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With the increasing refinement of language processing models and the new 
discoveries about which variables can modulate these processes, stimuli 
selection for experiments with a factorial design is becoming a tough task. 
Selecting sets of words that differ in one variable, while matching these 
same words into dozens of other confounding variables is time consuming 
and error prone. To assist experimenters in this thankless task, we present a 
simple method to perform it with little effort. The method is based on K-
means clustering as a way to detect small and tight clusters of words that 
match in the desired variables. We have formalized the procedure into an 
algorithmic format, that is, a series of easy-to-follow steps. In addition, we 
also provide an SPSS syntax that helps in choosing the correct size of the 
clustering. After reviewing the theory, we present a worked example that 
will guide the reader through the complete procedure. The dataset of the 
worked example is available as a supplementary material to this paper. 

 
 
Factorial designs are one of the most fertile methods of study in 

psycholinguistics, (but see Baayen, 2004, 2010, and Cohen, 1983, for 
critical assessments). A factorial design in this field often involves the 
discretization of a continuous variable (e.g., word frequency, mean value of 
concreteness rated in a Likert scale, etc.), and the experimental control of all 
those other variables that may covariate with the one of interest. This 
experimental control in factorial designs has become harder over the years. 
Some decades ago, Cutler (1981) already noted the increasing difficulty in 
selecting controlled materials for psycholinguistic studies due to the 
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“continual discovery of new confounds” (p. 65). One of the examples used 
in her paper was about word frequency, where the author complained about 
having to match items not only on surface frequency (i.e., the frequency of 
a particular word form), but also on combined frequency (i.e., the frequency 
of all the inflected forms of a word). Day by day, confounds concerning 
word frequency have increased dramatically. Now there is a whole family 
of frequency related variables that could be controlled in a word recognition 
experiment, including but not limited to subjective familiarity, age of 
acquisition, contextual diversity, or bigram and trigram frequency. 

The problem when selecting materials is two-fold: on the one hand, it 
is necessary to have databases of many psycholinguistic variables for a 
large amount of words. Fortunately, psycholinguists have developed several 
tools to have convenient access to different word properties (i.e., sublexical 
and lexical variables, subjective data, etc.). Some notable tools of this type 
in Spanish, in the form of web sites, are EsPal (Duchon, Perea, Sebastián-
Gallés, Martí, & Carreiras, 2013), NIM (Guasch, Boada, Ferré, & Sánchez-
Casas, 2013), or NIPE (Díez, Fernández, & Alonso, 2006). Similar tools in 
other languages such as English also exist, like the MRC Psycholinguistic 
Database (Coltheart, 1981), or the N-Watch software (Davis, 2005) 
available also in other languages (e.g., Spanish: Davis & Perea, 2005). By 
combining these tools with other published databases, researchers can start 
with little effort with a good pool of items. Then, they have to face the 
second problem: to select just those words that fulfill an extensive list of 
experimental requirements. 

To overcome this part of the problem already predicted by Cutler 
(1981) that “psycholinguists will literally be lost for words” (p. 69), some 
automated procedures have been developed. Two remarkable examples of 
computerized solutions are Match (Van Casteren & Davis, 2007), and 
Stochastic Optimization of Stimuli (SOS; Armstrong, Watson, & Plaut, 
2012). Match automates the process of picking items for experimental sets 
by selecting the best-matching pairwise items from different lists of 
candidates. The matching criterion is based on the normalized standard 
Euclidean distance between item pairs taking into account the values of all 
the variables to be controlled, and trying to minimize the sum of the squares 
of all the distances between lists. To reach this goal, the program operates in 
a recursive manner creating tuples of matched items from each list of 
candidates and, when a solution is found, backtracking to try to find a better 
solution. 

With the same aim as Match, SOS allows for both pairwise and 
groupwise matching solutions. Additionally, the user can establish a 
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powerful set of constraints that the resulting solution should meet, either as 
hard constraints (i.e., all-or-none rules that the values of a variable have to 
fulfill), or as soft constraints (i.e., desired relationships between variables). 
SOS also allows an evaluation of how well the constraints have been 
satisfied, and to assess the degree of representativeness of the final item 
selection. 

The aim of the present work is to present a new method for helping in 
the selection of controlled materials for psycholinguistic studies with a 
factorial design. This method is halfway between a full manual selection, 
and a completely automated one. Therefore, it contains some of the 
advantages of both approaches. The problems with manual procedures have 
been clearly described by Armstrong et al. (2012), (see also Van Casteren & 
Davis, 2007). Picking items by hand is tedious, time consuming, error 
prone, and it is difficult to evaluate the representativeness of a set of 
materials chosen this way. By the other hand, a fully automated selection 
sets aside the experimenter, and leaves open the question if a better solution 
could have been found. 

Our proposal is concise enough to overcome the problems of the first 
approach, while at the same time it is flexible and does not output one 
closed solution. Instead, it offers a tentative solution that the experimenters 
can debug and refine according to the experimental requirements. Another 
appeal of our proposal is the simplicity of all the procedure, as any 
researcher with a statistical package such as SPSS can obtain a valid 
solution in a few minutes. 

The core of our method relies on the cluster analysis technique. 
Cluster analysis is a general name that encompasses several different 
algorithms to classify a sample of elements into different groups, according 
to a set of variables. When performing this grouping, the goal is to 
minimize the differences between the members of the same group on the 
measured variables, while maximizing the differences between groups. 
Cluster analysis methods are exploratory in nature, and their aim is to reveal 
the natural structure of the data without having a previous theoretical 
framework. Thus, they are very useful for many fields when studying large 
amounts of data (e.g., biology, botany, medicine, psychiatry, astronomy, 
marketing, etc.). For instance, they are used to create meaningful 
taxonomies of species, to classify patients or diseases, to identify distinct 
groups of potential customers, etc. In the psychology domain, there is also a 
long tradition of using clustering methods. They have been used to detect 
behavior or personality patterns, to classify organizational structures, 
educational styles, learning methods, etc. For instance, Lorr and Strack 
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(1994) used a clustering procedure to detect personality profiles of police 
candidates, whereas Hillhouse and Adler (1997) used it to categorize 
nursing stress subtypes. Even in the more reduced domain of 
psycholinguistics, cluster analysis is also a known technique. In this domain 
it has been used applied to participants, (e.g., as a tool to examine 
differences in language learners; Sparks, Patton, & Ganschow, 2012), as 
well as applied to items (e.g., to study how items group in a semantic space; 
Troche, Crutch, & Reilly, 2014). 

However, the use of clustering that we present here is not the common 
use of the technique (i.e.: for trying to understand the data). Our approach 
consists in exploiting the group matching capabilities of cluster algorithms 
to find small clusters of stimuli as similar as possible in a given set of 
variables. From the variety of available cluster models and clustering 
procedures (e.g., hierarchical, partitioning, density-based, model-based, 
etc.; see Rokach & Maimon, 2005, for an overview of the main clustering 
methods), we have chosen the K-means algorithm, as it is a relatively 
simple method that at the same time suits our purposes (see Jain, 2010, for a 
comprehensive review of the K-means algorithm). In the K-means 
clustering, the goal is to group n observations into k clusters. Each cluster 
has a center computed as the mean of all the instances that belong to it. 
Then, each observation is assigned to the nearest cluster according to its 
center. Thus, the algorithm operates in an iterative manner starting from an 
initial set of cluster centers, assigning each observation to the nearest 
cluster, and then computing the new cluster centers. This procedure is 
repeated until a stopping criterion is reached. 

In the next section, we will formalize this idea of using K-means 
clustering to select well-controlled experimental stimuli, by detailing a 
series of steps that can be easily followed using the SPSS software package. 
Of note, unlike other methods of clustering, in order to perform a K-means 
clustering it is necessary to know beforehand the optimal value of k, and 
this choice will sharply determine the quality of the final selection. Thus, 
special attention will be paid to the optimal way for deciding the initial 
number of clusters. Then, we will present a worked example with a dataset 
available as a supplementary material. 

 
The algorithm 

The general idea of using K-means clustering to select matched 
stimuli for factorial designs in psycholinguistic studies is simple. By 
dividing a large set of items into k groups of n observations each, the 
members within each group will be as much equal between them as 
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possible. Ideally, if each of these tight groups contains just one member 
belonging to each of the experimental conditions, the result will be a 
pairwise matched set of materials. Unfortunately, this ideal situation is 
hardly achieved, but our method aims to get as close as possible. In what 
follows, we detail the procedure and its steps. 

 
Preparing the data. The starting point is a large set of words and 

their corresponding values in the variables to be controlled. Additionally, it 
is necessary to create a new variable (e.g., “Condition”) to classify the items 
into the desired experimental conditions (i.e., it is necessary to discretize 
items trough the critical variables). Of note, the variable “Condition” can 
comprise a large number of experimental levels, given that the number of 
experimental conditions does not hamper the application of the procedure. 
On the other hand, the procedure also applies to experimental designs with 
more than one independent variable. In such cases, the researcher has to 
combine those variables in order to create the experimental conditions. For 
instance, suppose that we have a 2x2 factorial design: word length (short 
and long words), and word frequency (low and high frequency words). This 
leads to four experimental conditions: short/long words, with low/high 
frequency. Thus, in this case, the variable “Condition” should comprise four 
levels. 

Then, all variables must be converted to z-scores. Normalization is a 
necessary step because K-means clustering is strongly influenced by the 
magnitude of the variables. Without normalization, the partitioning of the 
dataset is driven mainly by the few variables with the highest magnitudes, 
relegating the others to a secondary role. The conversion of all variables to 
z-scores overcomes this problem. Other computerized solutions such as 
Match (Van Casteren, 2007) and SOS (Armstrong et al., 2012) are also 
sensitive to the convenience to normalize the initial raw data. 

 
Selecting the appropriate number of clusters. Once all variables 

have been converted to z-scores we can compute the K-means clustering. 
We aim to partition the initial set of words into as many groups as possible 
(the more clusters, the tightest the groups). However, we have to satisfy the 
restriction of obtaining enough clusters with at least one member of each 
experimental condition, as to reach the desired number of items per 
condition. Thus, according to this restriction some of the obtained solutions 
will be useful, while others will be useless. 

As stated before, this kind of clustering requires knowing in advance 
the number of partitions needed (i.e., the value of k), and the success of the 
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process depends mainly on the selection of this value. We cannot know 
certainly the optimal value of k, but we can compute some indices that can 
help us to approximate it. First, we can examine the minimum number of 
clusters (k-min) that can lead to a valid solution. This is quite simple, as k-
min value is always two. The resulting division in two parts would probably 
generate two clusters containing items of all the experimental conditions, 
thus, assuring enough items to choose from. However, the cohesion of the 
items within those clusters would be very low, which does not ensure a 
good final matching between conditions. 

The opposite extreme is found when we stablish the maximum 
number of clusters (k-max). This value corresponds to the number of 
observations in the condition that contains fewer stimuli (note that it is not a 
requirement to have the same number of items per condition in the initial 
word set). It is reasonable to think that if, for example, we have only ten 
items belonging to a given condition in our starting set of materials, we 
cannot ask for eleven partitions of it. If we did it, it is sure that at least one 
cluster would not contain an item belonging to that condition, resulting in 
discarding the rest of items in that cluster. However, to choose a k-max of 
ten does not ensure that each cluster will have at least one item from each 
condition. Therefore, in any resulting solution there will be a certain amount 
of valid clusters (i.e., clusters that contain at least one item belonging to 
each experimental condition), and a certain amount of invalid clusters (i.e., 
clusters that do not allow researchers to select at least one item for each 
experimental condition). Our goal then is to select a value of k between k-
min and k-max that provides a number of valid clusters enough to contain at 
least the desired number of stimuli per condition. Additionally, to approach 
to an optimal solution we must look also for valid clusters being the 
distance of each item and the center of its cluster as small as possible. 

For exploratory purposes, a rule of thumb for selecting a k value can 
be to choose the middle point within the range of possible values. However, 
to get closer to the optimal k value some additional steps can be followed. 
Our approach here is to study the results of multiple runs of K-means 
clustering checking all the possible k values, and to choose a suitable one 
according to two indices. As running multiple analyses involves non-trivial 
computations, we will present in the worked example (see below) an SPSS 
Syntax that can do the job in a few minutes. 

The first index that we can use to approach to an optimal value of k is 
the number of valid items across the possible k values. In any given 
grouping, we can only use those items that have a counterpart from the rest 
of conditions in the same cluster. For instance, in an experiment with two 
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conditions, if we have a cluster with one item from condition one, and two 
items from condition two, we can only use one item from condition two. 
Thus, it is possible to compute the number of usable items for each value of 
k. For the final analysis, we will have to select a k value that provides at 
least the desired number of items per condition. 

The second index that we can consider is the sum of the distances 
from each item to the center of its cluster, for each k value. If the number of 
clusters is too low, there will be a large amount of valid but heterogeneous 
clusters. Items in those clusters will be far from the center of their 
respective clusters, and the total sum will be large. In contrast, the higher 
the k value, the lower the sum of distances and the better the match within 
the items of a cluster. Graphically it can be represented as a scree plot 
similar to that used in a principal components analysis or a factor analysis. 
Usually a scree plot shows a descending curve with a bend after which the 
curve turns into a flat line. In the aforementioned analyses, the optimal 
point is that corresponding to the bend, since going further to that point 
causes the problem of overfitting the model. However, our goal is not to 
create a valid model of the data but to look for the best match among a 
group of items. Being so, we do not need to worry about overfitting and 
usually the higher values of k will be the better. 

In sum, for selecting the appropriate value of k we can explore the 
number of valid items, and the sums of distances. Any value that gives as a 
result the required number of valid items, while minimizing the sum of 
distances, is a potential value to obtain a useful solution. All these measures 
can be used to determine beforehand if our corpus for selecting materials is 
suitable for our needs (i.e.: if it contains enough matching items). Note also 
that the use of these indices does not lead to the optimal solution, but to one 
of the potentially suitable solutions. 

 
Selecting the items. Once k has been estimated, the next step is to 

carry out the K-means clustering asking SPSS to create two new variables: 
one for the cluster membership of each item, and another to keep a record of 
the distance of each item to its cluster center. From here, the experimenter 
has to follow some simple additional steps. The first one would be to 
remove from the corpus those items belonging to invalid clusters (i.e.: 
groupings with missing items in one or more conditions). Then, it is 
possible that a valid cluster has not the same number of items per condition. 
Suppose, for instance, that in an experiment with two conditions there is a 
cluster with two items from condition one, and one item from condition 
two. In this case, one item from condition one should be removed. As a 
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criterion for selecting between the two possible items from condition one, 
the experimenter can choose among several strategies. In order to avoid 
biases in the item selection, the experimenter should keep constant the 
selection strategy. One possible strategy would be to systematically remove 
the item whose distance from the center of the cluster is more different than 
the distance from the cluster center of the item in condition two. Another 
strategy would be to select the item with the lowest distance to the cluster 
center. 

After this item trimming process, we will obtain either the exact 
number of desired items per condition, or a greater number. In this last case, 
the experimenter should remove one item per condition from the same 
cluster until the desired number of stimuli is reached. Again, the criterion 
for selection should be kept constant to avoid biases (e.g., removing those 
items with the higher distances to the center of their respective clusters). 

 
Assessing the solution. The last step is to check for the validity of the 

resulting stimuli set. The most direct way to do it is to perform a One-Way 
ANOVA setting as a factor the variable “Condition” and as dependent 
measures all the list of controlled variables before standardization. If all p 
values are above the selected significance level, the procedure ends. If not, 
we can go back to the surplus-removing steps and to choose another set of 
items. Another possibility would be to repeat the selection process starting 
from another of the valid values of k. To summarize, Figure 1 describes the 
whole procedure in an algorithmic format. 

 
Worked example 

To exemplify the use of the algorithm described above we devised an 
example. Suppose that we have a starting point of 200 words with their 
respective measures on seven different variables. From this pool, we want 
to obtain three experimental conditions of 30 items each, where the three 
conditions are different in a critical variable, but they are matched in the 
other six variables. 

The dataset used to go through this example can be found as 
supplementary material to this paper. To construct our starting dataset we 
selected a list of 200 English words ranging from three to ten letters. Then, 
these words were introduced into N-Watch (Davis, 2005) to obtain 
measures of frequency (in number of occurrences per million), word length, 
number of syllables, number of neighbors, number of higher frequency 
neighbors, mean bigram frequency, and imageability ratings. The selection 
of these variables was not guided by theoretical issues, but by the aim of 
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better testing our matching procedure. Indeed, the selected variables had 
different scales, different distributions, and some of them where correlated 
among them (e.g., word length and number of syllables). Thus, a set like 
this constitutes a realistic example of items selection. Next, we began with 
the application of the algorithm. 

 
 
Step 1. Discretize critical variables to create conditions. 
Step 2. Normalize all the variables to be controlled. 
Step 3. Determine the number of clusters for K-means clustering (k): 
 Step 3.1. Define k-max. 
 Step 3.2. Examine the number of valid items across k values. 
 Step 3.3. Examine the sums of distances across k values. 
Step 4. Run the K-means clustering with the selected k value. 
Step 5. Select final items from the raw solution: 
 Step 5.1. Delete invalid clusters. 
 Step 5.2. Delete the non-matched items in valid clusters. 
 If the number of valid items is greater than the intended      

number of items per condition: 
  Step 5.3. Delete one item of each condition on valid 

clusters. 
Step 6. Asses the resulting set. 
If there are significant differences in any of the variables to be 
controlled: 
 Change the item removing criterion, and return to Step 5.3., or 
 Change the item removing criterion, and return to Step 5.2., or 
 Return to Step 3 and choose another suitable k value. 

Figure 1. Algorithm for the selection of experimental materials 
matched in a set of variables across n conditions, using K-means 
clustering. 

 
 
Step 1 was to discretize the critical variables to create the 

experimental conditions. We choose word frequency as the critical variable, 
and the stimuli set was divided into three conditions based on that variable. 
Words were classified (by creating a new variable called “COND”) as low-
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frequency words if their frequency were less than 15 occurrences per 
million (Condition 1; M = 7.74, SD = 3.82), as medium-frequency words if 
their frequency were equal or greater than 15 and less than 60 occurrences 
per million (Condition 2; M = 34.31, SD = 13.31), and as high-frequency 
words if their frequency were greater than 60 occurrences per million 
(Condition 3; M = 176.91, SD = 169.17). This procedure resulted in 70 low-
frequency words, 60 medium-frequency words, and 70 high-frequency 
words. The properties of the selected words by condition are shown in 
Table 1. 

 
 

Table 1. Characteristics of the stimuli before running the matching 
procedure (standard deviations are shown in parentheses) 

 
Note. FRE = word frequency per million; LNG = word length; SYL = number of syllables; 
N = number of neighbors; NHF = number of higher frequency neighbors; BFQ = mean 
bigram frequency; IMA = imageability. 

 
 
In this initial set, conditions differ in frequency, F(2, 199) = 56.68,     

p < .001, word length, F(2, 199) = 12.46, p < .001, number of syllables, 
F(2, 199) = 10.70, p < .001, number of neighbors, F(2, 199) = 6.34, p < 
.005, and mean bigram frequency, F(2, 199) = 8.05, p < .001. On the other 
hand, number of higher frequency neighbors, F(2, 199) = 1.85, p = .16, and 
imageability ratings, F(2, 199) = 0.89, p = .41, are similar across conditions. 

Step 2 consisted in the normalization of the variables to be matched in 
order to get an optimal matching solution. There are two ways to convert 
values to z-scores using SPSS. The first one is through the visual interface, 
where we have to click on “Analyze”, “Descriptive Statistics”, and then 
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“Descriptives”. After selecting all the variables to be normalized, we have 
to check the box labeled as “Save standardized values as variables” and then 
accept the selection. After that, SPSS will create in the active dataset the 
new z-scored variables with the same name as the old variables, but 
preceded by a capitalized z (e.g., “var1” is converted to “Zvar1”). The other 
method to normalize variables is to use the following SPSS syntax: 

DESCRIPTIVES VARIABLES = var1 var2 var3 
/SAVE. 
In the above syntax, “var1”, “var2”, “var3”, etc. represent the names 

of the variables to be normalized. In our example, z-scored variables to be 
matched were "ZLNG", "ZSYL", "ZN", "ZNHF", "ZBFQ", and "ZIMA" 
(see Table 1 for a description). 

Step 3 is a crucial one, as it will guide us to an appropriate matching 
solution. This step begins with the estimation of k-max (Step 3.1), which is 
equal to the number of stimuli in the condition with fewer stimuli. In our 
example, k-max corresponded to 60, that is, the number of stimuli in the 
medium-frequency condition. 

Then, Steps 3.2 and 3.3 involve examining the number of valid items 
and the sum of their distances to the center of the clusters across the 
possible k values. As stated before, computing these indices is not trivial, as 
it involves many runs of a cluster analysis. For this reason, we have devised 
a SPSS macro to do it, available as a supplementary material to this paper. 
Previously to using the SPSS macro, users have to tweak some values to 
adjust it to their datasets. All the values that need a setting are located in 
line 100: 

genClust maxClusters=60 condVar=COND firstCond=1 lastCond=3 
variablesToMatch = ZLNG ZSYL ZN ZNHF ZBFQ ZIMA. 
In this line, “maxClusters” is the value of k-max (i.e., 60 in our 

example). The variable “condVar” is the name of the variable in the SPSS 
dataset that contains the discretization of the critical variables through 
conditions (i.e., COND in our example). The variables “firstCond” and 
“lastCond” contain respectively the number of the first condition (i.e., 1: 
low-frequency words), and the number of the last condition (i.e., 3: high-
frequency words). Finally, the “variablesToMatch” parameter is a space-
delimited list of the names of all the variables— previously normalized—
that need to be matched across conditions (i.e.: ZLNG, ZSYL, ZN, ZNHF, 
ZBFQ, and ZIMA in our example). 

Now, we can already execute the SPSS macro. Note that it will work 
only with SPSS version 22 or higher. The script will run up to k-max cluster 
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analyses saving in a new dataset the relevant information from the outcome 
of each analysis. The newly created dataset will contain as many rows as 
analyses performed, each including the following information (see Figure 
2): 

1) numClusters: number of clusters selected for running the analysis 
(sorted from two to k-max). 

2) validClusters: number of valid clusters, that is, clusters having at 
least one matched stimulus of each condition. 

3) stimuliPerCondition: number of matched stimuli per condition that 
can be obtained with the selected number of clusters. 

4) sumOfDistances: sum of distances from each stimulus to the center 
of its cluster. 

 
 
 

 
Figure 2. Extract from the dataset created after executing the SPSS 
macro. 

 
 
Additionally, after the execution of the macro, the SPSS results 

window will show two plots. The first plot shows, for each cluster analysis 
performed, the number of matched stimuli per condition. Since in our 
example we wanted to obtain 30 stimuli per condition, only those analyses 
resulting in 30 or more than 30 matched stimuli will be taken into 
consideration (see Figure 3). 

The second plot displays the sum of distances of each item to its 
cluster center, for each of the analyses run. In our example (see Figure 4), 
and as it could be expected, the sum of distances decreased as the number of 
clusters increased—as clusters become smaller, they also become tighter. 
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Figure 3. Number of matched stimuli per condition for each cluster 
analysis. Cluster analyses with 30 or more matched stimuli per 
condition are colored in green. 

 
 
All the above information is decisive for selecting the appropriate k 

value. This information can be observed graphically, or can be studied 
numerically from the new dataset created by the SPSS macro. In general, a 
good matching solution will be that providing the desired number of 
matched stimuli (i.e., stimuliPerCondition), while having a low sum of 
distances (i.e., sumOfDistances). Thus, one good matching solution for our 
example is that corresponding to a classification in 37 clusters. This 
clustering would provide 31 matched stimuli per condition, while having 
the lowest sum of distances among the valid solutions. 

In the next step (Step 4), we carried out the K-means cluster analysis 
with the obtained k value of 37. This step can be achieved easily using the 
visual interface, going through the option “Analyze”, “Classify”, and then 
“K-means cluster”. In the dialog box, the user only has to select the 
variables to match (after normalization), to indicate the desired number of 
clusters, and to mark both check boxes under the save button: “cluster 
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membership”, and “distance from cluster center” (see Figure 5). The 
“cluster membership” check box will create a new variable in the dataset 
named “QCL_1”, that indicates to which cluster belongs each stimulus. The 
second check box (i.e., “distance from cluster center”) will create a second 
variable named “QCL_2” that shows the Euclidean distance from the 
stimulus to the center of its cluster. In the following steps, we will refer to 
these variables as “cluster_number”, and “cluster_distance”, respectively. 
To perform the following steps, it is necessary to sort the data first by 
cluster number, and then by condition. 

 
 

 
Figure 4. Sum of distances of each item to its cluster center for each 
cluster analysis. Cases colored in green correspond to those with 30 or 
more matched stimuli per condition. 
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Figure 5. SPSS dialog box for K-Means Cluster Analysis with the Save 
button sub-dialog. 
 

 
 
Step 5 consisted in selecting the final items from the raw solution. 

First, we removed those clusters with missing stimuli in at least one of the 
experimental conditions. For example, examine cluster 10 in Figure 6: 

 
 
 

 
Figure 6. Screenshot of the SPSS dataset depicting cluster 10. 
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Cluster 10 includes stimuli from conditions 1 and 2, but not from 
condition 3. Thus, it should be removed from the dataset. After removing all 
the invalid clusters, we should revise those clusters having different number 
of stimuli per condition (e.g., see Figure 7): 

 
 

 
Figure 7. Screenshot of the SPSS dataset depicting cluster 34. 

 
 
For example, suppose we have a cluster as number 34. This cluster 

contains four stimuli from condition 1, but only one from conditions 2 and 
3. Thus, in order to match the number of stimuli per condition in the cluster, 
we must delete three stimuli from condition 1. The strategy adopted here 
was to keep the stimuli from condition 1 whose distance to the cluster 
center was more similar to the distances of the stimuli from conditions 2 
and 3. In this case, we kept the stimulus “spice”, as it is the stimulus from 
condition 1 with the most similar distance to “gate” (from condition 2), and 
“sex” (from condition 3). 

Once finished the trimming process, we will have the desired number 
of stimuli per condition, or even more. In this example, we aimed to have 
30 stimuli per condition, although we selected a k value that gave as a result 
31 items per condition. Thus, it was necessary to remove three stimuli, one 
from each condition, with the requirement that they had to belong to the 
same cluster. This pruning can be done following the experimenter’s own 
intuitions. However, to avoid biases, it is desirable to follow a more 
objective procedure. For instance, in our example we opted for removing 
one item from each condition in cluster 9, trying to equate as much as 
possible the cluster distances between conditions (see Figure 8). Thus, we 
kept those stimuli with the most similar distances, that is: fungus (0.57) 
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from condition 1, stomach (0.55) from condition 2, and prison (0.55) from 
condition 3. 

 
 

 
Figure 8. Screenshot of the SPSS dataset depicting cluster 9 after 
matching the number of stimuli per condition in a cluster. 

 
 
Finally, we obtained 30 stimuli per condition and we were ready to 

perform the last step (Step 6): to assess the suitability of the solution 
obtained. The properties of the selected words by condition are shown in 
Table 2. 

After running the entire procedure, all the variables to be controlled 
were successfully matched among conditions: word length, F(2, 89) = 0.14, 
p = .87; number of syllables, F(2, 89) = 0.03, p = .97; number of neighbors, 
F(2, 89) = 1.04, p = .36; number of higher frequency neighbors, F(2,89) = 
0.29, p = .75; mean bigram frequency, F(2, 89) = 0.41, p = .66; and 
imageability, F(2, 89) = 0.10, p = .90. Additionally, we ran independent 
sample t-tests between each of the experimental conditions and the other 
experimental conditions, for the six variables to be controlled. None of the 
analyses reached significance (all ps > .23). Of course, word frequency 
remained different among conditions, F(2, 89) = 53.16, p < .001. Low-
frequency words had a mean frequency of 8.00 (SD = 3.89), medium-
frequency words had a mean value of 32.25 (SD = 14.26), and high-
frequency words had a mean frequency of 152.98 (SD = 99.95). 
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Table 2. Characteristics of the stimuli after running the matching 
procedure (standard deviations are shown in parentheses) 

 
Note. FRE = word frequency per million; LNG = word length; SYL = number of syllables; 
N = number of neighbors; NHF = number of higher frequency neighbors; BFQ = mean 
bigram frequency; IMA = imageability. 

 
 
 

Conclusion 
The algorithm described here can be very useful for psycholinguists in 

selecting well-controlled materials for experimental designs. They will save 
time while committing fewer errors. Although other methods have been 
proposed to achieve the same aim, as Match (Van Casteren & Davis, 2007) 
and SOS (Armstrong et al., 2012), we think that our algorithm is 
complementary to them rather than redundant. Match and SOS provide a 
closed solution. They provide a final set of matching stimuli, where the user 
has no insight on the intermediate states followed to achieve it. In contrast, 
the clustering method proposed here is open. By following the procedure 
step by step, experimenters become familiar with their materials. This fact 
benefits the assessment of the generalizability of the selected stimuli set. 
Indeed, if there is a low number of valid solutions when assessing the 
optimal k-value, the effects found with our set of items will probably not be 
generalizable to other stimuli sets. 

Furthermore, the method presented here does not provide just a 
solution, but a range of possible solutions that the user can tweak to reach a 
satisfactory set of materials. It has been argued (Van Casteren & Davis, 
2007), that a fully automated procedure to select stimuli is desirable to 
avoid the experimenter bias described by Forster (2000). According to this 



Matching words through clustering 129 

bias, it is possible that experimenters—consciously or not—choose those 
items that favor their hypothesis. Although our procedure is not completely 
blind for the experimenter, the algorithm-form of the procedure protects 
against this bias, as the item selection criteria are narrow enough to avoid it. 
Only steps 5.2 and 5.3 (the surplus-removing steps) leave room for the 
influence of the experimenter bias. However, this can be avoided by 
specifying a strict selection criterion in advance. On the other hand, this fact 
may become an advantage under some circumstances. For instance, suppose 
that two similar words (e.g., two synonyms or the same word in both 
genders) end up in the same experimental condition, which may hinder the 
generalizability of the stimuli set. With a closed procedure, this fact would 
go unnoticed until the end of the process, whereas with our algorithm it can 
be proactively detected. 

In sum, the main aim of the present work was to describe a fast and 
simple method to match words for psycholinguistic experiments. Moreover, 
with our algorithm we hope that Cutler’s (1981) prediction of being lost for 
words will be postponed for another decade. 

RESUMEN 
Agrupar palabras para igualar condiciones: Un algoritmo para la 
selección de palabras en diseños factoriales. Con el creciente refinamiento 
de los modelos de procesamiento del lenguaje y los nuevos hallazgos sobre 
qué variables pueden modular dichos procesos, la selección de palabras para 
experimentos de diseño factorial se está convirtiendo en una tarea cada vez 
más ardua. Seleccionar conjuntos de palabras que difieren en una variable 
pero que están igualadas en una decena de posibles variables extrañas, lleva 
mucho tiempo y está sujeto a errores. Para ayudar a los experimentadores en 
esta desagradecida tarea, presentamos un método sencillo que permite 
realizarla con poco esfuerzo. El método se basa en el agrupamiento de K-
medias para identificar conjuntos pequeños y compactos de palabras 
igualadas en las variables deseadas. El procedimiento ha sido formalizado en 
un algoritmo, esto es, una serie de pasos concretos y sencillos de seguir. 
Además, también aportamos la sintaxis en SPSS para ayudar en la selección 
del número adecuado de agrupaciones. Tras una revisión de la teoría, 
presentamos un ejemplo práctico que guiará al lector a través del 
procedimiento completo. El conjunto de datos del ejemplo se encuentra 
disponible como material complementario a este artículo. 
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