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Bayesian estimation of multidimensional item response
models. A comparison of analytic and simulation
algorithms
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This study compares the performance of two estimation algorithms of new
usage, the Metropolis-Hastings Robins-Monro (MHRM) and the
Hamiltonian MCMC (HMC), with two consolidated algorithms in the
psychometric literature, the marginal likelihood via EM algorithm (MML-
EM) and the Markov chain Monte Carlo (MCMC), in the estimation of
multidimensional item response models of various levels of complexity.
This paper evaluates the performance of parameter recovery via three
simulation studies from a Bayesian approach. The first simulation uses a
very simple unidimensional model to evaluate the effect of diffuse and
concentrated prior distributions on recovery. The second study compares the
MHRM algorithm with MML-EM and MCMC in the estimation of an item-
response model with a moderate number of correlated dimensions. The third
simulation evaluates the performance of the MHRM, HMC, MML-EM and
MCMC algorithms in the estimation of an item response model in a high-
dimensional latent space. The results showed that MML-EM loses precision
with high-dimensional models whereas the other three algorithms recover
the true parameters with similar precision. Apart from this, the main
differences between algorithms are: 1) estimation time is much shorter for
MHRM than for the other algorithms, 2) MHRM achieves the best precision
in all conditions and is less affected by prior distributions, and 3) prior
distributions for the slopes in the MCMC and HMC algorithms should be
carefully defined in order to avoid problems of factor orientation. In
summary, the new algorithms seem to overcome the difficulties of the
traditional ones by converging faster and producing accurate results.
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1. Introduction

Multidimensional item response models apply to the investigation of
the latent factors underlying psychological tests and questionnaires
composed of dichotomously scored items, or items with few response
categories. These models are equivalent to a categorical factor analysis and
thus are informative about the number and composition of latent factors as
well as the relations between them (McDonald, 1985).

The estimation of models with five or more factors is a usual demand
of exploratory and confirmatory analyses. However, the selection of a
reliable and fast estimation algorithm is an open problem in the practical
application of multidimensional item response models. A number of
alternatives exist, from limited information algorithms based on tetrachoric
correlations (Christofferson, 1975) and marginal/EM estimation (Bock &
Aitkin, 1981), to Bayesian MCMC estimation (Gelman, Carlin, Stern &
Rubin, 1995). Nevertheless, while these algorithms perform well in low
dimensional models, they can easily run into difficulties in high
dimensional latent spaces. This problem is often referred to in the literature
as the curse of dimensionality (Cai, 2010a), because the complexity of the
integration problem involved in estimation has an exponential growth rate
in relation to the number of factors.

Apart from the technical difficulties of integration over the latent
space, complex models may have weakly identifiable parameters, which are
those parameters that are identified from a purely algebraic analysis of the
model structure, but the sample contains little information to estimate them.
These parameters present difficulties of convergence and estimation of
standard errors. Even more so, the presence of weakly identifiable
parameters may transmit uncertainty in the estimation of the other
parameters and impede the reliable estimation of the whole model.
Estimation problems originated by weak identification can be alleviated or
eliminated by imposing Bayesian priors on item parameters. Because high
dimensional models will be used in this paper, inference will be performed
in the Bayesian framework.

There are two broad classes of Bayesian estimation algorithms:
analytic and simulation. On the one hand, analytic algorithms are based on
the explicit mathematical derivation of estimation equations, which involve
a Gauss-Hermite numerical integration procedure and a Newton-Raphson
algorithm to find the roots of the estimation equations (Schilling & Bock,
2005). On the other hand, simulation algorithms consist of taking samples
of parameters from the posterior distribution using a Markov chain Monte
Carlo algorithm implemented via Gibbs sampling (Gilks, Richardson &
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Spiegelhalter, 1996). Simulation algorithms avoid the use of derivatives and
are mathematically simpler at the cost of an increased computational
burden. There are also some algorithms that are a hybrid of these two
classes, such as the stochastic EM algorithm (Diebolt & Ip, 1996; Wirth &
Edwards, 2007).

The purpose of this study is to gather information about the
performance of two recent Bayesian estimation algorithms in comparison to
two algorithms consolidated in the psychometric literature. The recent
algorithms were introduced to overcome the difficulties of the traditional
ones, although few studies comparing performance have been published yet.
There is still little evidence about the supposed benefits of the new methods
because of their novelty. The four algorithms considered in this paper are:

1. Marginal likelihood (MML-EM; Bock & Aitkin, 1981), which is based
on an analytic differentiation of the log-likelihood. The MML-EM
proceeds iteratively in two steps: in the first step, the algorithm
computes the distribution of the factors conditional on the item
responses; in the second step item parameters are estimated while
keeping fixed the conditional distribution obtained in the first step. The
computation of the conditional distribution of the factors involves the
marginal distribution of item responses, which is approximated by a
number of methods such as static Gauss-Hermite quadrature, adaptive
Gauss-Hermite or Monte Carlo simulation (Schilling and Bock, 2005).

2. Bayesian simulations via Markov chain Monte Carlo (MCMC; Gilks et.
al., 1996). MCMC algorithms take samples from a target posterior
distribution. The algorithm creates several Markov chains in parallel
whose stationary distribution is the posterior distribution of interest.
Once the chain has converged to the stationary distribution, the samples
from the chains will behave approximately like samples from the
posterior distribution.

3. Metropolis-Hastings Robbins-Monro (MHRM; Cai, 2010a, 2010b).
The MHRM is a hybrid algorithm based on marginal likelihood in
which samples from the conditional distribution of the factors are
combined via stochastic approximation. It produces maximum-
likelihood and modal or expected a-posteriori point-estimate solutions
for multidimensional item response models, avoiding the Gauss-
Hermite numerical integration procedure.

4. Hamiltonian MCMC (HMC; Neal, 2011). The HMC method speeds up
convergence of MCMC simulations by applying the Hamiltonian
dynamics (Neal, 2011). However this decrement in the estimation time
requires, first, to compute the gradient of the log-posterior and, second,
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to specify the number of steps and the steps’ size to run a Hamiltonian
system. Hoffman and Gelman (2014) propose the No-U-Turn sampler
(NUTS) to make the HMC procedure decisions more convenient for the
user.

The two classical algorithms are MML-EM with Gauss-Hermite
numerical integration and MCMC via Gibbs-sampling, whereas MHRM
and HMC are recent evolutions of them aimed at reducing the
computational burden and speeding up convergence. Apart from the
analytic versus simulation issue, these algorithms differ in the estimates
they provide. MML-EM and MHRM maximize the posterior distribution of
item parameters and provide the modal a-posteriori estimate (MAP).
However, MCMC and the HMC provide a simulation approximation to the
full posterior distribution of item parameters, which can be summarized in
the expected a-posteriori estimate (EAP).

The model used in this paper applies to dichotomous data. The
probability that individual j gives a positive response to item i is given by
exp(d. + a0, ++ aiDH/D)

AN exp(d, +a 0, ++a,0 ) ’

(1)

where D is the number of factors, 61, ..., 8 jp are person parameters, d; is
the item intercept, and ai, ..., aip are the item slopes. Apart from these

parameters, the model includes the factor variances, a}z., and covariances,
0 - Not all of these parameters can be estimated simultaneously, and some

of them have to be fixed to constant values for the others to be identifiable.
For example, one item slope, ajj, has to be fixed to a constant value for the
factor variance of the corresponding factor, a}z., to be identifiable. The
model in Equation (1) is equivalent for all practical purposes to a factor
analysis of dichotomous variables.

Let X be the matrix of observed responses, MML-EM and MHRM
provide a point estimate by maximizing the posterior distribution:

f(a.d.0]X) f(a,d,0)[P(X|a.d,s,6)f(6)db, 2)
where P(X|a.d,s,0) = P (1-P)is the probability of the
[1[17"a-2

observed data conditional on all parameters, f(a,d,o)is the prior
distribution and f(@)is a multivariate normal density function. The
purpose of MCMC and HMC is to take samples from f(a,d,o | X); these
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samples can be summarized using central tendency and dispersion measures
to obtain Bayesian point estimates and associated standard errors.

In this research, the four algorithms are applied in a Bayesian context
with prior distributions for all parameters. In this context, the label MML-
EM means that the likelihood function involved in the posterior distribution

in Equation (2) is a marginal likelihood: f P(X|a,d,s,0)f(6)d6.

The four algorithms were applied to models from low to high
complexity to test them in a number of conditions of realistic complexity.
To this end, the paper reports three simulation studies. The first simulation
study investigates the effect of the prior distributions in a unidimensional
model. The second simulation study is based on models of an intermediate
number of factors and many different types of parameters, whereas a model
with many factors is used in the third simulation study.

2. Simulation study one. Estimation of a unidimensional model

The first study evaluated the effect of type of prior distribution on the
parameter recovery of a relatively simple unidimensional item-response
model. In particular, we fitted the two parameter logistic model (Birnbaum,
1968), which is equivalent to Equation (1) when D = [, to a sample test of
15 items. The model was estimated using two analytic algorithms (MML-
EM and MHRM).

Table 1 shows the true item parameters of the model. The a; and d;
parameters were generated at random. The a-parameters (slopes or scale
parameters) were obtained from a lognormal distribution (with 1z = 0 and ¢
= 0.5, yielding a distribution with an expected value of 1.13 and a variance
of 0.36). True d-parameters (intercepts) and person parameters (factor
scores) were obtained from a standard normal distribution. We selected
these distributions to obtain true parameter values comparable to those
found in real applications.

Both MML-EM and MHRM algorithms were implemented using the
statistical software R (R Core Team, 2015) and version 1.13 of the mirt
package (Chalmers, 2012). Default estimation options were left for both
algorithms (31 quadrature points used per dimension, 500 max EM cycles,
convergence occurred when all parameters were less than |.0001| across
cycles; 2000 iterations for the MHRM and a burn-in period of 150
iterations).

The version 1.13 of the mirt package only allowed the use of the
normal and the lognormal prior distributions. However, if no prior was
selected and lower and upper bounds are set for the parameters in the MML
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algorithm, the resulting estimate is equivalent to a Bayesian estimate with a
uniform prior. So we utilize the normal, lognormal and uniform prior to
estimate the model.

Table 1. True parameters values for the first simulation study

ltem d. a
1 -041 039
2 075 053
3 125 095
4 031 082
S 102 135
S 065 1.19
6 025 1.79
7 -049 083
8 131 084
9 029 196
10 033 0.8

11 -035 1.03
12 02 053
13 -064 276
14 -068 1.11
1S -041 039

Person parameters followed a standard normal distribution, which is a
commonplace in the IRT context (Curtis, 2010). Nonetheless, the prior
distribution for the item parameters varied from scale to intercept
parameters. For the scale parameters it was not usual to have negative
estimated values in unidimensional models, and thus the prior distribution
should be defined in the positive real line only. Not so for the intercept
parameters, for which only the uniform or the normal distributions could be
a feasible choice.

This leaded to three different configurations of priors using the mirt
package:

1) Flat little informative distributions:
a ~ uniform (0, 5)

. 3)
d ~ uniform(-5, 5)
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The prior for the slopes had an expected value of 2.5 and a standard
deviation of 1.44, and the prior for the intercepts had expected value
of 0, a variance of 2.5 and a standard deviation of 2.88.

2) Item parameters were assumed to follow a normal distribution,
being able to take positive and negative values

a ~normal (0, 3)
d ~normal (0, 3)

The standard deviation of the normal (0, 3) was 1.73, rendering a
relatively flat uninformative distribution.

4)

3) Slopes were assumed to follow a lognormal distribution, taking
only positive values, and intercept parameters a normal distribution,
taking either positive or negative values

a ~ lognormal (0, 0.5)
d ~normal(0, 3)

The lognormal (0, 0.5) distribution has a median of 1, an expectation
of 1.13, and a standard deviation of 0.6, which are reasonable values
for the a prior; we have fixed the median to 1 instead of the
expectation because the lognormal has a remarkable asymmetry and
setting the expectation equal to 1 would resulted in a distribution with
a thick right tail.

()

Note that the prior distributions in Equation (5) that were used for
estimation were the same as the prior used to generate item parameters.
Thus, in this condition the priors are correct, whereas the priors in (3) and
(4) differed from the generating distributions and might introduce bias in
estimation.

The conditions of the simulation study were: estimation algorithm
(MML-EM vs. MHRM); the prior distributions (Equation (3), (4) or (5));
and sample size (500 vs. 1000 simulees). This left a total of 12 simulation
conditions (two algorithms x three priors x two sample sizes). One hundred
samples were generated for each condition. Item parameters and true person
parameters remained constant across replications, and the response matrices
varied from one replication to another, but not across conditions. The two
estimation algorithms were applied to the same response matrices to ensure
that differences in performance were due solely to the estimation algorithm
and not to sampling error in the response matrices or the values of 6.
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Parameter recovery was evaluated by the absolute mean bias and the
root mean squared error (RMSE) between point estimates and the true
parameter values. Correlations between true and estimated parameters were
also computed. The results appear in Tables 2 and 3.

Table 2. Parameter recovery statistics for sample size NV =500
MML-EM MHRM

uniform a-normal a-lognormal uniform a-normal a-lognormal

Bias a 0138  0.133 0.135 0.138  0.134 0.142
d 0098  0.097 0.096 0.099  0.098 0.100

8 0378 0377 0.377 0379 0379 0.379

RMSE a 0178 0.170 0.172 0.181  0.179 0.183
d 0123 0.122 0.121 0.124  0.123 0.125

A 0459 0458 0.459 0.460  0.459 0.461

r a 0999  1.000 1.000 0.999  1.000 1.000
d 0999  0.999 0.999 0.999 0999 0.999

f 0988 0988 0.988 0.988 0988 0.988

Mean T 026 0.51 0.45 0.25 12.84 12.66
SDT 0.4 0.06 0.06 0.03 0.34 0.47

min. T 020 0.32 0.37 020 1161 12.12
max. I (.44 0.83 0.79 0.44 12.82 15.90

Note: Varnable T'is the clapsed time in seconds.

Parameter recovery was similar regardless of the estimation method
and prior configuration. Even in the small sample conditions, the likelihood
function dominated the prior and determined the value of the point estimate.
As expected, the increase in sample size resulted in a more accurate
estimation of the item parameters, reducing the bias and the dispersion of
the estimation. Regarding the factor scores, absolute biases, RMSE and
correlations remained almost equal irrespective of sample size, as the key
element to increase precision was not the sample size but the test length.

The most important discrepancy between the conditions was
estimation time. The MML-EM estimation proved to be faster in the two
implementations than Bayesian estimation, converging in barely 0.25
seconds for small samples sizes and 0.30 seconds for large sample sizes.
When priors were added to the model, time was duplicated in the MML-EM
algorithm. However, using priors with the MHRM algorithm increased
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estimation time up to only 12 seconds in the small sample side, and up to 22
in the large sample size.

Table 3. Parameter recovery statistics for sample size NV = 1000

MML-EM MHRM

uniform a-normal a-lognormal uniform a-normal a-lognormal

Bias a 0097 009 0.098 0.093  0.093 0.099
d 008  0.088 0.08%8 0.08  0.085 0.092

9 0374 0374 0.374 0374 0374 0.376

RMSE a 0124 0122 0.124 0.119  0.119 0.125
d 0107  0.107 0.106 0.106  0.105 0.106

g 0460  0.460 0.460 0461  0.461 0.463

r a 1000  1.000 1.000 1.000  1.000 1.000
d 0998  0.998 0.998 0998 0998 0.998

§ 0988  0.988 0.988 0.988  0.988 0.988

MeanT (31 0.62 0.55 0.31 2278 22.64

DT 0.04 0.08 0.07 0.04 0.97 1.14

min. T 024 0.42 0.40 025 20091 21.31

max. I 0.43 0.84 0.74 0.44 25.50 28.24

Note: Vanable I'is the elapsed time in seconds.

Results show that in simple models there were no real differences
between the MML-EM estimation implemented by default in the mirt
packages and MHRM, except for a few seconds of computation time.
However, MHMR was developed for conditions of high dimensional
models, and these results leave open the question of what happens when the
model complexity grows. Is adding more information with the priors
beneficial for the precision and the convergence of the estimation in such
models? In the next two studies we explored the answer to this question.

3. Simulation study two. Estimation of a model with a complex
parameterization

The purpose of the second study was to evaluate recovery for all kinds
of structural parameters, intercepts, slopes, factor variances, and factor
covariances. Recovery of incidental parameters, factor scores, were be
evaluated as well. Two consolidated estimation algorithms (MML-EM and
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MCMC) were compared to an algorithm of new usage (MHRM). Bayesian
estimation allows testing more flexible factor structures, enhancing the
possibility of estimate parameters that usually are constrained to zero
(Muthén & Aspharauhov, 2012). Given that in IRT applications dimensions
tend to be highly correlated (Sinharay, 2010), in this study we explored the
estimation of a model with five correlated factors and 25 manifest variables.
The theoretical model is based in the factor structure purposed by Golay,
Reverte, Rossier, Favez & Lecerf (2013), in which manifest variables are
allowed to load on different factors.

Table 4 shows the true item parameter values. For identification
purposes, the first item in each set of five items loaded on a single
dimension, and the rest of the items loaded on two different factors. In this
way, there was a unidimensional item for each factor, and the other items
were two-dimensional. Scale parameters of the unidimensional items were
fixed to 1 for the factor variances to be identifiable. True scale parameters
of the two-dimensional items were randomly generated from a lognormal
(0, 0.5) distribution and intercepts were generated from a normal (0, 1).
Factor scores were generated at random from a multivariate normal (0, X)
distribution, where X contains ones in the diagonal and 0.5 as true
covariance values. These kinds of models are typically applied to measure
dimensions that share some aspects of the items, like coping strategies
(Zuckerman & Gagne, 2003).

The three algorithms, MML-EM, MHRM, and MCMC, were
implemented using the statistical software R (R Core Team, 2015) by
means of the version 1.13 of the mirt package for MML-EM and MHRM
(Chalmers, 2012), and rjags for MCMC by Gibbs-sampling (Plummer,
2015). Default options were set for the mirt algorithms (7 quadrature points
used per dimension, 500 max EM cycles, convergence occurred when all
parameters were less than |.0001| across cycles; 2000 iterations for the
MHRM and a burn-in period of 150 iterations). The MCMC algorithm uses
four chains per parameter, a burn-in period of 5000 samples, and 10000
samples per chain are kept after the burn-in period.

The three estimation algorithms were implemented using the same
prior distributions. This imposes some restrictions on the design of the
simulation because the number of prior distributions implemented in mirt
was more limited than in rjags. As in the first study, we fitted the models
twice using different priors:

*  Uninformative priors. The uniform distribution was the prior for the item
parameters so that Bayesian point estimates were equivalent to maximum
likelihood estimates; we refer to these priors as uninformative.
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Table 4. True parameters values for the second simulation study

d: ai an an a ais
-0.9 1
-0.70 1
0.41 1
0.48 1
0.12 1
0.79 1.25 1.05
-195  0.83 0.36
0.09 0.70 1.15
221 089 0.49

1.91 234 1.30
-0.68 0.78 1.03

2.19 0.99 0.57
-0.96 1.10 1.85

1.33 094 047

-0.28 057 071

-0.92 .20 2.01

0.45 042 059

-0.91 1.23 1.08
1.13 0.82 1.38
2.08 1.51 1.43
0.81 0.32 1.58
027 087 0.83
202 L1 0.53
-0.36 140 0.83
1.19 1.16 1.06

Note: Boldface indicates fixed parameters. Empty cells
represent structural zeros

* Informative priors. We employed the lognormal and the normal
distributions for the slopes and the intercepts, respectively. We chose the
lognormal because there were no substantive differences in the previous
study compared with the normal as slope prior, and also because it has
been frequently used in the IRT literature; for example, Patz and Junker
(1999) used the lognormal to implement the Bayesian MCMC.

Therefore, the prior distributions for item parameters are:
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a ~ uniform (0, 5)
d ~uniform (-5, 5)
or (6)
a ~ lognormal (0, 0.5)
d ~normal (0, 3)

A multivariate normal (0, £) was used for person parameters; and the
variance-covariance matrix, 2, follows an inverse Wishart (o) distribution,
which is a common choice for Bayesian estimation because the inverse
Wishart prior is conjugate to the normal distribution of 8 (Gelman, Carlin,
Stern & Rubin, 1995). Thus:

6, | 3 ~ multivariate normal (0, ) )

Y ~inverse wishart (vI, v)
The Wishart parameter, v, should be equal to or higher than the
number of dimensions of the model (Gelman et al., 1995). Setting v =35,
the expected value of the inverse Wishart distribution is an identity matrix,

and the variance-covariance matrix of ¥ has 0.4 on the diagonal and 0.2
outside the diagonal (Ntzoufras, 2009).

The mirt package did not admit the inverse Wishart prior or any other
distribution for X, which was equivalent to assuming that the prior for X is a
uniform one. So, this matrix was estimated with no specific prior in mirt.
Thus, we applied MML-EM and MHRM using mirt with a uniform prior for
2, and MCMC using rjags with the inverse-Wishart prior. The purpose of
fixing the slopes of the unidimensional items was to estimate all the
elements of £ matrix with the three algorithms.

Parameter recovery for the three estimation algorithms was studied in
different conditions. We manipulated: the sample size (500 vs. 1000
simulees), and the prior distributions for the item parameters (ML
estimation vs. Bayesian estimation). This rendered a total of twelve
conditions (three algorithms % two sample sizes x two prior distributions).

As in the first study, 100 simulated samples were computed for each
sample size, keeping the same vector of true 6 values for all the samples.
Again, the response matrices varied from one replication to another, but not
across conditions. The estimation algorithms were applied to the same
simulated samples of responses so that the differences between estimation
methods are not contaminated by sampling error.
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In order to improve the comparability of the solutions given by each
algorithm, the same procedure was followed to obtain the person parameter
estimates. Due to the difficulties of computing a MAP estimator for the
MCMC method, the EAP estimator was employed in the simulation and the
analytic algorithms. Thus, all parameters were estimated by EAP and their
recovery was assessed with the absolute mean bias, the RMSE and the
correlations between point estimates and the true parameter values. The
results appear in Tables 5 and 6.

Table S. Parameter recovery statistics for the uninformative priors

N = 500 N = 1000
MCMC MHRM MML-EM MCMC MHRM MML-EM

Bias a 0.124  0.101 0.177 0079 0.081 0.191
d 0.059 0065 0079 0045 0046  0.053
7] 0340 0376 02354 0339 0342 0380
> 0054 0053 0402 0050 0077 0397
RMSE a 0328 0380 0792 0249 0245 049
d 0.151  0.159  0.185 0.106 0.108 0.131
7] 0543 0649 0764 0536 0626  0.898
> 0.135 0168 0621 0.122  0.149  0.599
B a 0975 095 0910 0993 0966 0915
d 0997 0997 099 099 0999 0999
0 0918 088 0900 0919 0904  0.882
z 0972 0960 0902 0978 0974 0881

Mean T 0:43:33 0:00:33  0:15:06  2:12:05 0:00:52  0:12:49

SDT 0:04:01 0:00:01 0:05:27 0:01:12 0:00:05 0:06:56

min. T 17:11:30 0:00:30  0:03:20  2:07:54 0:00:49  0:02:42

max. T 1:16:53  0:00:38 0:31:20 2:18:25  0:01:29 0:33:42
Note: Vanable T'is the clapsed time with format hhomm:ss

The main result from tables 5 and 6 was the impact of the prior on the
estimation precision. In particular, using informative priors for the item
parameters improved the accuracy of the estimation of the slopes and the
person parameters among the three methods, especially when the sample
size was small. The differences between informative and uninformative
priors in absolute bias and RMSE were lower in the large sample condition,
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but recovery was still better for the informative prior. Something similar
happened with the recovery of the intercepts; there were almost no
differences between priors with the large sample size. However, when the
sample size was small the RMSE remained lower in the informative prior
conditions, although the absolute bias was similar for both types of priors.

Table 6. Parameter recovery statistics for the informative priors

N = 500 N = 1000
MCMC MHRM MML-EM MCMC MHRM MML-EM

Bias a 0.090 0.081 0.135 0.066  0.098 0.204
d 0.054 0.062 0.052 0.046 0.061 0.046
0 0327 0375 0.474 0327 0344 0.476
z 0.085 0.091 0.203 0.058  0.081 0.233
RMSE a 0233 0274 0.298 0.194 0207 0.304
d 0.130 0.142 0.135 0.099 0112 0.101
o 0.550 0.644 0.661 0.541 0623 0.654
z 0.157 0179 0.210 0.122  0.139 0.236
r a 0983 00986 0.989 0992 0992 0.996
d 0.998 0997 0.997 0.999  0.999 0.999
0 0916 0885 0.815 0919 0903 0.816
P 0978 0944 0.985 0978 0981 0.9%90

Mean T (:26:26 0:00:32  0:01:39  1:57:52  0:00:58  0:01:36
SDT 0:0524 0:00:03 0:00:51 0:12:48  0:00:04  0:00:29
min. T (:24:39 0:00:28  0:00:41  0:11:52  0:00:45  0:00:59
max. T 1:18:07  0:00:51  0:05:04  2:29:02 0:01:09  0:03:34
Note: Vanable T'is the clapsed time with format hh:mm:ss

Contrary to item parameters, the variance-covariance matrix was
estimated with better precision (i.e. lower absolute bias and RMSE) with
uninformative priors when the sample size was small for the MCMC and
MHRM algorithms. These discrepancies disappeared when the sample size
was increased. This did not occur with the MML-EM algorithm, whose
estimation was far worse with uninformative priors. The correlations
between true and estimated parameters followed a similar pattern;
correlations tended to be higher when the lognormal and the normal
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distributions are utilized as priors for the item parameters. Thus, the
estimates were in general better with informative priors; but this is achieved
at the cost of forcing a-parameters to be positive.

In general, the MCMC and MHRM algorithms rendered similar
results, whereas MML-EM provided less precise estimates. The MCMC and
MHRM solutions showed smaller bias, lower RMSE and higher
correlations between the true and estimated parameters than the MML-EM
algorithm for both types of priors. One exception was the recovery of the
intercept parameters, where the MML-EM performed as well as the other
two algorithms.

The greater discrepancy among the algorithms occurred in the
recovery of the person parameters. The bias and the RMSE of the analytic
algorithms seemed remarkably high in comparison with MCMC estimates.
Interestingly, these differences appear with both sample sizes, and resulted
even more pronounced in MML-EM conditions.

Looking closer at the MCMC and the MHRM results, the MCMC
solution offered a slightly less biased estimation than the one reached with
the MHRM algorithm. Although the point estimate of the MHRM solution
for the slopes was less biased than the point estimate of the MCMC, the
dispersion of the MCMC estimates was lower, yielding lower RMSE values
for these parameters in the small sample size conditions. Nonetheless, these
differences softened up in the larger sample size, obtaining similar absolute
biases, RMSE and correlations for the item parameters and the matrix .

Another important concern for practical applications is estimation
time, which compromises the number and the structure of the models than
can be applied to a real data sample for the purposes of judging their
relative merit. As expected, estimation time had a direct relation with the
computational load of the algorithm (see Tables 5 and 6). The MHRM was
the fastest algorithm, converging on average in 32-58 seconds when using
informative priors, and converging in 33-52 seconds with uninformative
priors. The MML-EM was very much affected by the type of prior, with the
informative prior it converges in about one and a half minute, whereas
estimation lasted about fifteen minutes on average with uninformative
priors. Finally, MCMC took between 26 minutes and around two hours,
which was not surprising given that this method is computationally more
intensive. In general, more time was needed as the sample size increased,
although the effect was more prominent as the computational burden of the
algorithm increases.

To sum up, using informative priors was beneficial for the three
estimation algorithms. Besides this, the MHRM method —an improvement
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of MML-EM designed to overcome those situations where computational
complexity of the Gauss-Hermite numerical integration procedure involved
in MML-EM is cumbersome— achieved its objective of reducing
computational time while providing precise estimates.

These results were not conclusive because a model with five factors
can still be handled by a numerical integration procedure, but it was unclear
if it can be applied to models with a higher number of dimensions that are
frequently found in practical applications. The supposed benefits of the new
methods have not yet been extensively tested in high dimensional models.
A third simulation study was carried out to obtain more information
regarding high dimensional models where numerical quadrature integration
methods could be unfeasible.

4. Simulation study three. Estimation of a highly dimensional
model

The aim of the third simulation study was to evaluate the performance
of four Bayesian estimation algorithms with a complex model of high
dimensionality. The parameterization of the model was simpler than in the
second simulation study, in the sense that no factor variances or covariances
were estimated, but the number of factors was higher. The simulation was
based on the hierarchical factor model described by Yung, Thissen, and
McLeod (1999) to use a realistic factorial structure. We have chosen this
model to increase the ecological validity of the simulation study because it
was based on the bi-factor model, which has a long tradition in
psychometrics, and has proven to be a reliable alternative to the classical
second-order models in health and behavioral sciences (Chen, West &
Sousa, 2006; Patrick, Hicks, Nichol, & Krueger, 2007; Reise, 2012).

In this study, the model included 18 variables and 10 factors. Each
variable measured three factors: one general factor that was shared by all
variables and two group factors. However, we have not used the same
values for the slopes as Yung et al. True parameter values for the present
study appear in Table 7; as can be seen, intercept parameters were fixed to
0, and scale parameters were set to 1. The reason was that we wanted to
evaluate the impact of the factor structure on the recovery of parameters. As
all true parameters were fixed to the same value, differences in recovery
between parameters will not be attributed to their true value but to factor
structure and sampling error.

Four algorithms were compared: MML-EM, MHRM, MCMC, and
HMC (Neal, 2011). By MCMC, we refer to the traditional MCMC based on
Gibb-sampling, although HMC was also an MCMC algorithm that
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substitutes Hamiltonian dynamics for Gibbs-sampling. HMC was
implemented using the R package rstan (Stan Development Team, 2014a,
2014b). The HMC algorithm was applied in this simulation example
because it is a recent improvement of MCMC aimed at increasing
computational speed and efficiency, which are demanding requisites for a
model of high complexity. The typically long estimation time and waste of
computational resources associated with Gibbs-sampling-based-MCMC
might render this estimation method unfeasible as model complexity grows.
We have used the same chain length and burn-in period values for the
MHRM and MCMC as in the previous studies.

Table 7. True parameter values for the second simulation study
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The MML-EM algorithm was implemented using the bfactor function
in the mirt package. This function is applicable when the factorial structure
contains both general factors shared by all items and specific factors shared
by group of items, as in this example. The advantage of the bfactor function
was that it introduced simplifications in the numerical integration procedure
involved in MML-EM and demanded fewer computational resources than
the traditional Gauss-Hermite integration procedure. In particular, the
bfactor function reduces the integration over the 10 factors of the model to
integration over five dimensions (four dimensions in the second-tier plus
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one specific factor). Minor changes were performed to the mirt default
options in this third study (7 quadrature points used per dimension, 500 max
EM cycles, convergence occurred when all parameters were less than
|.0001| across cycles). The number of quadrature points were increased to
10 because in pilot runs we observed that estimation was imprecise using
the lower number of points that bfactor sets by default.

The four algorithms were applied in two conditions, with high
informative and with low informative prior distributions. The high
informative prior distributions were:

a ~ lognormal (0, 0.5)
d ~normal (0, 3)

As before, the lognormal distribution for ¢ had a median of 1, an
expectation of 1.13, and a standard deviation of 0.6. The normal prior for
the d parameter was a relatively flat uninformative distribution. The low
informative prior distributions were:

(8)

a ~uniform (0, 5)
d ~ uniform (-5, 5)
Note that the prior distributions in (8) and (9) were not high and low

informative in a general sense, but in comparison with one another. The
prior for 8 was standard normal in all conditions.

)

The four algorithms were examined with sample sizes of 500 and
1000 simulees, resulting in 16 conditions (four algorithms x two samples
sizes x two set of prior distributions). Once again, 100 simulated samples
were computed for each sample size, keeping the item and person
parameters constant across replications, and varying only the response
matrices. The four estimation algorithms were applied to each of the
simulated samples.

Recovery of parameters was analyzed by computing the root mean
squared error (RMSE) between Bayesian point estimates and the true
parameter values. Correlations between true and estimated parameters were
computed for 6 (the correlation for a and d would be 0, as all true
parameters take the same value).

Tables 8 and 9 contain the correlations and RMSE of the factor
scores. The recovery of person parameters was a little bit worse with MML
than with the other three methods, mainly with the uniform prior. The most
prominent effect was that recovery of factor scores was better as the number
of items per factor increased. In this manner, the correlations between the
true and the estimated factor scores for the general factor, measured by 18
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items, were higher than for the other factor, measured by six or three items.
The RMSE values followed this same tendency, presenting lower values for
the general factor than for the other ones.

Table 8. Correlations between true and estimated theta

Lognormal 1 707 708 710 710 21 74 21 714
Normal 2 535 543 515 534 542 551 542 551
3 551 525 532 517 554 532 554 532

4 542 S10 498 496 550 519 551 519

5 461 479 445 469 460 478 461 A78

6 473 489 428 478 A73 A%0 A73 490

7 501 468 468 463 501 A69 501 469

8 509 492 487 475 510 493 510 493

9 466 A66 456 460 467 A65 A6T A65

10 454 477 401 468 465 A81 A6S 481

Uniform 1 699 710 710 710 732 720 709 712
2 405 543 514 535 553 559 529 545

3 531 523 532 517 565 541 548 525

4 478 493 499 496 562 530 532 505

5 439 A7l 447 469 467 483 451 468

6 437 481 431 478 479 A97 A63 481

7 467 458 470 463 508 A76 491 A56

8 A77 A83 487 475 518 499 500 A83

9 434 458 456 460 472 ATl A5T A57

10 429 473 411 468 471 A87 A56 472

Note: The column Prior refers to the prior distribution for scale and intercept parameters, which
can be cither (a ~ lognormal(0, 0.5), d ~ normal(0, 3)) or (a ~ uniform(-5, 5), d ~ uniform(-5, 5)).

Table 10 summarizes recovery of intercept parameters and estimation
time. The estimation algorithm and the prior distribution had little effect on
the accuracy of the recovery of the intercepts. The precision of the estimates
of the intercept parameters increased when the sample size was
incremented, although recovery seemed adequate even for the N = 500
condition.

With respect to estimation time, simulation algorithms were clearly
slower than the analytic ones. MCMC was by far the slowest algorithm,
followed by HMC. These are expected results since MCMC is
computationally intensive. The results for MML were quite interesting
because it had remarkable differences between the runs with high and low
informative prior distributions. This was due to difficulties of convergence
for MML in the conditions with uniform priors. MHRM had the best results
from all fronts; it was the fastest algorithm and was not affected by sample
size and the type of prior distributions.
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Table 9. Root mean square error of theta

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Prior Dim. »a=500 #=1000 n =500 a=1000 n=500 n=1000 #=500 »n=1000

Lognormal 1 623 639 622 634 615 638 615 638
Normal 2 715 723 733 732 21 728 720 728
3 720 699 736 707 728 706 728 706

4 127 738 757 747 729 739 729 73
5 760 759 T8 762 769 763 .768 763
6 759 752 776 761 765 157 765 757
7 764 766 783 774 AN aNn | N
8 792 791 R07 798 795 .798 795
9 760 764 779 769 773 769 73
10 779 765 790 a7 763 773 763
Uniform 1 678 635 622 606 634 629 641
2 793 725 733 11 720 733 736
3 787 702 736 716 608 738 715
4 R824 746 756 719 732 743 750
5 831 762 T8 751 752 776 769
6 834 758 75 749 747 73 763
7 841 an 782 157 758 778 780
8 £71 796 808 784 785 805 .800
9 838 a1 779 754 761 717 778
10 843 763 786 758 750 81 770

Note: The column Prior refers to the prior distribution for scale and intercept parameters, which
can be cither (@ ~ lognormal(0, 0.5), d ~ normal(0, 3)) or (@ ~ uniform(-5, 5), d ~ uniform(-5, 5)).

Results for the scale parameters appear in tables 11 and 12. The
sample size and the number of items per dimension affected the recovery of
the slopes. In general, the RMSE presented lower values as the sample size
and the number of items per dimension increased. The effect of the type of
prior distribution depended on the estimation method.

The most relevant effect on slopes was the poor performance of MML
in the condition with uniform prior and 500 simulees. As indicated before,
we have observed in pilot runs that performance of MML was poor using
the default number of quadrature points of the bfactor function (7 points per
dimension for integration over five dimensions). Because of this, we
increased this number to 10 quadrature points per dimension. However,
recovery for MML still did not compare with the other methods, and
convergence was slow. In the conditions with 1000 simulees, parameter
recovery for the MML was not as good as for the other methods, but the
difference was smaller than with 500 simulees.
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Table 10. Recovery of intercept parameters (RMSE) and elapsed time

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Prior Parameter 2=500 a=1000 »#=500 »2=1000 »#=500 nxn=1000 n=500 n=1000
Normal d 106 076 113 078 112 077 112 077
d 107 076 115 077 117 076 117 076
d 109 072 110 079 115 075 116 076
ds 144 078 139 077 142 079 142 079
ds 137 .083 135 .081 136 081 136 .082
de 146 .092 139 096 144 092 144 092
d 103 115 105 109 103 116 102 117
ds 116 119 117 111 121 117 123 178
ds 119 109 130 102 121 109 121 109
dw 121 11 137 11 136 109 136 109
dn 122 123 131 126 127 126 127 126
dn 101 114 .109 117 106 112 106 11
dn 106 078 120 081 117 081 116 081
dis 118 075 117 079 115 079 116 079
dis 112 079 125 083 123 078 123 078
dis 131 076 129 .07 122 076 122 076
din 129 .085 134 .085 123 090 123 090
dis 132 077 130 074 126 081 125 081

Mean T 0:2:41 0:4:16 0:3:20 0:3:33 0:21:51 1:40:45 0:8:24 0:21:27
Std. T 0:0:38 0:1:14 0:0:8 0:0:6 0:0:28 0:1:49 0:0:25 0:2:51
min. T 0:1:44 0:2:50 0:3:1 0:3:19 0:21:29 1:37:15 0:8:1 0:18:30
max. 7’ 0:4:51 0:9:43 0:3:39 0:3:53 0:23:23 1:44:20 0:11:14 0:26:35

Uniform d 118 076 113 078 099 071 121 .082
d 117 075 114 077 .103 070 128 .082
di 103 075 112 078 102 070 124 .080
dt 169 077 139 077 124 072 157 083
ds 152 078 133 .082 121 075 .148 087
de 182 .081 139 096 126 .083 158 099
dr 107 092 105 109 089 106 113 125
ds 185 125 119 11 104 108 133 126
ds 102 116 128 102 105 102 133 115
dio 170 107 135 111 116 100 147 119
dn 156 109 130 126 110 114 137 136
dn 115 125 109 117 092 101 113 120
dn 182 11 120 .081 101 076 129 087
dis 122 079 117 079 .103 074 127 086
dis 160 079 125 .083 110 071 135 084
dis 160 077 128 071 109 069 132 .081
dn 170 090 132 .085 109 .082 136 096
dis 133 .081 130 074 113 074 137 087

Mean ' 0:37:36 0:23:15 0:3:19 0:3:28 0:25:58  1:32:43 0:13:39 0:33:1
Std. 7 0:29:59 0:19:7 0:0:9 0:0:6 0:0:9 0:1:16 0:0:21 0:2:13
min. T 0:6:59 0:9:42 0:2:59 0:3:15 0:25:42 1:29:22 0:12:53 0:30:22
max. I’ 2:7:48 1:49:25 0:3:52 0:3:43 0:26:30 1:37:36 0:16:11 0:44:55

Note: Variable T'is the clapsed time with format hh:mm:ss
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Table 11. Recovery of scale parameters (RMSE) with lognormal prior

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Par. n=500 n=1000 #n=500 xn=1000 »n=500 n=1000 n=500 @n=1000
a .199 166 216 149 175 1143 175 144
ax. 208 152 226 147 181 135 .180 135
axl 212 149 219 154 187 128 187 127
as. 187 152 185 158 180 152 181 152
as. 208 178 217 162 191 163 .192 162
as. 189 148 188 160 195 151 .194 150
an 201 135 191 152 190 136 .191 137
as. 212 158 176 162 206 140 .207 141
an 222 180 218 151 201 155 .204 154
aw 242 160 226 148 185 140 .185 .140
an: 254 150 253 146 206 140 .205 142
aiz 245 155 239 159 193 142 .193 142
ain 215 166 215 159 195 144 .193 143
ais 211 138 195 153 202 145 .202 144
ais: 206 146 209 162 182 138 181 139
ais: 194 169 201 145 170 134 171 136
amn 190 175 201 173 170 164 171 165
aix: 167 148 184 143 169 134 .169 124
ai> 234 211 328 233 210 172 211 169
a2 245 192 320 248 222 162 .229 164
a2 224 227 341 248 198 194 .196 192
a2 200 263 327 237 167 173 .168 172
as2 224 216 341 237 198 142 197 142
a2 218 288 368 243 199 194 .194 189
ass 274 214 414 228 209 162 206 162
a3 270 204 374 234 232 177 .231 174
ans 310 237 415 265 267 198 .262 196
ass 273 248 312 273 228 179 .228 179
ass 348 250 450 252 297 149 .300 155
aws 309 237 482 290 293 186 .297 182
ans 198 237 366 313 180 196 181 202
ans 208 232 376 314 206 204 .206 203
as 250 233 362 302 237 186 .237 185
aiss 230 191 398 249 196 173 .193 170
aiss 213 212 423 254 199 186 .195 182

alis 190 .200 395 .260 191 .188 .189 .184
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Table 11 (continued). Recovery of scale parameters (RMSE) with
lognormal prior

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Par. n=500 n=1000 n=500 »n=1000 Par. n=500 n=1000 »=500
ais 218 256 456 299 242 203 243 207
as 226 247 469 270 264 205 255 210
as 213 265 418 314 244 217 241 220
ass 222 245 443 360 251 210 248 217
ass 209 254 491 320 234 215 230 216
as 213 241 452 303 239 193 237 196
an 239 242 470 297 261 254 269 254
ar? 232 214 482 302 265 193 266 192
an? 227 212 483 284 281 196 280 191
aiog 250 257 S04 337 277 238 278 232
ang 208 248 525 267 314 217 317 222
ang 254 232 470 376 266 206 267 202
aio 217 197 496 285 262 192 2558 197
aiso 205 208 37 285 227 214 229 213
aiso 188 225 500 282 215 222 213 223
ailo 783 725 489 281 200 214 194 211
ainio 222 294 492 300 221 229 222 230
aig1o 199 281 520 305 229 231 224 228
Mcan 237 218 353 239 218 179 218 179

To sum up, MHRM, MCMC and HMC recovered factor scores and
item parameters with similar precision, whereas MML was clearly inferior.
MCMC and HMC were slower than MML and MHRM but this is an
expected result from the definition of these algorithms. Simulation
algorithms proved to be as precise as the analytic ones. Estimation by
simulation seemed to be unnecessary if the purpose is just to obtain a point
estimate (possibly supplemented with standard error) because of the longer
estimation time. However, simulations have the advantage of providing a
whole sample of parameter estimates and not just a point estimate, and these
samples can be used as other quantities such as diagnostic statistics for
posterior predictive assessment of model fit.
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Table 12. Recovery of scale parameters (RMSE) with uniform prior

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Par. n=500 n=1000 n=500 xn=1000 »n=500 n»n=1000 n=500 »n=1000
aul 434 165 214 149 264 180 240 183
a 374 170 223 147 264 162 250 199
asl 323 156 219 155 260 170 262 176
as 477 183 182 157 189 127 326 240
as\ 509 181 211 162 189 129 329 253
aal 547 170 189 160 180 119 335 246
an 439 287 193 152 186 153 204 209
asl 492 159 173 162 186 154 315 208
aol 331 175 217 151 201 155 312 232
an, 314 168 226 148 273 141 222 23
an, 521 192 252 146 201 141 259 227
aiz 265 163 235 159 279 146 237 223
ai 607 170 217 159 212 150 342 232
ais, 638 206 197 153 197 133 362 272
ais) 540 285 206 161 211 139 320 255
ai, 380 312 197 145 215 138 201 229
ain 561 214 195 173 192 154 325 263
aix) 622 322 186 142 203 142 325 254
a2 422 195 334 233 222 167 341 268
a2 646 207 339 248 188 167 370 245
a2 634 222 342 247 199 155 320 292
as2 479 214 327 237 197 147 303 261
as2 358 176 331 238 224 154 315 225
a2 650 223 353 243 198 138 347 313
as3 583 251 418 228 175 173 379 2133
a3 558 205 370 234 184 173 389 262
ans 342 225 405 265 172 178 433 261
a3 426 208 323 273 A7 155 374 280
avs 579 194 462 251 165 143 468 284
awns 346 220 466 290 172 151 436 308
ans 482 296 360 313 234 200 286 289
ans 480 332 379 313 226 215 343 287
ans: 516 281 362 302 223 205 376 267
as: 644 238 382 249 219 185 315 259
aiss L1 268 426 254 230 184 321 277

alss 675 281 388 259 218 190 306 277
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Table 12 (continued). Recovery of scale parameters (RMSE) with
uniform prior

mirt (MML-EM) mirt (MHRM) Jags (MCMC) Stan (HMC)
Par. n=500 n=1000 n=500 n=1000 »n=500 n=1000 n»n=500 n=1000
avs 857 283 466 299 232 189 430 342
axs 781 340 461 270 223 183 427 387
as 609 314 418 314 250 176 402 370
ass 865 338 461 359 231 161 445 354
ass 975 291 475 321 241 160 414 378
ais 1.154 271 439 300 249 168 415 336
ann 901 668 466 298 210 193 445 444
aw? 908 278 466 302 221 191 442 365
an? 714 260 A83 284 215 213 466 348
awg 196 326 497 337 197 174 452 397
ang 1.361 345 521 268 196 161 486 351
aizg 394 277 465 376 108 163 434 355
aize 1.189 263 496 286 264 194 437 306
aio 807 352 369 285 268 177 410 366
aiso 1.080 538 503 282 269 176 386 357
aialo 646 610 A68 282 258 167 367 330
ainio 998 301 A8S 302 255 168 412 376
air1o 960 497 492 306 253 166 414 404
Mecan 631 268 351 239 219 165 360 280

5. The problem of factor orientation

The problem of factor orientation in multidimensional item response
theory and factor analysis is that fit remains unchanged when both the scale
parameters and the factor scores are multiplied by -1. This property has
important implications for Bayesian MCMC estimation because several
chains of parameters run in parallel, and the different chains may be
oriented in different directions. Even more so, one single chain may change
its orientation along the MCMC simulations. If the chains have different
orientations, MCMC will not converge to the posterior distribution
irrespective of the chain’s length.

We have run 1000 iterations of the MCMC algorithm using the Stan
software with four chains in the model for the third simulation study. The
prior distribution for the scale parameters was uniform (-5, 5). Figure 1
shows the trace plot and the density plot of a;;. Two of the chains
converged to a positive estimate for a,;, whereas the factor was oriented in
the opposite direction for the other two chains, and the estimate of a,; was
negative. In fact, the problem was more serious than the figure suggests. If
some chains are oriented in one direction and the others in the opposite, this
could be detected a-posteriori and all chains rescaled in the same direction.
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However, it is harder to detect the problem and recode the results when
factor orientation changes within the same chain, so that there are parts of
the chains in which the factor is oriented one way and other parts in which
orientation is reversed.
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Figure 1. Trace plot and kernel density estimate of the realized values
of the scale parameter a,,. The true parameter value is 1. The sign of
the parameter is reversed across chains depending on the factor
orientation.

As these problems will not be corrected by increasing the length of
the chains, they have to be resolved a-priori by imposing appropriate
constraints on parameters before running the chains. Apparently, a simple
way to ensure that all chains have the same orientation is to set one slope to
1 (say a;; = 1) so that the fixed scale parameter sets the orientation of the
factor; then, the factor variance should be set free for the total number of
estimated parameters to remain unaltered. In theory, this should be enough
to fix factor orientation, but we have found in practice that this constraint is
too mild, and extensive computation time and chain lengths are necessary to
avoid factor orientation problems with this method.
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The solution we propose is to use a prior distribution that imposes that
scale parameters take positive values; for example, the log-normal one for
our example, or a less informative one, such as a uniform distribution in the
positive real line. It can be argued that this is not a realistic assumption for
practical applications in which the sign of scale parameters cannot be
determined beforehand. In that case, MCMC can be run in two stages. The
first step would be to run a pilot estimation with a single chain and, from
the output, determine a set of scale parameters that clearly converge toward
positive or negative values. The second step would be to run the definitive
MCMC simulation with several chains using ad-hoc prior distributions that
match the results of the pilot run. The scale parameters that converged to
values away from zero in the first simulation would have prior distributions
defined in the positive or negative real line for the second run. The scale
parameters that converged to values close to zero in the first run would have
prior distributions defined in the (complete) real line for the second run.

6. Conclusions

The purpose of this paper was to gather information about the
performance of new estimation methods (MHRM and HMC) in comparison
with the most habitual algorithms (MML-EM and MCMC) under latent
structures of different complexity. The results showed that the four
estimation methods perform similarly in recovering the parameters of
models up to five factors, whereas MML-EM had problems recovering
models with more dimensions.

As expected, less biased and more accurate estimates were found as
the sample size and the number of items that measure each dimension
increase. Recovery of intercept parameters was precise even in the
conditions with 500 simulees. However, estimation of scale parameters is
more demanding and is also influenced by the number of items per factors,
since scale parameters on a poorly defined factor can hardly be estimated
with precision. The same pattern of results was found for the estimation of
factor scores.

The four estimation methods can be classified in two groups,
simulation (MCMC and HMC) and analytic (MMLE-EM and MHRM).
Simulation methods provide samples from the posterior distribution of item
parameters, and analytic methods provide a point estimate. Moreover, HMC
and MHRM can be seen as recent improvements over the more traditional
methods, MCMC and MMLE-EM, on which they are based.
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Besides the precision of the estimation, estimation time was a crucial
criterion when choosing one estimation algorithm in practical applications,
as a large number of different models are typically estimated and compared.
In this respect, MHRM was by far the fastest estimation method, and within
the simulation methods, HMC was clearly better than MCMC. Regarding
the simulation methods, both MCMC and HMC algorithms yielded almost
identical solutions, working as well as the analytic methods in models of
different complexity and providing more accurate estimates of the item
parameters in complex models. However, HMC converged faster than
MCMC, and even faster than the EM algorithm in the small sample
conditions. HMC substantively reduced estimation time, taking from 1-2
hours to 20-50 minutes, depending on the sample size. Thus, the newer
methods, MHRM and HCM, constitute clear improvements over the
traditional ones. These results are congruent with those obtained by Han
and Paek (2014), who did not find significant differences between MML-
EM, MHRM, and MCMC -—among other methods and software— in
conditions of low and medium model complexity.

This paper has also researched the effect of the prior distributions on
recovery. There were negligible differences in recovery between low and
high informative prior distribution when using HMC, small differences
when using MCMC and HMC and large differences when using MML-EM
in combination with small samples. It should be taken into account that
many current studies with real data use smaller samples sizes than the
conditions with 500 simulees in this study. Hence, it is expected that the
differences between conditions will be more prominent in real applications.
Thus flat priors can be used in real applications to represent high
uncertainty about parameter values as long as one of the other estimation
methods is used instead of MML-EM.

One important problem regarding Bayesian simulation methods is the
factor orientation problem, which may impede convergence of the MCMC
chains and render biased parameter estimates. This problem was addressed
in this paper by using prior distributions defined only in the positive real
line. Prior distributions that allow positive and negative values for scale
parameters —such as the normal distribution— can entail convergence
problems between different chains, resulting in a bimodal posterior
distribution, with the two peaks representing the positive and negative
orientations of the factor. The mean of the bimodal posterior, which is the
simulated EAP estimate, will be close to zero, failing to recover the true
value of the scale parameter. The simulations show that this problem can
be solved by using a prior distribution defined only in the positive real line.
However, this solution assumes that the sign of the scale parameter is
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known beforehand, which is an unrealistic condition for practical
applications. The sign of the scale parameters can be determined in real data
analysis by conducting a pilot run for the estimation algorithm, although
this is clearly a topic for further research.

Recent methods supersede the traditional ones regarding estimation
time and accuracy. Results showed that simulation methods posed no real
advantage for obtaining a point estimate. However, it is important to take
into account that the purpose of the MCMC and HMC techniques was to
obtain an approximation to the posterior distributions of the parameters, not
only to obtain a point-wise estimator like the analytic methods. The utility
of Bayesian simulation methods could be achieved in connection with more
complex models (hierarchical factor structures, random item parameters,
etc.), to compute posterior variances and probability intervals, or for the
broader purpose of simulating the distribution of goodness-of-fit statistics,
which are not always computable without simulations. On balance, MHRM
seems the best alternative for the purposes of point estimation and to
overcome the curse of dimensionality implicit in multidimensional item
response and categorical factorial models.

RESUMEN

Estimacion Bayesiana de modelos multidimensionales de respuesta al
item. Una comparacion de algoritmos analiticos y de simulacién. El
presente estudio compara el rendimiento de dos algoritmos de estimacién de
reciente implementacién, Metropolis-Hastings Robins-Monro (MHRM) y
Hamiltonian MCMC (HMC), con dos algoritmos consolidados en la
literatura psicométrica, mdxima verosimilitud marginal a través del
algoritmo EM (MML-EM) y las cadenas de Markov de Monte Carlo
(MCMQO), en la estimacion de modelos multidimensionales de respuesta al
item de diferente complejidad. Para evaluar la recuperacién de pardmetros se
plantearon tres estudios de simulacién desde un acercamiento Bayesiano. El
primer estudio utiliza un modelo unidimensional sencillo para evaluar el
efecto de distribuciones previas informativas y no informativas. El segundo
estudio compara el algoritmo MHRM con MML-EM y MCMC en la
estimacién de un modelo de respuesta al item con un nimero moderado de
dimensiones correlacionadas. El tercer estudio evalia el desempefio de los
algoritmos MHRM, HMC, MML-EM y MCMC en la estimacién de un
modelo de respuesta al item de alta dimensionalidad. Los resultados ponen
de manifiesto que MML-EM pierde precision con modelos de alta
dimensionalidad mientras que los otros tres algoritmos recuperan los
pardmetros verdaderos con una precisién similar. Ademads, las principales
diferencias encontradas entre los algoritmos fueron: 1) MHRM tarda mucho
menos en estimar el modelo que el resto de algoritmos; 2) MHRM se
muestra mds preciso y menos afectado por las distribuciones previas en sus
estimaciones; y 3) las distribuciones previas para los pardmetros a en los
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algoritmos MCMC y HMC deben definirse con cuidado para evitar
problemas de orientacién de los factores. En resumen, los nuevos algoritmos
parecen superar las dificultades de los tradicionales, convergiendo mds
rapido y obteniendo resultados similares.

REFERENCES

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's
ability. Statistical theories of mental test scores, 395-479.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item
parameters: An application of the EM algorithm. Psychometrika, 46, 443—459.

Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-
Hastings Robbins-Monro algorithm. Psychometrika, 75, 33-57.

Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item
factor analysis. Journal of Educational and Behavioral Statistics, 35, 307-335.

Chalmers, P. (2012). mirt: A multidimensional item response theory package for the R
environment. Journal of Statistical Software, 48(6), 1-29.

Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-
order models of quality of life. Multivariate Behavioral Research, 41(2), 189-225.

Christofferson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5-
32.

Curtis, S. M. (2010). BUGS code for item response theory.Journal of Statistical
Software, 36(1), 1-34.

Diebolt, J. & Ip, E. H. S. (1996). Stochastic EM: Method and application. In W. R. Gilks,
S. Richardson & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice.
London: Chapman & Hall.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (1995). Bayesian data analysis. New
York: Chapman and Hall.

Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov chain Monte Carlo in
practice. London: Chapman and Hall.

Golay, P., Reverte, 1., Rossier, J., Favez, N., & Lecerf, T. (2013). Further insights on the
French WISC-IV factor structure through Bayesian structural equation modeling.
Psychological assessment, 25(2), 496-408.

Han, K. C. T., & Paek, I. (2014). A review of commercial software packages for
multidimensional IRT modeling. Applied Psychological Measurement, 38(8), 1-13.

Hoffman, M. D., & Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning
Research, 15(1), 1593-1623.

McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: a more
flexible representation of substantive theory. Psychological methods, 17(3), 313.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L.
Jones & X. L. Meng (Eds.), Handbook of Markov chain Monte Carlo. Boca Raon,
FL. CRC Press.

Ntzoufras, I. (2009). Bayesian modelling using WinBugs. New York: Wiley.



Multidimensional item response theory 35

Patrick, C. J., Hicks, B. M., Nichol, P. E., & Krueger, R. F. (2007). A bifactor approach to
modeling the structure of the psychopathy checklist-revised. Journal of personality
disorders, 21(2), 118.

Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov chain Monte
Carlo methods for item response models. Journal of Educational and Behavioral
Statistics, 24(2), 146-178.

Plummer, M. (2015). rjags: Bayesian graphical models using MCMC. Author. Retrieved
from http://cran.r-project.org/web/packages/rjags.

R Core Team (2015). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate
Behavioral Research,47(5), 667-696.

Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item
factor analysis by adaptive quadrature. Psychometrika, 70(3), 533-555.

Sinharay, S. (2010). How often do subscores have added value? Results from operational
and simulated data. Journal of Educational Measurement,47,150-174.

Stan Development Team. (2014-a). Stan modeling language users guide and reference
manual, Version 2.5.0.

Stan Development Team. (2014-b). Stan: A C++ Library for probability and sampling,
Version 2.5. Retrieved from: http://mc-stan.org.

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future
directions. Psychological Methods, 12(1),58-79.

Yung, Y .-F., Thissen, D. & McLeod, L. D. (1999). On the relationship between the higher-
order factor model and the hierarchical factor model. Psychometrika, 64, 113-128.

Zuckerman, M., & Gagne, M. (2003). The COPE revised: Proposing a 5-factor model of
coping strategies. Journal of Research in Personality, 37(3), 169-204.

(Manuscript received: 10 August 2015; accepted: 9 May 2016)



