dimitrov, 2007; Embretson, 1984, 1993; Fisher, 1995;
Tatsuoka, 1985, 1995); this is the case of the Least Squares Distance Model
(LSDM) proposed by Dimitrov (2007).

As any other CDM, LSDM requires the user to develop a Q-matrix
specifying which attributes are required by each item; and then uses the
item parameters estimated with the IRT model and the Q-matrix to estimate
the probability of correct performance on each attribute, across fixed ability
levels. The validity of the results depends on the correct specification of the
Q-matrix (Corter, 1995; de la Torre, 2008; Dimitrov & Raykov, 2003;
Medina-Diaz, 1993; Romero, 2010). Incorrect specification of the Q-matrix
leads to misclassifications of the examinees in the latent classes (Rupp &
Templin, 2008) and, consequently, to erroneous diagnosis in the attribute
mastery.

The correctness of the Q-matrix is a very important issue to evaluate
in practice. One of the methods proposed to address this is LSDM. This
method allows the validation and analysis of cognitive attributes required
for correct answers of binary items across fixed ability levels. The principal
advantage of LSDM is that not require information about the score of
examinees if the IRT parameters are available. In addition, the model
permits Q-validation screening previous to test administration.

Despite its importance, there has been little research in the context of
CDMs about how sensitive are different model-data fit indexes to different
data conditions and model misspecification. For that reason, we conducted a
simulation to evaluate the behavior and distribution of two LSDM statistical
fit indices with a correct Q-matrix specification. Based on the results of this
study we propose cutoff points that can be used in applied context. Then,
we report on a second simulation study evaluating the effects of model
misspecification on: a) item parameter recovery, b) attribute behavior and c)
the assessment of model fit using the two fit indices. Finally, we present an
illustration with real data. The specific objectives of the present study are:

1. To describe the statistical distribution of the two indices, under
several conditions, using correct Q-matrix specification, and, based
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on these distributions, propose cut points to evaluate possible Q-
misspecifications.

2. To study the capacity of the two indices for the detection of Q-matrix
misspecifications under several conditions, varying the sample size,
number of attributes and type of model.

3. To illustrate the use of indexes and cut points in an empirical study
with real data.

The principal questions that motivate the present research are: a) what
are the empirical sampling distributions of two LSDM indices under
different simulation conditions?, b) how do the fit indices perform under
model misspecification, once appropriate cut-offs from the empirical
sample distributions are used? c) how sensitive are the fit indices on a real
data application?.

The outline of this paper is as follows: In the next section we provide
a brief overview of the least squares distance framework. In the next section
we describe the design of the simulation studies, the relevant outcome
measures of interest and some analytical approaches. Finally, an illustration
of the use of the proposed indices is presented for a mathematic test applied
to a sample of 2897 students of fourth grade in several Spanish schools.

LSDM

LSDM is a model for validation of cognitive structures and analysis
of binary items using their IRT parameters. This method use the parameters
estimated with a IRT model and the Q-matrix for estimate the probability of
mastering attributes (A,), in pre-fixed ability levels (logit scale). Like most
cognitive diagnosis models, LSDM assumes a conjunctive relation between
attributes, in other words, the probability of correct answer to an item is the
product of the likelihood of all attributes required by that item:

K
B, = H[P(Ak =1 01')]” 0
’ k=1
where, P is the probability of correct item response for a person at ability

level 6,, P(A, =1]86,)is the probability of correct performance in attribute

A, for a examinee at the ability level 6, and g is the element of the Q-
matrix for item j and attribute A,. The model expressed in equation (1)
assumes that the mastery of an attribute is statistically independent for an
examinee in a fixed ability level. The LSDM estimate the attribute
probabilities directly using least squares (Lawson & Hanson, 1974).
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Specifically, if we take the natural logarithm on both sides of (1), this leads
to a system of equations of the form: L=QX, where, L is a (known) vector
with elements In(Pij), and X is the (unknown) vector with elements X,
=InP(A,=110,). Solutions for vector X are sought to minimize the Euclidian
norm of the vector ||QX-L||. Given the solutions for X, the probability of
correct performance on attribute A, for a person with ability 0; is found
directly as the exponent of X. This is done for multiple ability values to
obtain the probability curve for each attribute across fixed ability levels on
the logit scale. Dimitrov (2007) calls these curves Attribute Probability
Curves (APCs).

More recently, Dimtrov & Atanasov (2011) proposed a disjunctive
version of LSDM, in which the correct response on an item may occur
when at least one of the attributes associated with the item is correctly
applied, in this case the probability of correct item response is estimated by:

P =1- exp{ Sq, n[l-P(4, =1| 49,.)]} @
k=1

Under the conjunctive LSDM (LSDM-C) to obtain the correct
response of an item is necessary to master all attributes associated with the
item, while in the disjunctive version (LSDM-D), the correct response is
obtained if at least one of the attributes associated with the item is mastered.

Dimitrov (2007) proposed two validation indices for the cognitive
structure expressed in the Q-matrix:

a) Least Squares Distance (LSD): LSD is an ability-level fit index,
corresponding to the residual after the minimization of the norm IIQX-LII,
therefore, there are one LSD value for each of the fixed ability levels. LSD
indicates accuracy of the vector X estimation. The smaller the LSD at a
given ability level, the better the attributes holds (jointly for all the items).

Some theoretical properties of the LSD are presented in Appendix 1.

b) Mean Absolute Difference (MAD): is an item-level fit index,
corresponding to the mean of the absolute differences (across the ability
levels), between the IRT probabilities (ICCs) and its LSDM recovery
(product of the attribute probabilities according to the Q-matrix). A good
recovery of the ICC indicate that the attribute relations specified in Q
explain properly this item and, conversely, a bad recovery indicates an
incorrect specification of Q for this particular item. Dimitrov (2007)
suggested that MAD < 0.05 indicates an adequate ICC recovery, 0.05 <
MAD < 0.10 indicates a tolerable ICC recovery, and MAD = 0.10 indicates
a poor ICC recovery. These values are somewhat arbitrary because little is
known about the empirical sample distribution of MAD.
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METHODOLOGY

Two simulation studies were conducted to gain information about the

values of MAD and LSD. Study I is aimed to: (a) analyze the distribution of
MAD and LSD for both models (LSDM-C and LSDM-D) under a Q-matrix
correctly specified and (b) provide appropriate cut-offs from these empirical
sample distributions. Study II analyze the performance (on several
conditions) of both indices under Q-matrix misspecification using the cut-
offs established in Study I.

Procedure for Study I
The first task is to generate data under LSDM. This is done in seven

steps.

1.

An arbitrary Q-matrix of 15 items and 4 attributes was defined (see
Table 1).

. Four couples of arbitrary parameters (a, b) were used to generate the

probabilities of mastering each attribute (X vector) with the 2PL IRT
model.

. Taking Q and X from steps 1 and 2, LSDM was applied in order to find

L on equation L = QX.

. By having the probabilities L, the next step is to determine the 15

couples of 2PL parameters (a,b) that minimize the difference between
L and the IRT probabilities in order to reduce to minimum the
discrepancy between IRT model and the LSDM. The item parameters
found by the minimization (referred here as the “true” IRT parameters)
are presented in Table 2. As expected, MAD and LSD values obtained
after the LSDM analyses (using these “true” parameters) are close to
zero (see Tables 3 and 4).

. The “true” IRT item parameters were used to simulate 500 data sets

with the responses of 300, 500 or 1000 examinees to the 15 binary
items. These data were then calibrated with the 2PL; (the mean of
calibrated parameters on each condition are presented in Table 2).

. Using the parameters from these calibrations (and the true Q-matrix),

the LSDM was performed repeatedly to obtain the MAD and LSD
empirical sampling distributions.

Details of each step are described in the Appendix 2.
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Table 1. True and misspecified Q-matrices

True Q Misspecified* Q
Item Al A2 A3 A4 Al A2 A3 A4

1 1 0 0 O 1 0 0 O
2 0O 1 0 o0 0O 1 0 o0
3 0 0 1 0 0 0 1 o0
4 0 0 o0 1 1 0 0 1
5 1 1 0 0 1 1 0 0
6 1 0 1 0 1 0 1 0
7 1 0 0 1 0 0 0 1
8 0O 1 1 0 0 1 1 0
9 0O 1 o0 1 0 1 0 1
0 0 o0 1 1 0 0 1 1
11 0 1 1 1 0o 1 1 1
12 1 0 1 1 0 0 1 1
13 1 1 0 1 1 1 0 1
14 1 1 1 0 1 1 1 0
15 1 1 1 1 1 1 1 1

* Changes introduced on items 4, 7, and 12 appear in boldface.

Procedure for Study II

The procedure of the second study was the same as that in Study I, but
introducing misspecifications on Q-matrix in the last step. We randomly
permutated 20% of all Q-matrix entries, but only the attribute Al was
manipulated (see Table 1).

The proportion of MAD and LSD values that exceeded the cut-offs
was calculated in order to evaluate the sensitivity of the indices to the
misspecifications introduced. Also, the means (over the 500 replications) of
LSD were compared with LSD values obtained in Study I to investigate the
increase due to misspecifications of the Q-matrix.

Design

The independent variables are: Sample size (300, 500, 1000), number
of attributes required for the item (1, 2, 3, 4), and type of model employed
(LSDM-C, LSDM-D). The combinations of the variable levels result in 24
design conditions. The dependent variables for both studies are MAD and
LSD indices.
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Table 2. True and estimated item parameters
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Real data application.

A mathematic test of 15 items was applied to an intentional sample of
2897 students of several Spanish schools. The cognitive structure, specified
in a Q-matrix contains four contents (space, numbers, data and
measurement) and two processes (reproduction and connections). The data
matrix was calibrated using the 2PL model, and the parameters were used to
execute LSDM-C. MAD and LSD values were analyzed using the cut
points defined in the simulations.

An R routine was created and employed in order to execute the
simulation procedures, and the real data application. The data bases were
calibrated with ltm library for R (Rizopoulos, 2006).

RESULTS

Study 1. Description of the Distributions of MAD and LSD

LSD values. The percentiles and descriptive statistics of the LSD for
both models, on 6 of the 31 fixed ability levels, appear in Table 3. There are
three main results: First, independently of the sample size, under the
LSDM-C the LSD values are high at low ability levels (0 = -3) and decrease
as the ability increases. For example, when N = 300, the mean of LSD
across the 500 replications ranges from 0.140 (at 6 = -3) to 0.014 (at 0 = 3).
This may be explained by the conjunctive nature of the model.
Contrariwise, under the LSDM-D, the LSD values are high at high ability
levels. For example, when N = 300, the LSD mean range from 0.015 (at 0 =
-3) to 0.130 (at € = 3). Similar tendencies can be observed for other sample
sizes (see Table 3).

Second, under both models (LSDM-C and LSDM-D), the LSD values
slightly decrease as the sample size increases. For example, in the case of
the conjunctive model, when 0 = -3, the mean of LSD is 0.140 (N = 300),
0.113 (N =500) and 0.097 (N = 1000).

Third, also for both LSDM models, the LSD distributions converge to
normal when sample size increases (see Table 3).

MAD values. Table 4 exhibits the characteristics and descriptive
statistics of the MAD distributions. There are three main results: First,
independently of the type of model or the sample size, the MAD values are
high when only one attribute is required and decreases as more attributes
are involved. For example, for the disjunctive model and N = 300, the mean



Detection of Q-matrix misspecifications 157

of MAD values across the 500 replications ranges from 0.048 (one
attribute) to 0.027 (four attributes).

Table 3. Descriptive statistics of the LSD distribution

Model Sample  Theta Pooulation Mean  SD  Kurtosis Skewness P(0.95) P(0.99)  P(0.999)  P(0.99991*

30 0070 0140 0032 -0064 0377 0198 0223 0248 0.253
20 0039 0085 0021 0074 0432 0122 0141 0157 0.161

wo M0 007 0022 0011 0802 0670 0062 0075 0.086 0.086
00 0005 0017 0005 3.085 0999 0025 0030 0042 0.043

1.0 0005 0017 0004 0187 0317 0023 0026 0030 0.031

20 0006 0017 0004 0238 0519 0025 0029 003! 0.032

30 0006 0014 0004 0297 0544 0020 0025 0.027 0.027

30 0070 0113 0025 0425 0260 0.5 0173 0204 0.208

20 0039 0068 0016 0353 0316 0096 0108  0.126 0.129
Lsomc  sop L0 0017 0033 0009 0080 0352 0049 0054 0.060 0.060
M- 5 00 0005 0013 0003 0170 0445 0019 002 0025 0.025
10 0005 0014 0003 0035 0300 0019 0022 0024 0.026

20 0006 0015 0004 0026 0269 0021 0024 0.026 0.027

30 0006 0013 0003 -0.024 0300 0018 002 0022 0.022

30 0070 0097 0020 0054 0197 0133 0145 0160 0.161

20 0039 0058 0013 0192 0230 0080 0090  0.098 0.099

o M0 0017 0027 0007 -0308 0313 0039 0043 0046 0.047
0.0 0005 0010 0002 -0260 0338 0015 0016 0017 0.017

1.0 0005 0011 0003 0020 028 0015 0018 0018 0.019

20 0006 0012 0003 -0.060 0390 0018 0020 0022 0.022

30 0006 0011 0003 -0053 0445 0016 0018 0.020 0.020

30 0007 0015 0008 0080 0200 0021 0.024  0.025 0.025

20 0007 0017 0004 0162 0300 0024 0027 0028 0.028

20 0005 0016 0004 0067 0306 0022 0025 0028 0.028

300 00 0005 0016 0004 0367 053 0024 0027 0032 0.034
10 0015 0037 0010 1933 087 0053 0064 008 0.087

20 0034 0076 0018 0863 0597 0108 0125  0.148 0.151

30 0061 0130 0028 048 0485 0177 0204 0229 0235

30 0007 0014 0005 0155 0350 0020 0023 0025 0.026

20 0007 0015 0004 0208 0351 0022 0025 0027 0.027

210 0005 0013 0003 -0065 0194 0019 0021 0023 0.024
LSDM-D 500 00 0005 0013 0003 0156 0368 0018 0021 0023 0.024
10 0015 0030 0008 0342 0212 0042 0047  0.060 0.061

20 0034 0062 0015 0087 0184 0085 0096 0115 0.117

30 0061 0107 0023 0002 051 0143 0062 0178 0.178

30 0007 0013 0005 0128 038 0017 0020 0024 0.025

20 0007 0013 0003 0098 0278 0019 0022 0023 0.023

o L0 0005 001l 0003 0047 0192 0015 0017 0019 0.019
00 0005 0010 0002 -028¢ 0171 0014 0015 0016 0.016

1.0 0015 0024 0006 -0224 0421 0036 0040  0.043 0.043

20 0034 0051 0012 -0200 0290 0072 0081 0085 0.085

30 0061 0088 0019 -0216 0174 021 0134 0.142 0.143

* Values selected as cut point for study 11

Second, in both models, the MAD values slightly decrease as the
sample size increases. For example, for the case of the disjunctive model
and one attribute, the mean of MAD values are: 0.049 (N = 300), 0.039 (N =
500) and 0.030 (N = 1000). This occurs independently of the number of
attributes required by the item (see Table 4).

Third, the MAD distributions presents positive skew (g, > 0.5) and are
“peaked” (g, >0.5).
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Table 4. Descriptive statistics of the MAD distribution

Model  Samole Attributes Population Mean  SD  Kurtosis Skewness P(0.95) P(0.99) P(0.9991 P(0.99991*

1 0.014 0048 0.025 1755 1.157 0.093 0125 0157 0.166

300 2 0.016 0036 0.020 0615 0.891 0074 0091 0.110 0.115
3 0.011 0.028 0.016 0305 0.783 0.059 0071 0.083 0.085

4 0.012  0.029 0.015 2208 1.136 0.057 0073  0.098 0.106

1 0.014 0038 0.019 1230 1.047 0074 0091 0113 0.119

LSDM-C 500 2 0.016 0.030 0016 0674 0.867 0.060 0078  0.092 0.095
3 0.011 0.025 0.014 059 0.901 0.052 0065 0.076 0.078

- 0.012 0.025 0.012 -0.092 0.740 0.047 0056 0.067 0.071

1 0.014 0029 0.014 2103 1.339 0.057 0075 0.09 0.093

1000 2 0.016 0.025 0.014 1186 0.998 0.049 0064  0.080 0.083
3 0.011 0.020 0.012 0463 0914 0.042 0054 0.06] 0.062

) 0.012 0.022 0.011 0.799 1.031 0.044 0057 0.065 0.067

1 0.016 0.049 0.025 1126 1.081 0.097 0.124  0.144 0.148

300 2 0.015  0.036 0.020 0534 0.803 0.072 0090  0.108 0.112
3 0.012  0.029 0.015 0579 0.884 0.057 0071  0.088 0.091

- 0.016 0.027 0.013 1.883 1.198 0.052 0.068  0.086 0.090

1 0.016 0.039 0.020 1.561 1.175 0078 0097 0.124 0.129

LSDM-D 500 2 0.015  0.030 0.017 0.635 0.904 0063 0079 0.093 0.097
3 0.012  0.025 0.014 0618 0.878 0.053 0064 0075 0.076

- 0.016 0026 0.011 -0.260 0.419 0.046 0051 0.067 0.072

1 0.016 0.030 0.015 2400 1.352 0.060 0077 0.098 0.102

1000 2 0.015 0.025 0.014 1238 1.032 0.050 0066 0.080 0.084
3 0.012 0.021 0.012 1003 0.979 0.045 0056 0.067 0.068

4 0.016 0.024 0.012 0218 0.860 0.049  0.059  0.064 0.064

* Values selected as cut point for study II

The percentiles of the MAD distributions are presented in Figure 1.
As can be seen, independently of the type of LSDM model, the highest
MAD values correspond to the sample of 300 and , conversely, the lowest
MAD values correspond to the sample of 1000. Figure 1 also shows that
the distributions of MAD are affected by the number of attributes involved.

Study 2. Detection of Q-matrix Misspecifications

LSD values. Figure 2 present the means of the LSD values before and
after introducing misspecifications in the conjunctive model and with a
sample of 300. As expected, the LSD values increase after introducing
misspecifications, especially at low and medium ability levels. The same
tendencies occur with the other sample sizes (500 and 1000). As can also be
seen in Figure 2, there are discrepancies between original and true Q
matrices, which indicates that the LSD index is affected by the IRT
calibration process. Other result shows that the means of LSD slightly
decrease with the sample size. For example, for 0 = -3, the LSD mean is
0.14 in the sample of N = 500 and 0.12 in the sample of N = 1000.
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Figure 3 presents the means of the LSD values before and after
introducing misspecifications in the disjunctive model with a sample of
300. Again, the LSD values increase after introducing misspecifications but
the comparison of Figures 2 and 3 shows that the trend in the two models is
opposite. Specifically, under the disjunctive model, the LSD values increase
as ability increases, whereas in under the conjunctive model, the LSD
values decrease as ability increases. Results also show that, independently
of the model, the means of LSD values slightly decrease with the sample
size. For example, for 0 = 3 the LSD mean is 0.14 in the sample of N = 500
and 0.13 in the sample of N = 1000.

LSD

meme Original = TroeQ —=——3\iccpecifiedQ

Figure 3. Mean of LSD N = 300 (LSDM-D)

MAD values. Figure 4 presents the proportion (in the 500
replications) of MAD values that exceed the cut points in under both LSDM
models. In the sample of N =1000, all misspecified items (4, 7, and 12) are
detected through the MAD values, because the MADs corresponding to
these items exceed the cut-offs of this condition in all the replications.
However, under both models, 38% of the MAD values of the item 1, which
was not misspecified, also exceed the established cut-off. The high
proportion of erroneous detection of the item 1 may be explained by the fact
that this item is extremely easy and has low discrimination. Under the
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disjunctive model, an erroneous detection occurred for the item 10 in 30%
of the replications.

In the sample of N = 500, all misspecified items (1, 7 and 12) are
detected in the 100% of the cases, except item 12 that is detected in 70% of
the cases using the conjunctive model. Likewise, when N = 300,
misspecifications in items 4 and 12 were detected only in 62% of the cases
using the LSDM-C, thus indicating less accuracy in signaling
misspecifcation under the conjunctive model when the sample size is small.
Under the LSDM-D, however, all the misspecified items are detected, even
when the sample size is small.

Applications in a mathematic test. In order to provide practical
value to the simulation results, a real data example of validation under
LSDM is presented now. The test is composed of 15 items of mathematics
with a format of multiple choice. The test was applied to an intentional
sample of 2897 students of fourth grade in several Spanish schools. The
data matrix was calibrated using the 2PL model. Table 5 presents the Q-
matrix, the IRT item parameters, standard errors of parameters, MAD
values and LSD values.

The LSDM criteria for MAD and LSD were studied according to the
referred cut points for N = 1000, because is the more similar condition. As
can be seen in Table 5, two of the fifteen items exceeds the cut-off proposed
for the MAD index. These two items have in common the content of
numbers (A2) but require different processes: connections (A6) for item 2
and reproduction (AS5) for item 7. A re-specification of these items seems
necessary, possibly of attributes related to processes.

Regarding to the LSD index, as found in other applications, the
conjunctive LSDM is less accurate at low levels of the trait measured by the
test, exceeding the cut-off when 0 < 1.

DISCUSSION

A correct specification of the Q-matrix is an important part of the
design of the cognitive diagnosis procedures. For this reason, developing
validation criteria that indicate possible misspecifications for items in the
Q-matrix is of critical importance for successful application of the CDMs.

This paper presents simulation results about the empirical sample
distributions and cut-offs of the LSDM indices MAD and LSD under
several conditions that can be useful in applied context. Although this
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Figure 4. Proportion of items that exceed the 9999th percentile of the
MAD distribution
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simulation study was complex, it could not be exhaustive with respect to all
relevant assessment design and misspecification conditions, and for that
reason this research constitute a first step for the knowledge of the LSDM
indices behavior.

Table 5. Q-matrix, 2PL calibration and fit and MAD indices of the
mathematic test

()-matrix IRT LSDM-C

Item A, A: A, A; A, A, a s.¢ B s.C MAD Theta LSD
1 0 0 1 0 1 0 060 005 056 008 0.0! -3 017
2 0 1 0 0 0 1 1.47 0.08 -038 004 011 -25 0.14
3 1 ¢ 0 0 0 1 1.00 0.06 099 006 004 -2 010
& 1 ¢ 0 0 0 1 146 0.08 -0.66 004 003 -15 007
5 1 ¢ 0 0 1 0 1.15 0.07 080 005 003 -1 008
6 0 0 1 0 0 1 0.66 0.05 045 007 005 -05 0.04
7 0 1 0 0 1 0 055 005 -0.78 009 0.11 0 003
§ 01 0 0 0 1 087 005 044 006 002 05 003
9 ¢ 1 0 0 1 0 075 005 016 006 003 1 0.02
10 ¢ 0 0 1 0 1 0.60 005 016 007 004 15 0.02
11 ¢ 0 1 0 0 1 0.64 0.05 122 0.1 0.04 2 002
12 ¢ 1 0 0 1 0 1.22 0.07 021 004 006 25 002
13 0 1 0 0 0 1 1.17 0.07 055 005 0.06 3 0.02
14 o0 1 0 0 0 1 0.58 0.05 046 008 008

15 0 0 0 1 0 1 040 005 109 015 004

Additionally, results indicate that the behavior of the indices depends
of the design of the assessment and the indexes do not allow cut-offs fixed
for all situations, so in practice the researchers interested in the application
of LSDM for Q-matrix validation using the cutoffs provided here, have to
look the simulation condition more similar to their assessment design, as
was exemplified in the empirical study presented here. Also, the present
study design could be extended to cover a broader range of assessment
design conditions.

The purpose of this research was to obtain information about the
empirical sample distribution of LSD and MAD values and to identify cut-
off values for correctly specified items that permit to refine the validation
process proposed by Dimitrov (2007). This objective has been met and the
results provided can be useful to practitioners during the process of
validation and re-specification of the Q-matrix, because both indices (LSD
and MAD) are complementary and may be employed in applied evaluations
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in two phases, namely (a) the LSD values can be used as indicators of
overall adjustment of the Q-matrix at specific ability levels and then (b) the
MAD values can be used as indicators of items that should be re-specified.

The results indicate that the MAD values are affected by the number
of attributes required by the item. It is therefore difficult to find a unique cut
point to evaluate the validity of the Q-matrix based on the ICC recovery for
items. It seems more reasonable to propose several cut points according to
the number of attributes involved.

Following the results of the Study II and the real data application, we
can conclude that the MAD is a useful statistic to detect items with
misspecifications. Additionally, the empirical cut points proposed herein,
based on the number of attributes required by the item, seem more accurate
than the rules-of-thumb proposed by Dimitrov (2007). However, a deeper
study of the sensitivity and adequacy of the proposed cut points, with
different degrees of Q-matrix misspecification, is necessary. Also, more
applications using the cut points should be made in different cognitive
structures of educational and psychological tests.

Regarding the LSD index, it may be of interest to develop a statistical
fit index based on the area between the item characteristic curves produced
when the Q is true and when Q is misspecified, with the purpose of such
statistic to minimize the discrepancy between the curves caused by IRT
calibration and to assess the fit of the LSDM model at various ability levels.

As the present work represents a first effort to the study of LSDM
validation indices, much work remains to be done in this area. It is
necessary to study misspecifications in the Q-matrix under more conditions
and to analyze the behavior of the LSD, MAD (and possibly other) criteria
across a wide range of situations. Also, the data could be calibrated with
using other IRT models, such as the Rasch model and 3PL model. It may
also be of interest to study the effects of item misfit to with the IRT model
on the power of LSDM-related criteria for detecting Q-misspecifications.

In several practical applications of the LSDM we have found that the
simple inspection of both indices may be very useful, specially when have
alternative Q-matrices to test. In real applications, as the presented here, the
“true” Q-matrix is unknown but a comparison of alternative Qs from
different cognitive models may be used and both indices can be compared
for the competing models: lower values of MAD and LSD support model
choice decisions and this procedure may be used in conjunction with any
CDM.
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RESUMEN

Deteccion de errores de especificacion en la matriz Q utilizando dos
criterios de validacion de estructuras cognitivas con el Modelo de las
Distancias Minimo Cuadraticas (LSDM). Los Modelos de Diagnéstico
Cognitivo (MDC) tienen por objeto proporcionar informacién sobre el grado
en que los individuos dominan atributos especificos para resolver
correctamente los items de un test. La matriz Q es un elemento clave en la
aplicacién de los MDC porque contiene vinculos entre items y atributos que
representan la estructura cognitiva propuesta para resolver la prueba. Por
medio de un estudio de simulacién, se determind el rendimiento de dos
estadisticos de ajuste (MAD y LSD) para detectar errores de especificacion
en la matriz Q dentro del marco del modelo de la distancia minimo
cuadrdtica. Los factores manipulados en el disefio del test incluyen: nimero
de encuestados (300, 500, 1000), nimero de atributos (1, 2, 3, 4), y el tipo
de modelo (conjuntivo vs disyuntivo). Se investigd el comportamiento de
los valores MAD y LSD bajo una correcta especificacion de Q, con errores
de especificacién en Q y en una aplicacién de datos reales. Los resultados
muestran que los dos indices son sensibles a los errores de especificacion de
Q, por este motivo se proponen puntos de corte para usar en aplicaciones del
modelo.
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APPENDIX 1

Some theoretical properties of the LSD

Let Z be the probability of the item response model (i.e. the 2PL
model) and Y be the probability reproduced by the cognitive model
(computed by either equation (1) or (2)). The LSD estimate is found by
minimizing the squared difference

SD, = E(log v, —log Z,.)2

2
- Vi
_Z(log Zi) ,

where the subscript 7 runs over all items and values of 6. Suppose that 4 is
the difference between the cognitive model minus the IRT one

(h, =y, —z). Then

(Al)

2
SD, = E(logzi +hi)
i z,

1

=Z(log(l+i—:))z.

The term A, /z, increases when z; decreases. This has an important

(A2)

implication for estimation: the difference A, receives more weight as the
probability of the IRT model decreases. That is, the estimation algorithm
tries harder to fit the two item characteristic curves at the lower end of the
ability continuum. On the other hand, differences between the IRT and the
cognitive models at medium or high values of 6 are deemed less important,
and have a less remarkable effect on the estimates of the cognitive model.
One way to overcome this unwilling property would be to minimize the
function

SD, =Y (5,-2)’, (A3)

subject to the constraint 0 <y, < 1. The function SD, gives the same weight
to a given difference irrespective of the point of 6 where it occurs.
Differences can also be weighted by the density of 6, so that a difference

would have more weight if it occurs at a point of 6 of high density. In that
case, estimation would be based on the function:

SDy =Y f(O)(y-z)" (A4)
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The investigation of deviation functions SD, and SD, is deferred to
future research.

Regarding the function SD, , finding the LSD estimate is the same as
finding the least squares estimate of the linear equation / = Qx subject to
the constraint x <@ . The solution to this equation depends on the rank of
Q. First, the equation is consistent if and only if @ QI =1 for some
generalized inverse, @, of Q. Consistency implies that LSD = 0 although
we do not expect that this holds in general.

When the equation is not consistent, the general form of the least
squares solution to the linear equation is (Rao & Mitra, 1971):

x,=01+I-00), (AS)
where vis an arbitrary vector, / is an identity matrix and the constraint
x =< 0 has not been taken into account. When Q has full column rank, @~
is a left inverse: 0 =0'0)'0". Then
x=01+I-00yw=01+{I-I)v=0"1 and x_ is unique. Moreover,
equation (AS) implies that there are infinite least squares solutions (values
of x, ) to the equation when Q is deficient in rank. In substantive terms,

there are infinite different vector of parameters for the cognitive models that
minimize the LSD. Thus, interpretation of the cognitive model is arbitrary.
For these reasons, full column rank of Q must be a minimum requirement
for the cognitive model.
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APPENDIX 2

Details of the simulation procedure

Step 1. An arbitrary Q matrix with at least one of four attributes and
fifteen items was generated by including all the possible binary
combinations of 0-1, so that the items 1 to 4 require one attribute; items 5 to
10 require two attributes, items 11 to 14 require three attributes and item15
requires the four attributes.

Step 2. The probabilities of correct performance on attributes A, , P(A,
= 110,), were generated for 31 equally spaced ability levels between -3 and 3
(on the logit scale) using the 2PL model in IRT. The discrimination and
difficulty parameters of attribute probability curves (APCs) were selected to
obtain items with medium discriminations and varying difficulty levels. The
parameters of the APCs for the LSDM-C were: Al (a =0.30,b =-2), A2 (a
=0.50,b=-1.75),A3 (a=0.60,b =-1.5), and A4 (a =0.80, b =-1.25). For
the LSDM-D, we used the same “a” parameters but opposite “b” parameters
(b,=2,b,=1.75,b;=1.5, and b, = 1.25) in order to compensate for the
extremely easy items generated by the disjunctive nature of the model.

Step 3. The values of Py, sy Were computed from the APCs using the
LSDM-C and LSDM-D, (equations 1 and 2, respectively) for each of the 31
ability levels.

Step 4. For each of the 15 items, the couple of 2PL parameters (a, b)
that minimize the difference between P; and P 4, was found. This was

done by looking examining couples of 2PL parameters that best fit the
values of Py gy, by through the use of an iterative procedure.

Step 5. The LSDM application using the parameters found in step 4
allows us to obtain population values of MAD and LSD that appear in
columns “population” of Tables 3 and 4. As can be seen, the MAD and
LSD for the iterative procedure are not exactly, yet close to, zero.

Step 6. Simulated were the responses of 300, 500, and 1000
examinees for the 15 items using the original parameters presented in Table
2. The 2PL was estimated from the simulated responses and the cognitive
models (LSDM-C and LSDM-D) were fitted to the estimated (a, b) using
the same Q-matrix as in step 2. Finally, the MAD and LSD were computed
for each item across all fixed ability levels.

Step 7. The fifth step was replicated 500 times to obtain the
distribution of the discrepancy measure for each condition.
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