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Multilevel models (MLMs) have proven themselves to be very useful in 
social science research, as data from a variety of sources is sampled such 
that individuals at level-1 are nested within clusters such as schools, 
hospitals, counseling centers, and business entities at level-2.  MLMs using 
restricted maximum likelihood estimation (REML) provide researchers with 
accurate estimates of parameters and standard errors at all levels of the data 
when the assumption of normality is met, and outliers are not present in the 
sample.  However, if outliers at either levels 1 or 2 occur, the parameter 
estimates and standard errors produced by REML can both be compromised.  
Two estimation approaches for use when outliers are present have been 
proposed recently in the literature.  Although the two methods, one based on 
ranks and the other on heavy tailed distributions of model errors, show 
promise, neither has heretofore been studied comprehensively across a wide 
variety of data conditions, nor have they been compared with one another.  
Thus, the purpose of the current study was to compare the rank and heavy 
tailed based estimation techniques with one another, and with REML, in 
terms of their ability to estimate level-1 fixed effects, under a variety of data 
conditions.  Results of the study revealed that the rank based and heavy 
tailed method provide less biased estimates than REML when outliers are 
present, and that the rank approaches yield smaller standard errors than the 
heavy tailed approach in the presence of outliers.  Implications of these 
results are discussed. 

 

 

Frequently in psychological and social science research, data are 
collected whereby individuals are sampled within clusters, such as schools, 
hospitals, therapists, states, or nations.  Standard statistical models (e.g. 
linear regression, logistic regression, and analysis of variance) do not 
properly account for the nested structure of such data, and can yield biased 
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parameter estimates, and incorrect standard errors (Bryk & Raudenbush, 
2001).  In order to address such problems, researchers must make use of 
multilevel models, which are designed to deal with this data structure by 
accounting for sources of variance in the dependent variable from the 
different levels (e.g. students and schools).  Such models have been shown 
to yield accurate parameter estimates and standard errors at each level of the 
data structure (Snijders & Bosker, 2012).  Given their great utility in many 
research contexts, these multilevel models have become increasingly 
popular in social science research, and are available in a variety of widely 
used software packages, such as R, HLM, SAS, SPSS, and Mplus.   

Although they have been shown to be quite useful, multilevel models 
are susceptible to outliers occurring at each level of the data, leading to 
parameter estimation bias and inflated standard errors (e.g. Kloke, McKean, 
& Rashid, 2009; Seltzer & Choi, 2003).  In turn, outliers occur frequently in 
social science research (Finch, 2012; Osborne & Overbay, 2008), and thus 
cannot be ignored.  The purpose of this simulation study was to examine the 
performance of two methods for dealing with outliers in the context of 
multilevel data, including an approach based on ranks, and another based on 
heavy tailed data distributions.  These alternatives to the standard maximum 
likelihood estimation of model parameters were selected for the current 
study because one of them (the heavy tailed method) has been suggested for 
use in a variety of contexts, including multilevel and latent variable models, 
whereas the other (rank based) is relatively new in the context of multilevel 
modeling.  In addition, these methods have not been compared with one 
another, nor has either been thoroughly studied with multilevel data under a 
variety of conditions.  It should be noted, however, that the heavy tailed 
approach has been the subject of several studies focused on latent variable 
and standard linear models.  Following is a brief description of multilevel 
models, and methods for estimating the parameters, including those based 
on ranks and heavy tails.  Next is a review of prior research on the 
performance of these methods, followed by a description of the goals of the 
current study, and the method used to address these goals.  The simulation 
results are then presented and discussed, including their implications for 
practice, as well as directions for future research. 

 
Multilevel models 
Multilevel models (MLMs), sometimes also referred to as mixed 

effects models, are used in the analysis of data in which individuals (level-
1) are nested within clusters (level-2), and the clusters could themselves be 
nested within higher order clusters (level-3). MLMs can also be used in the 
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case of longitudinal data, where measurements taken at different points in 
time are nested within the individuals on whom they were made.  In these 
situations, modeling of the dependent variable must account for the nested 
data structure in order to ensure that standard errors and model parameters 
are accurately estimated (Snijders & Bosker, 2012).  One of the most 
common such MLMs is the random intercept model linking an independent 
variable, x, with a dependent variable y, which takes the form: 

𝑦!" = 𝛽!! + 𝛽!𝑥!" + 𝜀!"     (1) 
where 

𝑦!" =Dependent variable value for individual i in cluster j 
𝛽!! =Intercept for cluster j 
𝛽! =Slope relating independent variable x to dependent variable y 
𝑥!" =Value of x for individual i in cluster j 
𝜀!" =Random error for individual i in cluster j 
 
In model (1), 𝛽!! can be expressed as 

𝛽!! = 𝛾!! + 𝑈!!     (2) 
where 

𝛾!! =Mean intercept across clusters 
𝑈!! =Unique effect of cluster j on the intercept  

 
The parameter 𝛾!! is a fixed effect, meaning that it takes the same 

value for all clusters, and it is estimated in a separate step.  On the other 
hand, 𝑈!! is a random effect that varies across clusters.  In the context of 
students nested within schools, this would mean that model intercepts 
would differ across schools, with part of the intercept including a common 
component across schools (𝛾!!), as well as a component unique to the 
individual school (𝑈!!).  In model (1), 𝛽! is a fixed effect meaning that it is 
constant across clusters.  Again, in the school research context, this would 
mean that the relationship between the independent and dependent variables 
is the same for all schools.   It is also possible to fit a random coefficients 
model in which 𝛽! has both fixed and random components, just as we have 
here for 𝛽!!.  This random coefficients model would thus allow for differing 
relationships between the independent and dependent variables across 
schools.  The error term, 𝜀!", is a random effect and assumed to be normally 
and independently distributed across individuals with 𝜀!"~𝑁(𝟎,Λ!).  
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Likewise, 𝑈!!~𝑁(𝟎,Ψ), and is assumed to be independent across clusters.  
It should be noted that the assumption of normally distributed errors applies 
only to the maximum likelihood (ML) estimator, and not to the rank based 
approach that is described below. 

The model parameters in (1) and (2) are typically estimated by 
maximum likelihood (ML) or restricted ML (REML) estimation.  With 
regard to estimating the model parameters themselves ( 𝛽!, 𝛾!!), ML and 
REML provide essentially identical results.  However, they differ in terms 
of how the standard errors of these parameters are calculated.  Specifically, 
the degrees of freedom used in ML do not account for the fact that the 
parameters themselves are being estimated, leading to a negative bias in the 
standard error estimates (Kreft & de Leeuw, 1998).  In contrast, REML 
standard error estimates do use degrees of freedom that account for the 
estimation of the model parameters, thereby producing unbiased estimates 
(Snijders & Bosker, 2012; Lindstrom & Bates, 1988).  REML was used in 
the current study. 

 
Outliers and multilevel model parameter estimation 
When outliers are present in the data, REML and ML estimates can be 

adversely impacted (Pinheiro, Liu, and Wu, 2001).  In the context of MLM, 
outliers can occur at each level of the data.  So, for example, it is possible to 
have outliers among the individuals, and among the clusters within which 
the individuals are nested.  Prior work has shown that the presence of 
outliers has a detrimental impact particularly on the estimation of standard 
errors of parameters in the 2-level MLM (e.g. Kloke, et al., 2009; Pinheiro, 
et al., 2001).  A more thorough review of this prior research on the impact 
of outliers on each of several MLM estimation methods is presented below.  
At this point, it is important to note that outliers do lead to estimation 
problems for ML/REML based MLM estimation algorithms, and as such 
researchers have developed alternative estimators for when such outliers are 
present in the data.  These approaches can be considered in two broad 
categories of estimators, one based on nonparametric R estimators, and the 
other on multivariate heavy tailed distributions, such as the t, the Cauchy, or 
the slash distribution.  Following is a description of each of these two 
families of MLM estimators, followed by a description of the simulation 
study designed to compare their performance in estimating fixed effects 
parameters and their associated standard errors.  Results of the simulation 
study are then presented, and discussed in light of previous literature, with 
recommendations for practice. 
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Multilevel modeling using heavy tailed distributions 
There is a great deal of literature with respect to the fitting of models 

using data containing outlying observations.  Much of this work has focused 
on single level models, such as linear regression (see Fox, 2016 for a 
thorough discussion of dealing with outliers in the single level linear 
regression context).   One approach for handling outliers with multilevel 
models suggested by Lange, Little, and Taylor (1989) involves adjusting the 
distributions of error terms (e.g., 𝜀!" and 𝑈!!) from multivariate normal to a 
heavy tailed distribution such as the multivariate t with 𝜐 degrees of 
freedom.  Very simply, modeling the error terms using a heavy tailed 
distribution such as the multivariate t, rather than the multivariate normal 
which has lighter tails, better accommodates more extreme values (i.e. 
outliers).  The result of using such a distribution for errors should be more 
accurate parameter and standard error estimates (Lange, et al., 1989).  
Pinheiro, et al (2001) extended the work of Lange, et al (1989) by 
describing a ML algorithm for estimating the parameters in the model 
expressed in equations (1) and (2), using the multivariate t distribution.  A 
number of authors have considered the performance of models based on 
heavy tailed distributions, particularly in the context of latent variable and 
growth curve modeling, and found that when outliers are present, such 
approaches yielded more accurate parameter estimates and smaller standard 
errors than did standard ML based methods assuming normally distributed 
errors (Tong & Zhang, 2012; Song, Zhang, & Qu, 2007; Yuan, Bentler, & 
Chan, 2004; Yuan & Bentler, 1998).   

In order to discuss the multivariate t distribution approach to fitting 
the MLM, we will first express Model (1) equivalently as: 

𝑦! ,𝑈!! ~𝑁
𝑿𝒊𝜷
0 ,

𝒁!𝚿𝒁𝒋! + 𝚲! 𝒁!𝚿
𝚿𝒁!! 𝚿   (3) 

where 
𝜷 =Vector of fixed effects 
𝚲! =Level-1 covariance matrix 
𝚿 =Level-2 covariance matrix 
𝑿! =Design matrix for the fixed effects 
𝒁! =Design matrix for the Level-2 random effects 
 
Pinheiro, et al. (2001) show that using the work of Lange, et al. 

(1989), the model in (3) can be rewritten as: 
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𝑦! ,𝑈!! ~𝑡
𝑿!𝜷
0 ,

𝒁!𝚿𝒁!! + 𝚲𝒋 𝒁!𝚿
𝚿𝒁𝒋! 𝚿 , 𝑣   (4) 

where 
𝑣 =Degrees of freedom for the t distribution. 

 
Pinheiro, et al. (2001) also show that given equation (4), the dependent 

variable, y, follows the t distribution with v degrees of freedom, as do the 
Level-1 and Level-2 error terms, 𝜀!" and 𝑈!!.  Therefore, according to the 
properties of the t distribution, the variances of both 𝜀!" and 𝑈!! are a 
function of the degrees of freedom, leading to a different interpretation of 
these random effects than would be the case for the standard MLM 
assuming normality (Pinheiro, et al., 2001). 

Estimation of the parameters in (4) can be done using the 
Expectation-Maximization (EM) algorithm, details of which are described 
in Pinheiro, et al (2001).  In addition, the distributions of the error terms can 
be extended beyond the t with v degrees of freedom to include the Cauchy 
(Hogg & Tanis, 1996), and the Slash (Rogers & Tukey, 1972), both of 
which are also heavy tailed, and therefore may be useful in accounting for 
the presence of outliers in the data.   Very briefly, the Cauchy distribution 
has unknown mean and variance, but defined median and mode.  It is 
symmetric in form, with heavier tails than the normal distribution.  The 
slash distribution is defined as the ratio of the normal (0,1) and uniform 
(0,1) distributions, and has been suggested for use in robust parameter 
estimation (e.g. Wang & Genton, 2006).   Either of these distributions can 
be integrated it into estimation of MLMs using equation (4), where the t 
distribution is replaced by the Cauchy or the Slash.  For the t and Slash 
distributions, when v is unknown, as is most often the case, the EM 
algorithm used to estimate the model parameters includes an additional step 
in which the degrees of freedom are estimated as well.  The Cauchy 
distribution does not have a degree of freedom parameter, and thus no 
estimation for this value is needed when it is used.  The logic underlying all 
of these approaches to parameter estimation when outliers are present is that 
the heavier tailed distributions can better accommodate outliers than can the 
normal, resulting in lower parameter estimation bias and smaller standard 
errors (Welsh & Richardson, 1997).  

 
Rank based methods for handling outliers 
A second alternative to ML/REML for dealing with outliers in the 

context of multilevel models is based on a joint rank estimator (JR), and 
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was described in detail by Kloke, McKean, and Rashid (2009).  With this 
method, the raw scores of the dependent variable are replaced with their 
ranks based on a nondecreasing score function, such as the Wilcoxon 
(Wilcoxon, 1945).   It should be noted that while Kloke and McKean (2014) 
recommend the Wilcoxon score when no assumptions about the distribution 
of the raw scores of the dependent variable can be made, other scores are 
available.  A method for identifying the optimal score function for a given 
type of data was described by Hogg (1974).  Using this approach, other 
potential scores (e.g. the sign score) could be identified as optimal for a 
given data situation, such as heavy tailed or heavily skewed distributions.  
Assuming the same marginal distributions of 𝜀!" across level-2 units, 
estimation of the fixed effects (𝛽!, 𝛾!!) in model (1) is done using Jaekel’s 
(1972) dispersion function: 

𝛽! = 𝐴𝑟𝑔𝑚𝑖𝑛 𝑌 − 𝑿𝜷
!

    (5) 

where 
𝑌 =Dependent variable  
𝑿 =Matrix of independent variable values 
𝜷 =Matrix of estimates of the fixed effects for the model 
𝑌 − 𝑿𝜷

!
= 𝑅 𝑦!" − 𝑦!" 𝑦!" − 𝑦!"!

!!!   

R denotes the rank 
𝑦!" =Dependent variable value for individual i in cluster j 
𝑦!" =Model based predicted dependent variable value for individual i 
in cluster j  

 
In other words, the estimates of model parameters in (1) are based on 

minimizing the ranks of the residuals between the observed and predicted 
values of the dependent variable.   

Kloke, et al (2009) described two approaches for estimating standard 
errors for the fixed effects.  The first of these was based on an assumption 
that the within cluster errors were compound symmetric; i.e. a common 
covariance exists between any pair of observations.  As Kloke, et al. (2009) 
noted, a primary advantage of this compound symmetric standard error 
estimate for the JR estimator (JR_CS) is that it is computationally very 
efficient, requiring estimation of only one additional parameter, the 
common covariance between item pairs.  However, it does rely on the very 
strong assumption of exchangeability of error terms, which may frequently 
not hold in actual practice.  Thus, Kloke and McKean (2013) proposed an 
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alternative method for calculating standard errors based on the well-known 
sandwich estimator approach (JR_SE).  The primary advantage of JR_SE is 
that it does not require any additional assumptions about the data beyond 
those of ML/REML, unlike JR_CS.  Kloke and McKean (2013) conducted a 
simulation study comparing the performance of JR_CS and JR_SE, and 
found that JR_SE worked well for larger sample sizes (e.g. greater than or 
equal to 50 level-2 units).  However, for situations with fewer level-2 units, 
JR_SE yielded somewhat larger standard error estimates than JR_CS, 
thereby leading to more conservative inference with regard to the statistical 
significance of the parameter estimates.   On the other hand, Kloke and 
McKean (2013) also found that when the exchangeability assumption was 
violated, JR_CS standard error estimates were inflated.  The final 
recommendation from the Kloke and McKean paper was that JR_SE should 
be used as the default, but that when the level-2 sample size is small, 
researchers should consider using the JR_CS estimator, unless they know 
that the exchangeability assumption has been violated.  Given this pattern of 
mixed results, both approaches for estimating standard errors were used in 
the current study.   

 
Prior research on alternatives for MLM estimation with outliers 
There has been relatively little in the way of empirical simulation 

research examining the performance of either the heavy tailed or the rank 
based methods with MLMs, with no work comparing these approaches to 
one another.  As noted above, research has examined performance of the 
heavy tailed method with outliers in the context of latent variable and single 
level models, and found that they work well under many conditions in these 
contexts.  With respect to MLMs, Pinheiro, et al. (2001) conducted a 
simulation study comparing the heavy tailed approach using the t 
distribution with v estimated by the EM algorithm with REML. The 
researchers manipulated a variety of factors including magnitude of the 
outlier at both levels 1 and 2, and the proportion of data at each level that 
were outliers.  The results of the study demonstrated that for data with 
outliers, the heavy tailed t approach provided more accurate model 
parameter estimates than did the normal based method, particularly for a 
greater magnitude of contamination.  As with the heavy tailed methods, 
some simulation work has been conducted comparing the performance of 
the rank based MLM estimators with REML (Kloke, et al., 2009).  In this 
study, outliers were simulated at level-1 only, with one set of conditions for 
magnitude of the outlier effect, and percent of observations simulated to be 
outliers.  The results of this study demonstrated that when no outliers were 
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present, REML produced somewhat more efficient estimates than did the 
rank approach. However, in the presence of outliers this pattern was 
reversed, with the rank based estimates being much more efficient than 
those yielded by REML. Coverage rates for both methods over all 
simulation conditions were essentially at the nominal 95% level. As 
discussed above briefly, in a second simulation study designed to compare 
the compound symmetry (JR_CS) and sandwich estimator (JR_SE) 
methods for estimating standard errors of the rank based estimators, Kloke 
and McKean (2013) found that the two estimators produced similar results 
under many conditions.  However, for larger Level-2 sample sizes, JR_SE 
yielded somewhat more accurate Type I error and power results than did 
JR_CS.  For this reason, they concluded that researchers are essentially 
always safe using JR_SE, but may not always be so with JR_CS, depending 
upon the sample size (Kloke & McKean, 2013).  Interested readers are 
encouraged to review Pinheiro, et al. (2001), Kloke, et al., (2009), and 
Kloke and McKean, (2013) for details of the simulation study designs used. 

 
Study goals 
The purpose of this study was to investigate and compare the 

performance of heavy tailed and rank based methods for handling outliers at 
both levels 1 and 2 in a multilevel data context.  The heavy tailed estimation 
procedure was selected for inclusion in this study because it has been shown 
to be effective for dealing with outliers, particularly in the context of latent 
variable models.  It should be noted that some of this earlier research has 
shown that when no outliers are present in the data, the standard errors of 
heavy tailed estimates tended to be larger than those of the REML based 
estimates (Pinheiro, 2001).  The rank based methods for parameter 
estimation in the context of MLMs are much newer, and have not been 
investigated over a wide range of conditions.  In addition, prior research in 
this area has involved relatively small simulation studies comparing only 
one of the alternatives to the standard REML estimation approach (e.g. 
Tong & Zhang, 2012; Kloke, et al., 2009; Pinheiro, et al, 2001; 
Staudenmayer, Lake & Wand, 2009), but not comparing them all with one 
another, nor examining them under a variety of conditions with respect to 
sample size, and type and magnitude of outliers.  Given the combination of 
their promise with the need for direct comparisons of the methods under a 
wider array of conditions, the current study adds four new pieces to the 
existing literature:  (1) It simultaneously compared the impact of outliers on 
fixed effects estimation for the rank based, heavy tailed, and REML 
estimation methods, which has not been done heretofore, (2) It included a 
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wider array of simulation conditions than was the case in previous research, 
(3) It examined the impact of level-2 outliers on level-1 fixed effect 
parameter estimation, which was not done with the heavy tailed methods in 
prior research, and which was done with the rank based methods for just a 
small number of conditions, and (4) It included two additional heavy tailed 
estimation approaches that haven’t been studied before (Cauchy and Slash), 
and examined standard error estimates for all of the methods, which hadn’t 
been done previously for the heavy tailed estimators. 

Results of prior research provide some information that can be used in 
constructing hypotheses about outcomes in the present study.  First of all, 
given results in Pinheiro, et al. (2001) and Kloke, et al. (2009), it was 
anticipated that in the presence of outliers, the rank and heavy tailed 
estimation techniques would provide less biased estimates of fixed effects 
than would the standard REML based approach.  Furthermore, it was 
hypothesized that a greater magnitude of outliers would affect all of the 
methods deleteriously, but REML the most.  In addition, it was expected 
that for smaller sample sizes JR_SE would produce somewhat larger 
standard error estimates than JR_CS, but that with larger samples this 
difference would be diminished.  Finally, it was not clear what results to 
expect in regards to the comparative performance of the rank and heavy 
tailed estimators, given that they have not been compared with one another 
previously, and both have performed better than REML with outliers. 

METHODS 
A Monte Carlo simulation with 1000 replications per combination of 

conditions was used to address the study goals outlined above.  A total of 
288 different combinations of simulation conditions (described below) were 
used, leading to 288,000 replications for each of the estimation methods 
included in the study.  Data were generated and analyzed using the R 
software package, version 3.02 (R Core Development Team, 2015) for a 
two level model with equal numbers of level-1 units within each level-2 
unit.  The data generating model was based on equations (6) and (7): 

𝑦!" = 𝛽!! + 𝛽!𝑥!!" + 𝛽!𝑥!!" + 𝜀!"   (6) 
𝛽!! = 𝛾!! + 𝑈!!     (7) 

where 
𝛾!! =1 

𝜀!"~𝑁 0,𝜎!!"
!   
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𝑈!!~𝑁 0,𝜎!!!
!   

𝑥!!"~𝑁 0,1   
𝑥!!"~𝑁 0,1   
𝛽! =1 
𝛽! = 0.5  
 
The variables 𝑥!  and 𝑥! were simulated to have a correlation of 0.5. 
Focus on this study was on the estimation of the fixed effects 𝛾!!, 𝛽!, 

and 𝛽!. This focus was of primary interest for two reasons. First, in practice, 
researchers are most frequently interested in the fixed effects when 
interpreting results from multilevel modeling, as they want to know which 
of the independent variables are associated with the dependent variable.  
Second, as noted by Pinheiro, et al. (2001) the random effects obtained from 
the heavy tailed methods are not directly comparable to those obtained 
using REML, and thus do not lend themselves to comparison in the 
simulation context.  This does not mean that random effect estimation is not 
an important issue, but rather only that the current study focused on fixed 
effects estimation for ease of interpretation, and comparison of the methods 
with one another.  In addition, the data generating model did not include 
random effects for 𝛽!  or 𝛽!.  The decision was made to simulate them only 
as fixed effects simply to keep the scope of the study manageable.  It is 
definitely of interest to examine estimation of these parameters when their 
values can vary across clusters, and future research should do so.  However, 
given the fairly large number of conditions that were manipulated in the 
study, and the fact that the heavy tailed and rank based methods have not 
been previously compared with one another, it was felt that generating 𝛽!  
and 𝛽! as fixed effects was best in this case.  Other study conditions were 
manipulated as described below. 

 
Level-1 and Level-2 sample size 
Level-1 sample sizes (N1) were 5, 15, 25, or 50 within each level-2 

unit.  Level-2 sample sizes (N2) were 5, 15, 25, and 50 units as well, leading 
to total samples sizes ranging from 25 to 2500.  These values were selected 
to represent a range from very small to fairly large samples, and are 
representative of values that have been seen in practice, and in prior 
simulation studies (e.g. Hastings, Helm, Mills, Serbin, Stack, & 
Schwartzman, 2015; Qian, Ticha, Larson, Stancliffe, & Wuorio, 2015; 
Simons, Wills, & Neal, 2014;  Kloke, et al, 2009; Pinheiro, et al., 2001).  In 
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addition, Maas and Hox (2005) reported that with N2 as small as 20, 
estimates for the fixed effects will be accurate for REML estimates.  Thus, 
values for N2 above and below 20 were selected in order to assess the 
performance of the heavy tailed and rank based methods, which have not 
been as thoroughly investigated as has ML/REML. 

 
Intraclass correlation 
The unconditional intraclass correlation (ICC) reflects the strength of 

relationship of dependent variable values for individuals within the same 
level-2 unit, and was manipulated to be 0.1 and 0.25.  These values have 
been used in prior simulation studies (e.g. French & Finch, 2012), and 
represent a range of values seen in practice with respect to clusters of 
individuals (e.g. Kivlighan, Coco, & Gullo, 2015; Thompson, Fernald, & 
Mold, 2012; Hedges & Hedberg, 2007).  The ICC values are obtained 
through manipulation of 𝜎!!"

!  and 𝜎!!!
! . 

 
Percentage and Magnitude of outlying observations 
Outliers were simulated at level-1 and level-2 by manipulating the 

variance of the error terms, 𝜀!" and 𝑈!!, respectively.  To simulate level-
1outliers, 0%, 10%, and 20% of observations was generated such that 
𝜀!"~𝑁 0,𝜎! , where 𝜎! took the values 5, 10, 25, and 50 times larger than 
𝜎! for the other level-1 units.  Similarly, for level-2 outliers, 0%, 10%, and 
20% of the data was generated with 𝑈!"~𝑁 0,𝜎! , where 𝜎! also took the 
values 5, 10, 25, and 50 larger than 𝜎! for the other level-2 units.  These 
variance values were taken from prior resarch using similar methods and 
magnitudes for generating outliers in multilevel models (e.g. Kloke, et 
al.2009; Pinheiro, et al., 2001).  In addition, there was a set of simulations 
for which no outliers were present.  When outliers were simulated to be 
present, the level-1 and level-2 conditions were not crossed with one 
another.  This decision to examine the two types of outliers separately was 
made because the focus of this study was on studying the impact of Level-1 
and Level-2 outliers, respectively, and as Pinheiro, et al. (2001) noted, the 
two types of outliers can be difficult to disentangle from one another when 
they appear together.  In addition, a small number of simulations were 
conducted in which both level-1 and level-2 outliers were simulated to be 
present simultaneously.  The results were generally similar to those for the 
level-1 outliers, which are presented below.  Therefore, it was felt that 
including results for the Level-1 and Level-2 outliers together would be 
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somewhat redundant with the level-1 outlier results, and would 
unnecessarily lengthen the manuscript. 

 
Model parameter estimation methods 
The parameter estimation methods used in this study included REML 

with the R lmer package.  The maximum number of iterations for REML 
estimation was set at 100, with a tolerance value of 1e-6.  Across all 
simulation conditions in the current study, REML converged for all 
replications.  Rank based estimation using both JR_CS and JR_SE standard 
error estimation was conducted with the R jrfit package (Kloke & 
McKean, 2013).  Estimation using heavy tailed distributions was done using 
the heavy package in R.  For the heavy tailed approaches, Student’s t with 
degrees of freedom estimated by the EM algorithm, the Cauchy distribution, 
and the Slash distribution with degrees of freedom estimated by the EM 
algorithm were all used.  The maximum number of iterations for each 
distribution was set at the default of 4000, with tolerance of 1e-6.  As was 
true of both REML and the rank based methods, the convergence rate was 
100% across all replications under all simulation conditions.  Finally, 
outliers were also identified using studentized residuals (e.g. Fox, 2016) for 
the level-1 observations.  For each simulated data point, the studentized 
residuals based on the REML estimated model were calculated, and 
individuals with absolute values greater than or equal to 2 were removed, 
after which the model was estimated again using REML.  This aspect of the 
simulation study was included to represent the practice whereby a 
researcher would attempt to identify and then remove any outlying 
observations.  The R package HLMdiag was used in conjunction with lmer 
to identify the outliers, and lmer was used to estimate the model after the 
outliers were removed.  

 
Study outcomes 
One primary study outcome was absolute estimation bias for the fixed 

effects 𝛾!!, 𝛽!, and 𝛽!, which was calculated for each parameter at each 
replication as: 

|𝜃 − 𝜃|    (8) 
where 

𝜃 =Data generating value at each replication 
𝜃 =Model estimated value at each replication 
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A second study outcome of interest was the empirical standard error, 
which was calculated as the standard deviation of the parameter estimates 
across the 1000 replications for each combination of conditions.  The final 
outcome to be examined in this study were the 95% coverage rates for 𝛾!!, 
𝛽!, and 𝛽!.  For each simulation replication, the 95% confidence interval 
was calculated for each of the model parameter estimates, after which it was 
determined whether the data generating value was within the interval.  The 
coverage rates were then calculated as the proportion of replications for 
which the data generating value was within the 95% confidence interval.  In 
order to ascertain which of the manipulated factors and their interactions 
contributed most to parameter estimation bias, analysis of variance 
(ANOVA) was used, in conjunction with the 𝜂! effect size.  The ANOVA 
models treated estimation bias of the model parameters as the dependent 
variable, and the manipulated study factors and their interactions as the 
independent variables.  The purpose behind using the ANOVA in this case 
was to identify the main effects and interactions of the factors manipulated 
in the simulation study that were associated with parameter estimation bias.   
In this way, the factors and interactions that were not identified as 
statistically significant using the ANOVA could be ignored, so that focus 
would only be on those that actually influenced estimation bias.  Results in 
the tables are described only for those main effects and interactions that 
were identified as statistically significantly related to absolute bias, and 
were averaged across those main effects and interactions that were not 
identified by ANOVA as being related to bias.  The effect size value was 
also included in the reporting of results in order to provide some 
information regarding the relative magnitude of the effect of the significant 
manipulated factors and interactions on estimation bias.  Use of inferential 
techniques such as ANOVA in Monte Carlo simulation research has been 
suggested for this purpose of highlighting only those main effects and 
interactions that are related to the outcome variables of interest (e.g., 
Paxton, Curran, Bollen, Kirby, & Chen, 2001).  

RESULTS  
No outliers 
ANOVA results showed that when there were no outliers present (0% 

contamination) in the population, the interaction of ICC by method of 
estimation was significantly related to the estimation bias for 𝛾!! 
(𝐹!,!" = 5.883,𝑝 = 0.037, 𝜂! = 0.455).  With regard to estimation bias for 
𝛽!, only the main effect of method was statistically significant (𝐹!,!" =
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7.503,𝑝 = 0.023, 𝜂! = 0.482), and none of the manipulated factors were 
significantly related to estimation bias for 𝛽!. Table 1 includes the 
estimation bias, standard error, and coverage rates for 𝛾!! by estimation 
method and ICC, averaged across the other study variables.  Regardless of 
ICC, the heavy tailed methods yielded the lowest rates of bias among the 
approaches studied here. Mean bias for REML, and the rank based 
approaches was greater with a higher ICC, but never exceeded 0.01 in 
absolute value.  The greatest estimation bias was associated with removal of 
the outliers after identifying them using the studentized residuals.  REML 
yielded the lowest standard errors, with the rank based methods being the 
next lowest.  The standard errors for the heavy tailed methods were larger 
than for either the rank or REML methods, and were larger for a higher 
ICC.  Finally, coverage rates for all of the methods were essentially at or 
above the nominal 0.95 level, regardless of ICC. 

 
 

Table 1:  𝜸𝟎𝟎 Absolute Estimation Bias, Standard Error, and Coverage 
Rates by ICC and Method, with no Outliers Present 
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The top panel of Table 2 contains the estimation bias, standard error, 
and coverage rates for 𝛽! by method, averaged across the other study 
variables. As was true for  𝛾!!, bias was very low for all of the methods 
when no outliers were present in the data with the exception of the outlier 
removal approach. The smallest standard errors were associated with 
REML and REML after the outliers were removed, followed by the two 
rank based estimation methods, with the largest standard errors produced by 
the heavy tailed approaches.  The coverage rates for all of the methods were 
at or above the nominal 0.95 level, with the exception of when outliers were 
removed. The bottom panel of Table 2 reflects estimation bias, standard 
errors, and coverage rates for 𝛽! by method.  The ANOVA did not find any 
statistically significant effects with regard to estimation bias, and the bias 
levels are essentially identical by method.  As was evident with 𝛾!! and 𝛽!, 
the standard errors were smallest for the rank based methods, and largest for 
the heavy tailed approaches, though the differences among them was 
relatively small in magnitude.  Coverage rates for all of the methods were at 
or above the nominal 0.95 level. 

 
Table 2:  𝜷𝟏 and 𝜷𝟐 Absolute Estimation Bias, Standard Error, and 
Coverage Rates by Method, with no Outliers Present 
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Level-1 outliers:  Estimation of 𝛄𝟎𝟎 
ANOVA revealed that when level-1 outliers were present, the 

interaction of method by level-2 sample size by magnitude of contamination 
was significantly related to 𝛾!! estimation bias (𝐹!",!" = 1.554,𝑝 =
0.02, 𝜂! = 0.154), as was the main effect of percentage of outlying 
observations (𝐹!,! = 6.533,𝑝 = 0.022, 𝜂! = 0.140). Table 3 includes 
absolute estimation bias and standard errors for 𝛾!! by estimation method, 
Level-2 sample size (N2), and amount of contamination in the Level-1 error 
term (C1), averaged across the other study variabes.  For REML and the 
heavy tailed methods, 𝛾!! estimation bias was most strongly influenced by 
C1 when the N2 was 5, and as N2 increased in size, this effect was 
diminished.  On the other hand, bias for the rank based methods was 
generally not influenced by C1, regardless of N2.  For the heavy tailed 
methods, absolute estimation bias increased concomitantly with great C1 
contamination for N2 of 5 in roughly equal magnitudes for the three 
distributions.  On the other hand, for larger N2 values, the relationship 
between C1 and bias was much more muted for the heavy tailed methods, 
though for the largest levels of contamination their bias results were greater 
than those of the rank based methods.  Removing outliers generally resulted 
in more biased estimates of 𝛾!! than did the other methods, with the 
exception of for N2 values of 5 and C1 values of 25 and 50, in which case it 
yielded less biased results than REML or the heavy tailed methods.  

In terms of the 𝛾!! standard error (values in parentheses in Table 3), 
the rank based approaches uniformly had the lowest values across all levels 
of C1 and N2, with JR_CS yielding somewhat lower values than JR_SE.  In 
addition, the magnitude of C1 had very little influence on the standard error 
estimates of JR_CS and JR_SE, except when N2 was 5, in which case 
greater C1 led to larger standard errors.  The removal of outliers resulted in 
the next lowest standard error values, after the rank based methods.  On the 
other hand, standard errors for REML were larger for larger values of C1 
across all levels of N2, though this effect did diminish with larger values of 
N2.  The 𝛾!!standard errors estimates were largest for the heavy tailed 
methods, across simulated conditions.  In addition, they appear to have been 
most strongly impacted by the magnitude of C1, particularly for smaller N2 
values.   

Finally, coverage rates for 𝛾!! by N2, C1, and method, averaged across 
the other study variables, appear in Table 4. Across all conditions, the heavy 
tailed methods had coverage rates near 1.00, which is likely due in part to 
the large standard errors described above.  Coverage rates for REML and 
the outlier removal approach were at or above the nominal 0.95 level, 
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except for C1 of 5 in conjunction with N2 of 5 or 15.  JR_CS and JR_SE 
yielded 𝛾!! coverage rates below 0.95 only when C1 was 5 and N2 was 5.   

 
 

Table 3:  𝜸𝟎𝟎 Absolute Estimation Bias (Standard Error) by Level-2 
Sample Size, Level-1 Contamination Magnitude, and Method:  Level-1 
Outliers 

 
 
 
The top half of Table 5 includes absolute estimation bias, standard 

error estimates, and coverage rates for 𝛾!! by method of estimation and 
percent of outlying observations, averaged across the other study variables.  
For all methods, bias and standard error estimates were larger when a higher 
percent of observations were contaminated with outliers.  Bias was least for 
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the rank based estimation method, and greatest for outlier removal, 
followed by REML, with 20% outliers.  Coverage rates for all of the 
methods were at or above the nominal 0.95 level. 

 
 

Table 4:  𝜸𝟎𝟎 Coverage Rates by Level-2 Sample Size, Level-1 
Contamination Magnitude, and Method:  Level-1 Outliers 
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Table 5:  𝜸𝟎𝟎 and 𝜷𝟏 Absolute Estimation Bias (Standard Error), and 
Coverage Rates by Percentage of Outlying Observations and Method of 
Parameter Estimation: Level 1 Outliers  
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Level-1 outliers:  Estimation of 𝛃𝟏 
As was the case with 𝛾!!, in the presence of level-1 outliers, the 

highest order statistically significant term in the ANOVA with respect to 
absolute estimation bias was the interaction of N2 by C1 by estimation 
method (𝐹!",!" = 1.845,𝑝 = 0.001, 𝜂! = 0.177). In addition, the main 
effect of percent of outlying observations was also statistically significantly 
related to estimation bias for 𝛽! (𝐹!,! = 7.904,𝑝 = 0.013, 𝜂! = 0.190). It 
should be noted that the absolute estimation bias, standard errors, and 
coverage rate results for 𝛽! in the presence of Level-1 outliers were very 
similar in magnitude and pattern to those for 𝛽!.  Therefore, in order to 
reduce redundancy in presentation, only results for 𝛽! are presented here. 

The 𝛽! absolute estimation bias and standard errors by method, N2, 
and C1 appear in Table 6, averaged across the other study variables.  The 
pattern of absolute estimation bias of 𝛽! was very similar to that for 𝛾!! in 
that for all estimation methods, bias was more extreme for small N2 and 
large C1 values.  However, the interaction between these two factors was 
much less marked for the rank based approach, for which bias was smaller 
than for REML and the heavy tailed techniques when C1 was 25 and 50, 
across N2 sizes.  In addition, for N2 of 5, the increase in bias concomitant 
with increases in C1 magnitudes was greatest for REML, followed by the 
heavy tailed techniques and outlier removal, and lowest for the rank based 
methods.   

Standard errors of 𝛽! estimates appear in parentheses in Table 6.  
Across conditions, the heavy tailed methods yielded the largest standard 
errors, and the outlier removal and rank based methods yielded the smallest, 
with estimates from JR_CS being somewhat smaller than those produced by 
JR_SE.  The difference in standard error estimates across methods was 
greater for smaller N2 values.  The REML standard error estimates fell in 
between the rank and heavy tailed methods for all conditions, and were 
closer to those of the former than the latter, particularly for small C1 values.  
Coverage rates for  𝛽! by N2, C1, and estimation method, averaged across 
the other study variables, appear in Table 7.  Coverage rates for the heavy 
tailed methods were uniformly at or above the nominal 0.95 level, and quite 
often at 1.00, which was not unexpected given the larger standard errors for 
these methods across most conditions simulated here.  For both REML and 
the rank based methods, coverage rates were at or above the nominal level 
except for C1 of 5 and N2 values of 5 and 15.  

 Absolute bias, standard error estimates, and coverage rates for 𝛽! by 
method and percent of outlying observations appear in the bottom panel of 
Table 5.  As was the case for 𝛾!!, the absolute bias and standard errors were 
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larger for 20% outlier contamination than for 10%.  Bias was smallest for 
the rank based methods, and largest for outlier removal, followed by REML 
across percent of outliers present.  Coverage rates for 𝛽! were at or above 
the nominal 0.95 level for all of the methods. 

 
 

Table 6:  𝜷𝟏 Absolute Estimation Bias (Standard Error) by Level-2 
Sample Size, Level-1 Contamination Magnitude, and Method:  Level-1 
Outliers 
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Table 7: 𝜷𝟏 Coverage Rates by Level-2 Sample Size, Level-1 
Contamination Magnitude, and Method:  Level-1 Outliers 
 

 
 
 
Level-2 outliers:  Estimation of 𝛄𝟎𝟎 
ANOVA results indicated that when Level-2 outliers were present in 

the population, the interaction of method by Level-1 sample size (N1) by the 
magnitude of Level-2 outlier contamination (C2) was significantly related to 
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𝛾!! absolute estimation bias (𝐹!",!" = 1.455,𝑝 = 0.033, 𝜂! = 0.133), as 
was the main effect of percent of outlying observations (𝐹!,! = 5.888,𝑝 =
0.028, 𝜂! = 0.165).  Table 8 contains absolute estimation bias and standard 
errors for 𝛾!!, averaged across the other study variables.  When C2 was 5, 
the least absolute estimation bias was present for the heavy tailed 
approaches, across levels of N1, whereas the greatest bias was associated 
with the outlier removal approach.  For N1 of 5 and C2 of 25 or 50, the 
outlier removal approach was not able to yield estimates at all, due to a lack 
of convergence for the model estimator.  In addition, the increase in bias 
concomitant with increases in C2 was greater for REML than for the other 
methods.  The rank based approach yielded lower bias than the heavy tailed 
when C2 was 25 or 50, except when N1 was 5, in which case they were 
comparable to one another.  On the other hand, for lower outlier 
contamination the heavy tailed methods generally yielded less biased 
estimates than the rank based approach.   

 Standard errors for 𝛾!! appear in Table 8 in parentheses.  As was 
true with level-1 outliers, standard errors were largest for the heavy tailed 
methods, and smallest for the rank based techniques, in particular JR_CS, as 
well as the outlier removal approach.  For all estimators, standard errors 
increased concomitantly with increases in C2, and decreased with larger 
values of N1.  Coverage rates for 𝛾!! by estimator, N1 and C2 appear in 
Table 9, and show that for all estimators, except for outlier removal, 
coverage was at or above the nominal 0.95 level.  For the outlier removal 
approach, coverage was always below 0.95 for C2 of 5, and when C2 was 10 
and N1 was 5 or 15.  Likely due to their inflated standard errors, coverage 
for the heavy tailed estimators was very often 1.00 when Level-2 outliers 
were present. 

 The top panel of Table 10 displays absolute estimation bias, standard 
errors, and coverage rates for 𝛾!! by percent of outlying observations and 
estimation method, averaged across the other variables.  For all of the 
methods, greater absolute bias and larger standard errors were associated 
with a higher percentage of outliers in the data.  The rank based approaches 
yielded smaller standard errors than the other methods, and lower bias with 
20% outlier contamination.  The coverage rates for all of the methods were 
at or above the nominal 0.95 level, with those of the heavy tailed methods 
being near 1.00, likely because of the larger standard errors associated with 
these estimates. 
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Table 8:  𝜸𝟎𝟎 Absolute Estimation Bias (Standard Error) by Level-1 
Sample Size, Level-2 Contamination Magnitude, and Method:  Level-2 
Outliers 
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Table 9:  𝜸𝟎𝟎 Coverage Rates by Level-1 Sample Size, Level-2 
Contamination Magnitude, and Method 
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Table 10:  𝜸𝟎𝟎 and 𝜷𝟏 Absolute Estimation Bias (Standard Error), and 
Coverage Rates by Percentage of Outlying Observations and Method of 
Parameter Estimation: Level 2 Outliers  
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Level-2 outliers:  Estimation of 𝛃𝟏 
ANOVA revealed that the interaction of ICC by C2was statistically 

significantly related to absolute estimation bias of 𝛽! (𝐹!,!" = 1.699,𝑝 =
0.001, 𝜂! = 0.212), as was the main effect of percent of outlying 
observations (𝐹!,! = 7.002,𝑝 = 0.018, 𝜂! = 0.176).  Results for 𝛽! were 
very similar to those for 𝛽!, and therefore only results for 𝛽! are presented 
here in order to save space.  Estimation bias by ICC, C2, and estimation 
method appear in Table 11, averaged across the other variables.  Across 
estimation methods, 𝛽! absolute estimation bias was larger in the presence 
of higher C2 values.  In addition, bias was most pronounced for REML 
regardless of ICC and C2, and was comparable for the rank based and three 
heavy tailed estimation methods when the ICC was 0.10.  However, when 
the ICC was 0.25, bias for the rank estimators was lower than for the heavy 
tailed methods at the two largest C2 values.  Across most conditions, bias for 
the outlier removal approach was lower than that of REML, but greater than 
for the other methods studied here. 

Standard errors by ICC and C2 appear in parentheses in Table 11.  
JR_CS and the outlier removal approach yielded the lowest standard errors 
across all conditions, followed by JR_SE.  The largest standard errors were 
associated with the heavy tailed estimation methods, with the Cauchy 
producing somewhat smaller values than the other heavy tailed approaches.  
For all estimators, standard errors increased concomitantly with increases in 
C2.  Coverage rates for 𝛽! by ICC and C2 appear in Table 12, averaged 
across the other study variables.  For REML and the rank based methods, 𝛽! 
coverage rates were just below (0.93) to slightly above the nominal 0.95 
level, across values of the ICC and the C2 values.  The heavy tailed methods 
produced coverage rates above the 0.95 level, likely due to the larger 
standard errors associated with these methods.  Outlier removal led to the 
lowest coverage rates for C2 of 5, regardless of the ICC.   

The absolute bias, standard errors, and coverage rates for 𝛽! by the 
percentage of outlying observations and method of estimation for level-2 
outliers are presented in the bottom panel of Table 10.  As was true with 
other results presented above, the estimation bias and standard errors were 
larger for all methods with a larger percentage of outlying data, and 
coverage rates were at or above the nominal 0.95 level.  The rank based 
methods yielded slightly less biased estimates than did the heavy tailed 
approaches, and the REML estimates displayed the greatest bias.  
Removing outliers resulted in more biased estimates of 𝛽! than was the case 
for either the rank or heavy tailed methods, but less bias than for REML.  
The standard errors associated with the heavy tailed methods were the 
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largest across all conditions, with JR_CS producing the smallest standard 
error estimates.  

 
 

Table 11:  𝜷𝟏 Absolute Estimation Bias (Standard Error) by ICC, 
Level-2 Contamination Magnitude, and Method:  Level-2 Outliers 
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Table 12:  𝜷𝟏 Coverage Rates by ICC, Level-2 Contamination 
Magnitude, and Method 
 

 
 

DISCUSSION 
Outliers are a common feature in psychological research, including 

with multilevel models.  Their presence can lead to parameter estimation 
bias and inflated standard errors for level-1 fixed effects in multilevel 
modeling when the standard approaches such as REML are used (Kloke, et 
al., 2009).  The purpose of this study was to extend prior research in the 
area of robust methods for multilevel model parameter estimation by 
comparing two promising approaches with one another, and with the 
standard REML estimator, under a wider variety of conditions than has 
been done in prior work.  The results presented above lead to several 
conclusions regarding the fitting of multilevel models when outliers are 
present at either level 1 or level 2.  First, the rank based approaches will 
consistently yield level-1 fixed effects estimates that exhibit less bias than 
those produced by REML, if outliers are present in the data, under 
conditions similar to those simulated here.  When outliers are not present, 
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the rank based methods work as well as REML, producing estimates with 
little bias. The heavy tailed methods studied here also generally produce 
estimates of the level-1 fixed effects with less bias than REML estimates 
when outliers are present at either level and indeed, in many instances they 
exhibited less bias than did the rank based approach, as well.  On the other 
hand, the heavy tailed estimators were also characterized by much larger 
standard error estimates than the rank based methods.  These larger standard 
errors were in evidence across all simulated conditions, including when no 
outliers were present, but were most marked with greater levels of outlier 
contamination either in the form of a higher percentage of outliers, or when 
the magnitude of the outlying values was larger.  Among all of the methods, 
JR_CS had the lowest standard errors in most cases, followed by JR_SE.  
Regardless of any other conditions, all of the methods exhibited coverage 
rates at or above the nominal 0.95 level used here, except for the REML and 
rank based methods when the level of contamination  and the sample sizes 
were both small.  Removing outliers from the dataset generally appears to 
result in more biased estimates than using one of the alternative estimators, 
such as the rank or heavy tailed approaches.  In addition, when outliers 
appear at level-2, convergence of the estimators may not be possible when 
the level-1 sample size is small and contamination at level-2 is large. 

 One result of some interest is the pattern of somewhat larger 
standard errors for the heavy tailed than the rank based procedures, even 
though estimation bias is often quite similar. One possible explanation for 
this result is that, as noted by Pinheiro, et al. (2001), the estimation of 
asymptotic standard errors and confidence intervals for the fixed effects 
involves using MLE under the assumption that in the population the fixed 
effects follow a multivariate normal distribution, with variance equal to the 
Fisher information matrix of the marginal log-likelihood of the estimates.  
However, in the presence of outliers, this assumption may not be tenable, 
particularly as the magnitude of the outliers increases, resulting in a 
distortion of the distribution of the fixed effects.  While speculative at this 
point, this hypothesis does match with the results described above, in which 
the standard errors of the heavy tailed fixed effects estimates increased in 
value concomitantly with a greater magnitude of the outlying observations.  
Clearly more research into this question is needed.  In addition, the positive 
performance of the rank based methods in terms of both low bias and small 
standard errors, would suggest that by retaining the order of dependent 
variable values but not the relative magnitudes, ranking serves to greatly 
diminish the impact of outliers leading to low estimation bias, and relatively 
small standard errors. 
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Study limitations and directions for future research 
As with any study, the current work has limitations that must be 

acknowledged, and which should lead to future work in this area.  First, the 
conditions simulated here are a subset of all that could be examined.  In 
particular, only two ICC values were included in the simulation, as were 
only two levels for percent of contamination.  Future work should expand 
upon these in order to determine whether higher values of either would lead 
to substantive differences in the pattern of performance exhibited in this 
study.  Second, the focus of the current work was on estimation of fixed 
effects.  This decision was made both because researchers using multilevel 
models are most frequently interested in the fixed effects estimates, and 
because the methods examined here, particularly those based on ranks, do 
not produce readily reviewable output for the random effects.  Nonetheless, 
future work needs to include estimation of random effects because they are 
of substantive interest in some studies, so that researchers need to know 
both the impact of outliers on their estimation, and the relative performance 
of the robust approaches in estimating them.  In addition, estimation of 
level-2 fixed effects should also be undertaken in order to determine the 
impact of outliers on each of the estimation methods.  With regard to the 
standard errors of the heavy tailed estimators, it might be beneficial to 
explore other methods for estimating them, such as the bootstrap.  Given 
their inflated standard errors, coupled with the relatively low bias of the 
heavy tailed methods, an alternative standard error estimation technique 
might be of particular interest for these approaches, making them a more 
viable alternative for researchers to use in practice. Furthermore, future 
research should include an examination of parameter estimation for random 
slopes models.  Finally, while not viewed as a limitation, it is acknowledged 
that the larger outlier magnitude values (e.g. 25 and 50) do represent 
extreme cases.  They were included in the current study both because in 
some instances such extreme outliers may be present in the data, and also 
because a goal of this research was to determine how well the various 
methods performed at the bounds of what might be seen in practice.   

 
Conclusions 
Researchers using MLMs must be cognizant of estimation problems 

caused by outliers at levels-1 and 2.  It is hoped that this study will help 
them select appropriate methods for use when outliers are present with 
multilevel data, thereby leading to improved data analysis and more 
accurate results.  Based on these results, it appears that the rank based 
methods may hold great promise in this regard, yielding estimates that are 
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less biased than those produced by the standard REML approach in many 
instances, and no more biased than the heavy tailed alternatives.  Even 
when there are not outliers, the rank approach yields estimates that exhibit 
very little bias, and standard errors that are comparable to those produced 
by REML.  Further, the rank methods yield smaller standard errors than 
their heavy tailed counterparts, and produce coverage rates near the nominal 
level in most situations.  Finally, all of the methods studied here, including 
those based on ranks, are easy to employ with the R software package.  It 
must be noted that the conditions simulated here represent only a subset of 
all possible cases in which a researcher may find themselves working.  For 
example, these results do not inform situations in which the dependent 
variable is highly skewed, the data are heterogeneous, or when missing data 
are present.  Future research should focus on these conditions.  Considering 
results of the current study, however, it is recommended that if outliers are 
present in the context of MLM parameter estimation under conditions 
similar to those simulated here, the researcher consider using the rank based 
estimation method.   
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APPENDIX 
R code for fitting multilevel models for outliers using REML, the rank 
based estimators, and the heavy tailed methods, for a data frame called 
data1. 
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