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Autocorrelation effect on type I error rate of Revusky’s Rn 
test: A Monte Carlo study  
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Monte Carlo simulation was used to determine how violation of the 
independence assumption affects the empirical probability distribution and 
Type I error rates of Revusky's Rn statistical test. Simulation results show that 
the probability distribution of Rn was distorted when the data were 
autocorrelated. A corrected Rn statistic was proposed to reach a reasonable fit 
between theoretical (exact) and empirical Type I error rates. We recommend 
using the corrected Rn statistic when serial dependence in the data is 
suspected. 
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Both visual inference and statistical analysis have been found 

unreliable when data are autocorrelated. Regarding visual inference, Jones, 
Weinrott & Vaught (1978) pointed to the distorting effects of serial 
dependency on the interpretation of data, showing that autocorrelation was 
responsible for the discrepancies between inferences based on a visual 
analysis and those resulting from statistical analysis. The problem was 
aggravated in those cases having an evident change of level. More important 
is the low agreement found among judges, which reveals the inadequacy of 
visual analysis and the need to apply more objective procedures. Another 
aspect to be considered is the training of judges. Wampold & Furlong 
(1981) found differences in the interpretation of data between a group of 
judges trained in multivariable techniques and another group trained in 
visual analysis. These differences consisted in that the former could detect 
intervention effects far better as they paid more attention to the relative 
variations in the scores, while the latter attached more importance to level 
and slope changes between phases in a time series. 
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Due to their assumptions, classic statistical tests (e.g., ANOVA, t-test, 
chi-square test, etc.) are not suitable for analyzing data with serial 
dependency (Scheffé, 1959; Toothaker, Banz, Noble, Camp & Davis, 1983). 
This autocorrelation affects the level of significance of the statistical tests 
under or overestimating Type I error rates. A first attempt to solve the 
problem of serial dependency is found in Shine & Bower (1971). Gentile, 
Roden & Klein (1972) and Hartmann (1974) were later to propose other 
models based on classic statistical tests, unsuccessfully however, due to the 
restrictive conditions these models required. These strategies are founded on 
the analyses of variance. A factor is added in order to extract the variability 
assigned to serial dependency. 

Faced with the problems of using the classic tests for behavioral 
designs, alternative techniques were recommended. Thus, randomization 
tests (Edgington, 1967, 1980) enable behavioral designs to be analyzed 
using classic statistical tests. Revusky's (1967) Rn statistic permits 
behavioral data to be analyzed in multiple baseline designs. The binomial-
based graph-statistical technique proposed by White (1974), termed Split-
middle, allows analysis of designs A-B, A-B-A and their extensions. 
Crosbie (1987) warns that the Split-middle technique must be used with 
caution when serial dependency in the data is suspected (specifically, 
positive dependency increase Type I error rate, and negative dependency 
decrease it). Wolery & Billingsley (1982) propose joint application of the 
Split-middle technique and the Rn statistic, in order to determine not only 
the statistical significance in level changes but also slope changes in 
multiple baseline designs. 

A test devised for studying serial dependency (an aspect not 
considered by previous techniques) is the interrupted time series analysis. 
Initially developed by Box & Tiao (1965), Box & Jenkins (1970), it was 
later adapted to the social and behavioral sciences by Glass, Wilson & 
Gottman (1975). This analysis would appear to be an adequate alternative to 
the problem of serial dependency among observations; the minimum 
requirement of 50 data per phase to carry out the analysis, combined with 
the difficulties involved in identifying the autoregressive model, are two of 
the most problematic aspects of using this technique (Harrop & Velicer, 
1985). 

The tests dealt with so far attempt to solve the problem of serial 
dependency on the assumption that it has no effect (randomization tests, Rn, 
etc.) or is removed (interrupted time series analysis). Nevertheless, 
obtaining the level of significance of a statistic based on a distribution 
function that assumes independence between scores is a debatable method. 
Suffice it to mention some of the results that show how the empirical Type I 
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error rate does not concur with the nominal rate when data are 
autocorrelated (Crosbie, 1987, 1989, 1993; Gardner, Hartmann & Mitchell, 
1982; and Toothaker et al.,1983). 

Considering that nonparametric statistics do not always guarantee the 
elimination of the effect of autocorrelation on the Type I error rate, we 
analyzed the effect of serial dependency on the Rn statistic. Multiple 
baseline designs require not only an analysis of magnitude and the sign of 
the autocorrelation in calculating the statistic, but also an essential analysis 
of the interaction of the different levels of autocorrelation in each design. 
The aim of this paper is to demonstrate that the violation of the assumption 
of independence affects the Rn statistic and to provide a corrective action 
based on the dispersion of the series. Empirical and theoretical Type I error 
rates are not identical when Rn statistic is obtained in series where there 
exist different autocorrelation parameter values. It is an expected result 
because Rn statistic assumes independence among series. The discrepancy 
between empirical and theoretical Type I error rates is explained by different 
series’ variance. As a consequence, series comparability is not guaranteed. 
To reach comparability among series, we propose a Rn statistic correction 
that extracts autocorrelation effect on variability. A way to accomplish this 
goal is to standardize the data. We therefore generated data by Monte Carlo 
simulation under various extreme experimental conditions (varying the 
autocorrelation of the series) and compared the Rn statistic calculated from 
the original data (uncorrected Rn statistic) with that calculated from the data 
transformed by the proposed correction method (corrected Rn statistic). 

DESCRIPTION OF REVUSKY'S RN STATISTIC 
A set of k series of data is recorded for k objects (subjects, behaviors 

or situations) in a multiple baseline design; in other words, k independent 
subexperiments exist. The main purpose of multiple baseline designs is to 
probe the effectiveness of treatment (Figure 1). In the first subexperiment, 
an experimental object is chosen at random and treatment is introduced, the 
rest of the objects acting as a control group. The scores obtained by all the 
objects at the time the treatment is introduced (or, alternatively, the mean 
scores for each phase) are ordered in such a way that each object is assigned 
a rank (ranging from one to k) according to its performance level. The result 
of the subexperiment is the rank obtained by the experimental object. The 
experimental object is discarded for the remainder of the analysis. A second 
experimental object is then chosen at random from amongst the k-1 control 
objects. The new experimental object is subjected to the same treatment 
while the remaining k-2 objects act as controls. Now the scores of the 
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objects at the time of introducing the treatment are ordered, in such a way 
that each object is assigned a rank between one and k-1. The rank obtained 
by the experimental object is again the result of the second subexperiment. 
This experimental object is then excluded from the analysis and the process 
continues until only one object remains. This final object obtains rank 1, 
irrespective of its score. The kth experimental result is preestablished at one 
and must be included in the analysis although it provides no information. In 
this sense, there are k-1 degrees of freedom in assigning the ranks. Thus, 
after the series of k subexperiments, each object has received the 
experimental treatment, with the number of controls ranging from k-1 to 
zero. 

 
Figure 1. Graphic showing a multiple baseline design with four objects. 
Each subexperiment corresponds to one of all possible treatment 
applications. 

 
The statistic for assessing the intervention is computed as the sum of 

the ranks assigned to each experimental object in each subexperiment, 
including the last object, which is ranked one. If ri is the rank assigned in 
subexperiment i, we have 
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The Rn statistic represents the sum of k discrete values ri and takes 
integer values between k and k(k+1)/2. Furthermore, random selection of the 
experimental objects and their subsequent exclusion from the analysis 
ensures statistical independence between the ri obtained in each 
subexperiment. Assuming null hypothesis, the Rn statistic is distributed 
symmetrically with expectancy  
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as has been shown in Cronholm & Revusky (1965).  
In a multiple baseline designs where k subexperiments have been 

carried out and assuming independence among subexperiments, Rn 
statistic’s distribution is 
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For example, if k=4, Rn statistics takes values between 4 and 10. The 
probability that Rn ≤ 5 is equal to 
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Rn = 4 is only obtained when ri = 1 in each subexperiment. If Rn = 5, 
the possible values of ri in the subexperiments are: (r1 = 1, r2 = 1, r3 = 2, r4 
=1); (r1 = 1, r2 = 2, r3 = 1, r4 =1); and (r1 = 2, r2 = 1, r3 = 1, r4 =1). 

METHOD 
A modular program was created in Fortran 77, running on a HP -UX 

system, for data generation and Rn statistic calculation. In the data 
generation process, NAG Mark-15 mathematical-statistical libraries were 
used (specifically the external libraries G05CCF and G05FDF). 
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Data Generation: Data were generated using the following expression: 
.t        x = ttkt .....,,=+x ++ 2111 ερ   (1) 

where ρk represents the autocorrelation parameter for the object (or series) k, 
and εi were N(0,1) random variables. For each call to the NAG libraries 600 
data (εi) were generated, independently for all objects which composed a 
single multiple baseline design. For each of the series the first 75 data were 
discarded in order to reduce artificial effects (Greenwood & Matyas, 1990), 
that is, to attenuate as far as possible the effect of anomalous initial values 
(seeds) of the pseudo-random generator and stabilize the series. Each series 
is interpreted as an A-B design where the length of A phase (or baseline) is 
five for the first subexperiment, increasing by 15 data for each of the 
remaining subexperiments. The B phase (or intervention ph ase) has a 
constant length of 10 data for each of the subexperiments. No trend or level 
change between phases was programmed when generating the data. Two 
types of multiple baseline design were planned depending on the number of 
objects they had (four or five series per design). The numbers of objects that 
compose the design determine the significance levels for the Rn statistic. 
Thus, with four objects per design we can reach significance levels of 0.05, 
while five is the minimum number of objects necessary for obtaining 
significance levels of 0.01 (Revusky, 1967). The exact Type I error rates 
corresponding to the extremes values of Rn statistic for four and five object 
are α= 0.04167 and α= 0.00833, respectively, using formulae provided by 
Revusky (1967). 

Different theoretical levels of autocorrelation were established 
between -0.9 and 0.9, increasing by 0.1 or 0.2. The level of autocorrelation 
applied to the data series defined the experimental condition of each design 
size. Considering that each series ha s a different autocorrelation level, the 
experimental conditions are defined in accordance with: a) the sign of the 
autocorrelation levels (all positive levels or all negative, denoted by P and 
N, respectively) and b) increasing or decreasing autocorrelation levels 
(considered as an absolute value) assigned to the successive applications of 
the treatment. Combining autocorrelation levels, and sign and number of 
subexperiments, 12 experimental conditions were chosen (Table 1). 

Experimental objects in each subexperiment were selected in a 
systematic manner, i.e. in the first subexperiment the first series is used as 
the experimental object, in the second subexperiment the second, and so on 
up to the fourth/fifth subexperiment with the fourth/fifth series as an  
experimental object. Experimental objects were not selected randomly 
because it was necessary to keep a specific arrangement of autocorrelation 
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parameters in the series to determine its effect on statistical inference. 
However, all series were generated independently and seeds were previously  
 
Table 1. Experimental conditions for four and five subexperiments. For 
example: N13579 represents the experimental condition for a five-
subexperiment design, in which the five levels of autocorrelation are 
negative and increasing (in absolute value) in 0.2 increments, where 
1,3,5,7 and 9 represent autocorrelation levels of -0.1, -0.3, -0.5, -0.7 and 
-0.9 applied from the first subexperiment up to the fifth, respectively. 
 

Four series per design  Five series per design  

Autocorrelation Low Medium High Low Medium High 
Increasing P1234 P2468 P6789 P12345 P13579 P56789 

Positive 
Decreasing P4321 P8642 P9876 P54321 P97531 P98765 

Increasing N1234 N2468 N6789 N12345 N13579 N56789 
Negative 

Decreasing N4321 N8642 N9876 N54321 N97531 N98765 

 
changed for each series. Thus, the result of each subexperiment is the rank 
assigned to the experimental object when their performance level is 
compared with the rest of the objects (controls). For each experimental 
conditions, three different methods were used for computing ranks for the 
Rn statistic: (1) In the first method, only the first value of the intervention 
phase was used for assigning ranks. (2) In the second method, phase means 
were used for assigning ranks. (3) In the third  method, both (1) and (2) were 
applied after using the correction proposed below. 

Rn Statistic Correction: The correction we propose consist of assigning 
ranks based on standardized scores, which are computed using the mean 
values and variance of the data in the A phase. Those standardized scores 
(first or mean value of experimental and control phases) are used to obtain 
ranks. Considering the jth series, the estimation of variance is obtained by 
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where n represents the number of pre-intervention scores. If the mean value 
of the intervention phase ( )Bx  is used as experimental data, the estimation 
of variance is obtained by 
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where S2 is calculated via equation (2), and the lag-1 autocorrelation 
coefficient (r1

+) is estimated using the following correction (Huitema & 
McKean, 1991): 

)x  -  x(  

)x  -  x(  )x  -  x(  
 = r

 
 

n
1

  +  r = r

Ai
2

n

1 =i

A1+iAi

1-n

1 =i
1

1
+
1

∑

∑
    (4) 

For short series, r1
+ yields poor estimates of the true autocorrelation in 

the data. On the other hand, for a multiple baseline design mo re precise 
autocorrelation estimates are obtained as larger baseline sizes are achieved 
when considering successive subexperiments. 

According to the size of the design involved (four or five 
subexperiments), the Rn statistic will have discrete values belonging to 
intervals [4,10] and [5,15], respectively. Under the null hypothesis, Rn is 
distributed symmetrically around its expected value, which equals 7 and 10. 
Expected variances are 2.1666 and 4.1664, respectively. 

According to Robey & Barcikowski (1992), the number of simulations 
necessary for detecting deviations from the exact Type I error rate under the 
criterion α ± 1/4α, a Type I error rate ω = 0.01, and a priori power              
1-β = 0.9, is 6109 for four subexperiments (α = 0.04167) and 31739 for five 
subexperiments (α = 0.00833). Forty thousand simulations were generated 
by experimental condition in order to surpass the minimum power levels 
specified above. 

Data Analysis: Goodness of fit between theoretical frequencies and 
data obtained via simulation was assessed using a χ2 test. To ascertain 
whether the empirical Type I error rate matches the exact value, confidence 
interval ranges for Type I error rate reliability ranges were obtained using 
the criterion α ± 1/4α (where α represents the exact Type I error rate 
described above for the two design sizes). 

RESULTS 
Results obtained for five- and four-series designs were virtually 

identical. Reference will therefore only be made to the results of the analysis 
of five series designs. Figures 2, 3, 4, 5, 6, and 7 show the theoretical and 
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simulated probability distributions of the uncorrected and corrected Rn 
statistic for the different experimental conditions.  

UNCORRECTED 

CORRECTED 

 
Figure 2. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.1 ≤ρ≤ .5). Only the first value of post-treatment phase 
used to assigning ranks (five subexperiments). 
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UNCORRECTED 

 
 

CORRECTED 

 
 

Figure 3. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.5 ≤ρ≤ .9). Only the first value of post-treatment phase 
used to assigning ranks (five subexperiments). 
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UNCORRECTED 

 
 

CORRECTED 

 

Figure 4. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.1 ≤ρ≤ .9). Only the first value of post-treatment phase 
used to assigning ranks (five subexperiments). 
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UNCORRECTED 

 
CORRECTED 

 
Figure 5. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.1 ≤ρ≤ .5). Post-treatment phase means used to assigning 
ranks (five subexperiments). 
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UNCORRECTED 

 
CORRECTED 

 
Figure 6. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.5 ≤ρ≤ .9). Post-treatment phase means used to assigning 
ranks (five subexperiments). 
 
 

 



104 V. Sierra et al. 

UNCORRECTED 
 

CORRECTED 

Figure 7. Theoretical versus empirical probability distributions of 
uncorrected and corrected Rn statistic for different experimental 
conditions (.1 ≤ρ≤ .9). Post-treatment phase means used to assigning 
ranks (five subexperiments). 
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With respect to the effect of serial dependency on the empirical Type I 
error rate, it can be seen that the magnitude and the sign of the 
autocorrelation levels together with the interaction between the different 
autocorrelated levels (increasing or decreasing) affects in a different manner 
and degree, underestimating or overestimating the probabilities associated 
with the extreme values of the Rn statistic. All the experimental conditions 
show symmetry around the mean value, and the mean values are equal t o the 
theoretically expected. Variances are very different to those expected, due to 
the effect of the violation of the assumption of independence between 
scores.  

Tables 2, 3, 4, and 5 provide the values of variance, chi-square test, 
and empirical Type I error rates for extreme values of Rn statistic under the 
different experimental conditions. A greater proximity is detected between 
the empirical rate and the exact Type I error rate under conditions with 
absolute autocorrelation levels varying between 0.1 and 0.5. As for the 
distribution tails, although the probabilities obtained remain quite close to 
the expected values, conditions having autocorrelations assigned in 
increasing order tend to underestimate the Type I error rate, and those with 
decreasing autocorrelations tend to overestimate it. This result (irrespective 
of the use of a first value or the mean of the post-treatment data) becomes 
evident with greater |?| levels. 

When a single post-treatment score is used for assigning ranks with the 
uncorrected Rn statistic, Type I error rates are underestimated in those 
conditions having series with negative autocorrelation levels, between - 0.1 
and - 0.9, in increasing order (in absolute value). On the other hand, 
decreasing series of both signs (P97531, N97531, P98765, and N98765) 
overestimate the Type I error rate in those conditions having high 
autocorrelation levels. 

Considering the mean of the data in the phases, the results show very 
similar patterns to those obtained by using a single post-treatment value. 
That is to say the Type I error rate is underestimated when autocorrelation 
levels are assigned in increasing order, and is overestimated when they are 
assigned in decreasing order. When autocorrelations varied in the 0.1 and 
0.9 range, Type I error rates tended to overestimate or underestimate the 
exact rates (under the criterion α ± 1/4α). Concerning the adjustment 
between empirical and theoretical probability distributions, the test used (χ2) 
show significant differences (p < 0.05) between most experimental 
conditions and the pattern of expected results. 
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As Tables 2, 3, 4, and 5, and Figures 2, 3, 4, 5, 6, and 7 show, the 
proposed correction to the Rn statistic yields distributions that are very close 
to the expected ones. Irrespective of the use of a single post-treatment value  
 
Table 2. Rn statistic variance, chi-square statistic value and empirical 
Type I error rate for extreme values (4 and 10) of Rn statistic. Expected 
variance was 2.116. Exact interval Type I error rate was 
0.0312 ÷  0.0521 under the criterion α ± 1/4α for each tail. 
 

POST-TREATMENT VALUE Four 
Series 

UNCORRECTED CORRECTED 

Condition Variance χ2 Empirical Rate Variance χ2 Empirical Rate 

P2468 2.165 5.255 .04055 - .04222 2.045 97.708* .03652 - .03632 

N2468 1.868 566.965* A.02752 - .02845A 2.148 10.414 .04127 - .04075 

P8642 2.400 366.684* B.0536 - .04927 2.378 278.99* .0516 - .05975B 

N8642 2.473 588.937* B.0566 - .05585B 2.172 6.917 .04177 - 0411 

P1234 2.149 4.01 .0407 - .0415 2.128 16.208* .0401 - .03925 

N1234 2.127 14.823* .04107 - .03902 2.186 6.243 .0414 - .04212 

P4321 2.215 20.927* .04442 - .04312 2.203 14.399* .04272 - .04223 

N4321 2.970 11.571 .04405 - .04267 2.174 5.309 .04107 - .0412 

P6789 2.250 51.244* .0465 - .04415 2.071 61.269* .03645 - .037 

N6789 1.749 1091.615* A.02402 - .02505A 2.107 26.606* .03765 - .03995 

P9876 2.384 297.646* B.0522 - .05005 2.420 399.702* B.053 - .05357B 

N9876 2.582 1094.29* B.06112 - .06157B 2.199 11.04 .04365 - .04287 

 
Note: A and B denote infraestimation and overestimation of Type I error rate, respectively. 
*p < 0.05 
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Table 3. Rn statistic variance, chi-square statistic value and empirical 
Type I error rate for extreme values (4 and 10) of Rn statistic. Expected 
variance was 2.116. Exact interval Type I error rate was 
0.0312 ÷  0.0521 under the criterion α ± 1/4α for each tail. 
 

POST-TREATMENT MEAN 
Four 

Series 
UNCORRECTED CORRECTED 

Condition Variance χ2 Empirical Rate Variance χ2 Empirical Rate 

P2468 1.830 710.214* A.02777 - .02734A 2.046 92.730* .03652 - .03597 

N2468 2.320 159.711* .05042 - .04822 2.232 41.517* .04692 - .0417 

P8642 2.703 1887.923* B.06975 - .06822B 2.414 431.844* B.05525 - .05427B 

N8642 2.055 89.318* .0376 - .03605 2.083 48.359* .03393 - 03745 

P1234 2.010 159.720* .03392 - .0348 2.107 25.911* .03872 - .0383 

N1234 2.272 71.498* .04597 - .04702 2.172 9.473 .0404 - .04227 

P4321 2.332 178.253* .0488 - .05075 2.223 26.461* .04382 - .0442 

N4321 2.069 63.853* .03835 - .03675 2.150 11.770 .0413 - .04242 

P6789 1.989 211.500* .03297- .03285 2.108 25.009* .03912 - .0392 

N6789 2.242 36.530* .04605 - .04455 2.249 47.236* .04292 - .0461 

P9876 2.620 1348.718* B.06507 - .06257B 2.301 112.935* .0475 - .048 

N9876 2.221 26.360* .04187 - .0451 2.091 40.296* .03872 - .03875 

 
Note: A and B denote infraestimation and overestimation of Type I error rate, respectively.    
*p < 0.05. 
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Table 4. Rn statistic variance, chi-square statistic value and empirical 
Type I error rate for extreme values (5 and 15) of Rn statistic. Expected 
variance was 4.166. Exact interval Type I error rate was 
0.00625 ÷  0.0104 under the criterion α ± 1/4α for each tail. 
 

POST-TREATMENT VALUE 
Five 

Series UNCORRECTED CORRECTED 

Cond. Variance χ2 Empirical Rate Variance χ2 Empirical Rate 

P13579 4.294 32.068* .0096 - .00852 4.307 35.972* .00935 - .0099 

N13579 3.138 1602.710* A.00232 - .00227A 4.103 13.864 .00767 - .00775 

P97531 5.070 1240.465* B.01442 - .0144B 4.751 525.614 B.01295 - .01245B 

N97531 5.182 1605.139* B.0164 - .01592B 4.219 9.846 .00867- 00847 

P12345 4.078 19.136* .00767 - .00775 4.188 9.418 .00845 - .00807 

N12345 3.961 71.660* .00685 - .00762 4.157 4.373 .00832 - .0086 

P54321 4.330 52.570* .01007 - .01015 4.275 21.523* .00932 - .0094 

N54321 4.321 36.733* .0091 - .00917 4.173 9.522 .00877 - .0078 

P56789 4.265 24.715* .00895 - .00897 3.952 76.780* .00675 - .00655 

N56789 3.264 1297.019* A.00325 - .0035A 4.044 37.970* .00765 - .00817 

P98765 4.750 530.024* B.01332 - .01232B 4.656 371.930* B.0112 - .01122B 

N98765 5.126 1431.952* B.01607 - .015B 4.237 28.051* .00912 - .00845 

 
Note: A and B denote infraestimation and overestimation of Type I error rate, respectively 
*p < 0.05. 
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Table 5. Rn variance, chi-square statistic value and empirical Type I 
error rate for extreme values (5 and 15) of Rn statistic. Expected 
variance was 4.166. Exact interval Type I error rate was 
0.00625 ÷  0.0104 under the criterion α ± 1/4α for each tail. 
 

POST-TREATMENT MEAN 
Five 

Series 
UNCORRECTED CORRECTED 

Cond. Variance χ2 Empirical Rate Variance χ2 Empirical Rate 

P13579 4.421 924.276* A.00402 - .0041A 3.889 121.129* .0065 - .0061A 

N13579 4.350 90.297* .0098 - .00945 4.294 30.063* .00912 - .0084 

P97531 5.530 4850.824* .0246 - .02492 4.979 1054.193* B.01532 - .0148B 

N97531 4.034 26.697* .00765 - .00752 3.956 80.244* .00745 - 00675 

P12345 3.950 387.010* A.00485 - .00457A 3.955 68.416* .00687 - .00682 

N12345 4.373 114.320* .01045 - .00997 4.168 5.253 .00867 - .008 

P54321 4.519 500.859* B.0123 - .01287B 4.408 109.159* B.0185 - .01047B 

N54321 4.238 122.091* .00715 - .0057A 4.151 5.188 .00877 - .00832 

P56789 4.304 564.173* A.00477- .0049A 4.023 37.136* .00782 - .00737 

N56789 4.131 25.073* .00722 - .00722 4.326 49.606* .0093 - .009 

P98765 5.004 2490.584* B.01947 - .01892B 4.609 302.405* B.01192 - .0114B 

N98765 4.213 51.194* .00825 - .0088 3.938 88.573* .00657 - .00675 

Note: A and B denote infraestimation and overestimation of Type I error rate, respectively. 
*p< 0.05. 
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or the mean value of the intervention phase data, this correction minimizes 
the serial dependency effect of underestimating Type I error rate. For 
confidence intervals centered on the exact rate, only the decreasing series 
that were assigned positive autoregressive levels were significant. In 
addition, when the correction is used, less experimental conditions differ 
significantly from the expected distributions, according to χ2 (p < 0.05). 

DISCUSSION 
This Monte Carlo study shows the effects produced by the violation of 

the assumption of independence among scores, confirming the results 
obtained by other researchers on the study of serial dependency and its 
effect on statistical inference. Certain studies (Box, 1954; Crosbie, 1987; 
1989; 1993; Gardner, Hartmann & Mitchell, 1982; Scheffé, 1959; Toothaker 
et al, 1983) have yielded similar results. Statistics such as the t -test, the 
binomial test applied to the Split-middle technique, the C statistic, the 
ANOVA and the χ2 test give acceptable results only when the scores have 
moderate levels of serial dependency. On the other hand, positive 
autocorrelation overestimates the Type I error rate, and negative 
autocorrelation underestimates it. 

This investigation questioned whether the Rn statistic is robust against 
the violation of the assumption of independence. An analysis of the effect of 
serial dependence on the statistic was carried out, considering not only 
magnitude and sign of the autocorrelation levels, but also the interaction 
between different dependency levels of the series involved in their 
calculation. When identical autocorrelation levels and sign exist, the 
distribution of the statistic is not effected by presence of autocorrelation in 
the series (as statistical theory might predict). The same results are obtained 
when autocorrelation levels are identical but have alternate positive and 
negative signs. Likewise, Rn shows a highly acceptable pattern of results 
(although with significant disagreement with respect to the expected values 
when subjected to the χ2 test) when the series have autocorrelation levels 
between - 0.5 and 0.5. 

Opposite results in accordance with the sign and the increase/decrease 
of the autocorrelation levels involved in the series have been observed. 
Parallel to the results described above, the most extreme results are obtained 
with high autocorrelation levels (0.5 ≤ |ρk|  ≤0.9) where the increasing series 
overestimate and the decreasing series underestimate the error rates. The 
difference between the increasing and decreasing patterns can be explained 
by how autocorrelation affects the variance of the series. Given 
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the highest variance is obtained when autocorrelation is extreme (in absolute 
value), for a constant value of  σ2. This explains why series with 
monotonically decreasing autocorrelation yield a larger proportion of 
extreme Rn values (overestimation of the Type I error rate) than that 
expected at random on the assumption of independence. For series with 
monotonically increasing autocorrelation, the results are reversed, and a 
larger proportion of central values of Rn is obtained, that is, the exact Type I 
error rate is underestimated. In addition, as equation (5) shows, the variance 
of the series does not depend on the sign of the autocorrelation. As equation 
(5) is asymptotic, this independence can only be observed when sample size, 
or number of scores in the series, is big.  

Using only the initial score of the treatment phase is not a common 
practice. Obviously, this strategy refers to an extreme case, as it is unusual 
to have a single measurement in the B phase. In some experiments, only one 
or few scores are available in the intervention phase, for example, as 
mentioned by Revusky (1967) for the application of lethal drugs. The most 
common practice is to assess the intervention in terms of average 
performance over several time-points, instead of doing so in terms of a level 
change when intervention is first introduced. Comparing results obtained by 
means of the uncorrected procedure, the same pattern of results can be 
observed. As was to be expected, when using the mean, the conditions in 
which a negative autoregressive component was introduced are less 
sensitive to the effect of the violation of the assumption of independence 
(the negative autocorrelation effect generates series with alternating values, 
distributed symmetrically around the mean of the series). Comparatively, in 
series with positive autocorrelation, the presence of predominantly 
increasing or decreasing runs imply that a high number of sequences are 
biased with respect to the mean, especially when sample size is small. 
Consequently, when calculating the mean of the intervention phase, those 
series that are affected by negative autocorrelation provide an estimation 
closer to the mean level of the series than those affected by positive 
autocorrelation. When calculating Rn, experimental conditions affected by 
negative autocorrelation yield results that are closer to what is expected 
when scores are independent than conditions affected by positive 
dependency. 

As serial dependency affects the variability in the series, a correction 
based on the deviation shown by the data should improve the adjustment of 
the empirical Type I error rate to the exact rate. Prior analysis carried out on 
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the proposed correction for Rn revealed that, in series without serial 
dependency, the correction did not alter the empirical Type I error rate, 
which remained at the expected levels on the assumption of independence 
(Sierra, 1997). These results can also be observed in series with identical 
autocorrelation levels, whether positive or negative; the same results were 
obtained when the autocorrelations were identical but their signs where 
alternate. Under none of the conditions analyzed in this study was an 
unfavorable result detected after applying the correction to Rn. The corrected 
Rn statistic always fits better both the empirical and expected Rn statistic 
probability distribution than the uncorrected one. Therefore, we recommend 
the correction whenever serial dependence in the data is suspected. Before 
calculating Rn, it is advisable to check for serial dependence. When no 
increasing or decreasing autocorrelation values correspond to the order of 
application of the intervention, treatment effect can be assessed by the 
uncorrected Rn statistic; otherwise transforming the data routinely by means 
of the proposed correction is recommended. The aim is not to cancel out the 
distorting effects caused by the existence of serial dependence, but to 
improve the adjustment of the empirical Type I error rate to the exact rates.  

We should underline the reliable results obtained when studying the 
violations of the assumption of independence on the Rn statistic. 
Disagreements regarding the expected distribution have only been reported 
in a set of conditions that can be considered extreme, as obtaining those 
extreme patterns after random application of the treatment is u nlikely. In 
short, although levels of disagreement between the empirical and exact Type 
I error rate continue to exist (particularly in positive autocorrelation 
patterns) the proposed correction increases the robustness of the technique 
against the violation of the assumption of independence. 

RESUMEN 
Efecto de autocorrelación sobre la tasa de error tipo I del estadístico Rn 
de Revusky: Una simulación Monte Carlo. Mediante simulación Monte 
Carlo se analizan los efectos que la violación del supuesto de independencia 
provocan sobre la tasa de error Tipo I, en el estadístico Rn de Revusky. Los 
resultados de la simulación muestran la distorsión de la distribución de 
probabilidad del estadístico Rn cuando los datos presentan dependencia serial. 
Se propone y analiza una corrección del estadístico Rn que mitigue las 
diferencias entre los valores exactos y empíricos de la tasa de error Tipo I. Por 
sus favorables resultados recomendamos aplicar la corrección propuesta 
siempre que se sospeche de la existencia de dependencia serial en los datos. 
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