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The performance of the related samples t-test (a one-sample t-test applied
to the difference scores) given data which are essentially normal but
contain outliers is largely unknown. In this Monte Carlo study the
robustness of validity and efficiency for both the paired and one-sample t-
tests are investigated.  The Type I error rate and power of these tests
given a normal underlying population are compared with the performance
of these tests given a systematic range of outlier contamination in the
underlying population. Sample sizes of 8, 16, 32, 64, and 128 are
included in the design.  Robustness of validity results are explored using
regression models.  Robustness of efficiency results are expressed using a
proposed fairly stringent criterion for power. The results indicate that the
t-test demonstrates fairly stringent robustness of validity for the range of
symmetric contamination explored.  When contamination is asymmetric
the Type I error rate becomes inflated as the proportion of contamination
increases.  If robustness of validity is intact, power is not greatly affected
when medium or large effect sizes are examined.  This is not necessarily
true for small effect sizes and the problems are further exacerbated when
sample sizes are also small.  Finally, a model with practical relevance for
data analysts confronted with outlier contaminated data is developed using
a novel index of contamination. This model is compared with a model
using skewness and kurtosis values as disributional measures.

The objective of this Monte Carlo (MC) study is to provide a thorough
examination of the effect of outlier contamination on the robustness of validity
and efficiency of the related samples t-test.  The related samples t-test is also
referred to as the paired samples, repeated measures, or matched samples t-
test.  Although the paired-samples experimental design involving either
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repeated measures or matching is not as frequently used in research as
repeated measures designs involving more that two dependent groups (or
repeated measures), studies periodically appear in which the paired samples t-
test is the primary statistical test (for example, a 1993 study by Fallon et al.
investigating a psychopharmacological intervention for in hypochondriacal
concerns in the Journal of Clinical Psychopharmacology).

 The related samples t-test is also used in the post-hoc analysis of more
complex repeated measures analyses. A recent study by Zimmerman (1997)
discusses the often overlooked advantages and disadvantages of paired-
samples experimental designs. Furthermore, since the related samples t-test is
a one-sample t-test applied to difference scores, our results also contribute to
the understanding of the performance of the one-sample t-test.

Although a great deal of research has focussed on the psychometric
properties of difference scores (e.g., Zimmerman, Williams, and Zumbo,
1993; Zumbo, 1999), little is known about the impact of outlier contamination
on the robustness of the related samples t-test.  In a repeated measures design
an outlier can occur, for example, if one participant's baseline score changes
(either gain or decline) markedly more than any other participant's change.
An understanding of the impact of such outliers is necessary to ensure
appropriate interpretation of the test results.  The paired samples and one-
sample t-tests are perfectly robust to violations of normality at infinitely large
sample sizes (Bradley, 1980 a,b; Scheffé, 1959) but at some unknown sample
size this robustness begins to break down if the underlying population
distribution is not precisely normal.  A greater understanding of this
robustness is offered in this paper.

Three aspects of this study which make it particularly comprehensive
should be highlighted.  First, a systematic range of nonnormal population
distributions is generated in this study using a contamination model.  Previous
researchers investigating the one-sample t-test have explored a limited range
of nonnormal distributions, often using standard probability densities like the
exponential or Cauchy.  Second, both robustness of validity (Type I error
rate) and robustness of efficiency (power) are discussed and a method of
quantifying the degree of power robustness is suggested.  Earlier studies have
focused on only one type of robustness and no means of quantification was
provided for those studies concerned with power.  The third novel aspect of
this paper is the approach adopted in the examination and expression of MC
study results.  MC studies in this area have principally relied upon tabulation
and narrative description in the analysis of results.  In addition to tabulation,
the results of the robustness of validity portion of this study are examined
using regression techniques inspired by Harwell (1992, 1993) and
demonstrated in Zumbo and Harwell (1999).  The use of regression, while not
feasible for the power portion of this study, permits a thorough examination
of the variables and their interactions in the robustness of validity portion of
the study.  These regression techniques are an integral part of response
surface modeling (Khuri & Cornell, 1987) which has not been widely applied
to MC study results (see Zumbo & Harwell, 1999).  

The paper begins with a review of the literature pertaining to this
problem.  At the outset, the meaning of the term 'nonnormal' is clarified.
Relevant concepts and terminology from the robustness literature are reviewed
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and the concept of contamination models is outlined.  Existing studies of the
robustness of the paired and one-sample t-tests are discussed.  While the
previous robustness studies reviewed focus on the one-sample t-test, the
results apply equally to the paired samples t-test. A detailed description of the
methodology of the study is presented.  The final sections of the paper
present the results obtained in the study and discuss the implications of these
results.

RELEVANT LITERATURE

Types of Nonnormality
The faith of the research community in the tendency of populations to be

normally distributed has waxed and waned ever since the development of the
normal distribution in the early 1800's.  Mosteller and Tukey (1968) state "the
history of statistics and data analysis is a messy mixture of healthy skepticism
and naive optimism about the exact shapes of the distributions of
observations" (pp. 86-87).  It is beyond the scope of this paper to trace the
historical development of this argument over the past two centuries but the
interested reader is directed to Stigler (1973) for a fascinating description.

Both the Micceri (1989) and Stigler (1977) studies contribute to a
body of evidence which suggests that nonnormality in one form or another is
common in research data sets (Bradley, 1977; Mosteller & Tukey, 1968;
Rosenthal, 1978, Wilcox, 1995a, 1995b).  What is often unclear, is the manner
in which the data analyst should proceed given these data sets.  Are the sample
distributions essentially normal with some aberrant points or do they reflect
inherently nonnormal underlying population distributions?  In this light, a
clear difference between Stigler's data and Micceri's data can be seen.
Stigler's data are essentially normal with heavy tails and some outliers. In
contrast, Micceri's data descriptions suggest a more extreme nonnormality.
When the term 'nonnormal' is applied to both types of distributions ambiguity
results.  For the purposes of this paper two types of nonnormality are
identified.  Truly nonnormal data sets include those described by Micceri.
The expression 'normal with outliers' is used to describe data sets such as
those encountered by Stigler.

Research concerned with the effect of violations of the assumption of
normality on parametric tests can be divided into two groups based on these
two types of nonnormality.  Extensive research has been conducted to
determine what happens when samples from truly nonnormal underlying
distributions are unwittingly subjected to parametric tests (see Zimmerman &
Zumbo, 1993, for a review).  However, this research is not the main concern of
this paper.  The principle concern of this paper is with distributions that are
essentially normal but contain some outliers.  As stated earlier, in paired
samples studies, outliers may arise due to aberrant amounts of change (either
gain or decline).  Outliers may also result from data entry errors or from
atypical subject responses, which result from factors such as fatigue,
motivation or failure to understand the task or test item.  The tails of these
distributions may be heavier than the normal distribution or if most of the
errors are located on one side of the mean, the tails may be asymmetric.
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Mosteller and Tukey (1968) identify this type of nonnormality as the most
important because it is hard to detect, frequently ignored and yet drastically
effect the sample mean and variance.

Whereas a number of studies have demonstrated that outliers are
extremely common in research (Mosteller & Tukey, 1968; Rosenthal, 1978),
relatively few studies of the paired samples or one-sample t-test which
investigate robustness to this type of nonnormality were located.  Accordingly,
there is a pressing need for more systematic study of the impact of these
distributions on the test performance.

Key Concepts in Robustness
The term 'robust', introduced by Box in 1953, refers to tests which are not

greatly affected by violations of their assumptions (Boneau, 1960).  At
present, researchers typically refer to two types of robustness: robustness of
validity and robustness of efficiency.  Zimmerman and Zumbo (1993) and
Sawilowsky and Blair (1992) among others have stressed the importance of
considering both types of robustness in a comprehensive description of a
statistical test.  In addition, researchers have begun to label statistical
procedures not simply as robust or nonrobust, but also to provide a measure
of the degree of each type of robustness.  These are the key concepts of
robustness, which must be explored in order to thoroughly examine the
behavior of the t-test in the presence of outliers.

Robustness of validity is said to occur if the accuracy of a statement
made from a statistical procedure is not highly dependent on the assumptions
of the underlying model being perfectly met (Wainer, 1982).  Robustness of
validity exists if the probability statements (expressed as the Type I error rate)
made under violation of the assumption of normality are as accurate as those
statements made when samples are drawn from the normal population.  The
robustness of validity issue is stated in terms of the alpha value as follows: Is
the alpha value obtained from the t-test when the assumption of normality is
violated the same as that obtained when this test is conducted from normal
distributions?

A measure of the degree of robustness of validity must also be explored.
Bradley (1978) proposes that a quantitative definition of robustness of validity
can be achieved by stating, for a given alpha value, the range of simulation-
based empirical Type I error rates for which the test would be considered
robust.  To exemplify this approach Bradley (1978,1980b) identifies three
different levels of robustness which he terms fairly stringent, moderate and
very liberal.  The fairly stringent criterion is defined as the situation when the
absolute value of p minus alpha is less than or equal to alpha divided by 10.
Thus for an alpha level of .05, the fairly stringent criterion for robustness of
validity would require obtained values of p to lie between .045 and .055.  The
moderate criterion is defined as the situation when the absolute value of p
minus alpha is less than or equal to alpha divided by 5.  Accordingly, for an
alpha level of .05, the moderate criterion would require the obtained values of
p to lie between .04 and .06.  Bradley's very liberal criterion is defined as the
situation when the absolute value of p minus alpha is less than or equal to
alpha divided by 2.  For an alpha level of .05 the very liberal criterion would
require the obtained values of p to lie between .025 and .075.  Bradley's
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criteria for robustness of validity are applied to the Type I error rates in this
study.

Robustness of efficiency refers to the power of a statistical procedure to
find significant differences when the underlying assumptions are violated.
Robustness of efficiency is said to exist when the power of a statistical
procedure is the same under violation of the assumption of normality as it
would be when normal distributions are used.  To determine robustness of
efficiency the power of the t-test obtained when the sample is drawn from a
nonnormal population is compared with the power obtained when the sample
is drawn from a normal population.  The researcher begins by calculating the
Type II error rate of the test, denoted as beta, and defined as the failure to
reject the null hypothesis when it is false.  Beta can be calculated once the
sample size, alpha value and effect size (ES) are specified.  Power is then
calculated as 1-beta and the obtained value is the probability of rejecting a
false null hypothesis.

The sample size and alpha value are easily specified in a Monte Carlo
study.  However, the choice of an appropriate ES is more problematic.  In
applied research studies substantive theory is used in determining the ES, in a
MC study the choice of ES is more abstract. Cohen (1992) has defined small,
medium and large ES indices for a number of different statistical tests.  For
the independent samples t-test the ES index is referred to as 'd' and is
calculated by finding the difference between means and dividing by the within
population standard deviation.  The same process can be applied to the paired
samples t-test.  The resulting values are then classified as small (d=. 20),
medium (d=. 50) and large (d=. 80) ESs.  The medium ES for the t-test is
equivalent to one half of a standard deviation and the small and large ESs are
equal distances above and below the medium ES.  In this study the power of
the t-test for all three ESs is compared for samples from normal and
nonnormal population distributions. At this point it is important to distinguish
the measure of effect size (ES) from the non-centrality parameter used in
directly evaluating the power via a non-central distribution function and a
corresponding non-centrality parameter. For example, in classic examples of
evaluating the power of a F-test via a non-central F distribution with a
corresponding non-centrality parameter, one specifies the non-centraliy
parameter and then computes one minus the cummulative probability of the
test statistic's distribtion function, such as the F-test. In this manner, using the
complement of the cummulative (non-central) distribution one can create a
power chart for various values of the non-centrality parameter of the test
statistic (e.g., the F-test). Unfortunately, this procedure is most ofen only
useful under conditions where the test statistic's assumptions are true making
it difficult to use in many situations where one is exploring the robustness of
the test stastistic to assumptional violations, like non-normality. Therefore, it is
importantly to note that evaluating the complement of a non-central
distribution function is different than what is done in Monte Carlo simulation
studies. In the typical Monte Carlo simulation we are mechanically duplicating
the scientific use of hypothesis testing, while controlling the population values
of dependent variable(s) and counting the number of false rejections over the
replications. In this context we are not making use of a non-central
distribution function to compute the statistical power directly. MC studies are
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a more indirect mechanical method of computing the power against a non-zero
effect size (i.e., a population mean, or in research settings with more than one
group, the mean difference).

No standard method of quantifying robustness of efficiency was evident
in the literature.  For the purposes of this study a fairly stringent level of
robustness of efficiency is suggested.  This fairly stringent criterion is defined
as a power difference of + or - 10% between the normal and contamination
populations.  This criterion is similar to Bradley's criterion for robustness of
validity and is suggested as a useful starting point for quantifying robustness
of efficiency.  

Contamination Models
The data for this study were generated using contamination models, also

known as mixed normal distributions or compound normal distributions.  A
contamination model is created by drawing the majority of data points from a
parent distribution, denoted Pp and the remainder from a contamination
distribution, denoted Pc.  For example, Pp may be normal with a mean of 0
and a standard deviation of 1.  Pc may have the same mean but a different
standard deviation than Pp.  In this case the contamination is symmetric.
When Pc has a different mean than Pp, the contamination is asymmetric.
Increasing the difference between the mean of Pp and Pc creates greater
degrees of asymmetric contamination.  In addition, greater degrees of outlier
contamination can be created by increasing the proportion of sampling from
Pc.

From this description of a contamination model, three parameters of
contamination can be defined.  The first parameter is the proportion of
sampling from Pc.  The second parameter is termed the mean shift and refers
to the difference between the mean of Pp and the mean of Pc.  The third
parameter is the standard deviation of Pc.  These three parameters are
independent variables in this study and are selected to create a systematic
range of symmetric and asymmetric contamination.   

The notation used to describe contamination distributions is outlined by
Mosteller and Tukey (1968).  For example, if a parent distribution with a
mean of 0 and a standard deviation of 5 is used for 90% of the sample values,
it is denoted as N(0,5), p=.9.  The contamination distribution with a mean of 1
and a standard deviation of 15 would be denoted N(1,15), 1-p=.1.  Caution
should be exercised when reading this notation in published studies since
some researchers use the second value in the parentheses to refer to the
variance in the contamination distribution rather than the standard deviation.
This can create confusion when reviewing these studies.

The importance of contamination models as population models in a
number of research settings is discussed by Blair and Higgins (1980).  These
authors point out that mathematical statisticians have suggested mixed normal
distributions as a model for outliers as they may occur in various research
domains.  Thus, the use of a contamination model is consistent with the type
of nonnormality being explored in this paper.  In addition, the use of a
contamination model provides a panoramic view of the performance of the t
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test because a continuous range of nonnormal distributions can be generated
by changing the parameters of the contamination distribution.

Evidence of Robustness for the t-Test
While a large number of studies have been published for the independent

samples t-test, few studies of the paired samples or one-sample t-test were
found.  Those studies which could be located are divided into two groups in
this literature review; those dealing with robustness to truly nonnormal
distributions and those dealing with robustness to outliers.  By far the
majority of studies belong to the former group and these studies are reviewed
because they provide some insight into the factors to consider in the design of
a study of robustness to outliers.  

In a simulation study, Chaffin and Rhiel (1993) investigated the effect of
skewness and kurtosis on the Type I error rate of the one-sample t-test.  No
significant impact of kurtosis was found.  However, with respect to skewness
they showed that two-tailed tests are more appropriate than one-tailed tests
given the levels of skewness investigated.  For extreme skewness, two-tailed
tests are only appropriate for large sample sizes and an alpha of .01.  For
moderate skewness, two-tailed tests have adequate robustness of validity at the
.05 level even if the sample size is small.  However, Lee and Gurland (1977)
showed analytically that the Type I error rate of the one-sample t-test may
differ greatly when sampling from distributions which have the same
skewness and kurtosis.  The authors used three different contaminated normal
distributions all of which produce distributions with the same mean, variance,
skewness, and kurtosis.  The Type I error rates for these three distributions
differed as a function of the fifth and sixth moments of the distributions.  This
paper demonstrates that skewness and kurtosis "provide only partial
information about a distribution, but it is the whole structure of the nonnormal
distributions which may effect the behavior of the t-test" (Lee and Gurland,
1977; p. 806).  Investigations of skewness and kurtosis may provide a limited
image of the robustness of the one-sample t-test.  Other aspects of
nonnormality must be considered and the Chaffin and Rhiel (1993) results
should be interpreted with some caution.

The most extensive series of studies of robustness to truly nonnormal
distributions is the work of Bradley (1977, 1978, 1980a, 1980b, 1980c).
These studies used a distribution of response time data which the author
described as L-shaped. Although he did not treat it as such, it should be noted
that Bradley's (1977) L-shaped distribution can be conceptualized as a
generalization of a contamination distribution which has several contaminating
populations with varying proportions of contamination, location, and scale
The performance of both the one-sample and the independent samples t-test
was investigated using this data.  Bradley compared the performance of the t-
test when sampling from this L-shaped distribution with the performance
when sampling from a bell-shaped (essentially normal) distribution.  He
identifies four factors as important in investigations of the one-sample t-test:
the size of alpha, the location of the rejection region, sample size, and the
shape of the population from which the sample was drawn (Bradley, 1978).    

With reference to alpha values, Bradley (1978) demonstrated that the left
tailed one-sample t-test did not meet the liberal criterion for robustness of
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validity until N=256 at an alpha of .05 and did not meet this same liberal
criterion at any N less than 1024 at alphas of .01 or .001.  As the alpha value
is decreased from .05 to .001 the robustness of the one-sample t-test
diminishes.  Similar results were obtained for the L-shaped distribution under
various conditions in the Bradley 1980b and 1980c studies.  These results
prompted Bradley to conclude that an alpha value of .05 is the most
robustness conducive alpha value.  With reference to the location of the
rejection region, Bradley investigated three situations in his studies: left-tailed,
right-tailed and two-tailed rejection regions.  He concludes that for the
symmetric bell shaped distribution robustness is worse for two-tailed than for
one-tailed t-tests. However, for the L-shaped distribution robustness for a
two-tailed test is either superior to or intermediate between the robustness of
right-tailed and left-tailed tests at the same alpha level.  Bradley's results with
reference to rejection region may be highly specific to the L-shaped
distribution he explored but it is useful to note that when a distribution is
markedly skewed the location of the rejection region may be an important
factor in establishing the robustness.

Bradley's studies investigate sample sizes of 2, 4, 8, 32, 64, 128, 256, 512,
and 1,024. In general he concludes that no N value below 512 ever brought
the simulation-based empirical Type I error rate to within 10% of the alpha
value for any combination of rejection regions and alpha values when
sampling from the L-shaped population (Bradley 1980a).  In addition, a
sample size as great as 128 was required to bring the deviation of the
simulation-based empirical Type I error rate from alpha to within 50% of
alpha for the two-tailed test at an alpha of .05.  He states "it clearly was not
typical for the true probability of a Type I error to become statistically
indistinguishable from alpha at small or moderate N values" (1980b, p.335).  
Furthermore, the obtained simulation-based empirical Type I error rates did
not always deviate from the proposed alpha values in a conservative manner,
as was observed by Boneau (1960) for the independent samples t-test when
sampling from the exponential distribution.  Rather, Bradley found that the
simulation-based empirical Type I error rates were sometimes far greater than
the alpha value and sometimes far less.

The fourth factor identified by Bradley as important in robustness studies
of the t-test is the shape of the population from which the sample is drawn.
The only nonnormal shape which he investigated is the L-shaped distribution.
He concludes that the t-test is nonrobust under all circumstances when
sampling from this distribution unless sample sizes are quite large.  Bradley's
results clearly indicate that very liberal definitions of robustness are obtained
with this distribution only when sample sizes exceed 128 and are never
achieved under some combinations of conditions with samples as large as
1024.  There is some suggestion in his conclusions that these nonrobust
results are the result of the highly skewed nature of the L-shaped distribution.
In support of this contention, Sawilowsky and Blair (1992)  demonstrated that
while the independent samples t-test is reasonably robust for a number of
nonnormal distributions, decidedly nonrobust results were obtained when
distributions with extreme skew were used.  This situation may also apply to
the one-sample t test.
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Two general conclusions about the robustness of the t-test are made by
Bradley as a result of this series of studies.  First, Bradley states that
"robustness was strongly influenced by all of the factors investigated, and
interactions among the influencing factors were often strong and complex"
(1980b, p.333).  Bradley also concludes that any statement concerning the
robustness of a statistical test must be highly qualified and include the precise
conditions under which the robust results were obtained.  This seems like
prudent advice in light of the varied results obtained under each of the
conditions in Bradley's studies.

While Bradley's series of studies is arguably the most thorough
exploration of the robustness of the t-test, there are two important limitations.
First, the only nonnormal population he has considered is the L-shaped
distribution.  This distribution is clearly a truly nonnormal distribution and a
researcher confronted with such a distribution would be compelled, in theory
at least, to use nonparametric procedures.  The second limitation of this study
is that Bradley has examined only the Type I error rate.  As stated earlier, a
thorough examination of the robustness of parametric tests must include a
discussion of the robustness of efficiency of the test through an examination
of power.

The second group of studies, those exploring robustness of the t-test to
the presence of outliers is of greater relevance to this paper.  However, apart
from the analytical work of Lee and Gurland (1977) which was discussed
earlier, no systematic studies of this type of nonnormality were located for the
paired or one-sample t-test.  Indeed, the absence of studies is further
testimony to the need for this study.

The Contamination Index
When using contamination models in a simulation study an awkward

situation arises.  The three parameters of contamination (mean shift, standard
deviation of Pc, and proportion of contamination) are well suited to creating a
systematic range of outlier contamination.  However, these parameters are of
no practical use for the data analyst confronted with a data set containing an
unknown degree of contamination.  That is, a data analyst has no way of
knowing the values for any of these parameters for a given data set.  Thus, the
parameters of contamination are useful variables for the methodologist
seeking a better understanding of the robustness of a test but they have no
direct relevance for data analysts because these parameters cannot be
estimated from sample data.  

Researchers who are confronted with a data set containing an unknown
degree of contamination often adopt an implied continuity principle when
interpreting the results of a statistical analysis (Lind & Zumbo, 1993).  That
is, it is often assumed that data that deviate only slightly in form from the
normal curve, will then only slightly distort the usual estimates of means,
variances, correlations, and associated hypothesis tests.  Likewise, with
increasing departure from an underlying normal curve, the greater it is
assumed, will be the inaccuracy of the computed statistics.  Over the past
several decades, research in statistics has demonstrated that such a continuity
principle is invalid.  The classical estimates of mean, variance, and correlation
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have been shown to be highly sensitive to even small departures from an
underlying normal curve.  A single outlier, for example, can strongly bias
these statistics and thereby provide misleading or invalid results (Huber, 1981;
Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Lind & Zumbo, 1993;
Zimmerman & Zumbo, 1993).

The poor performance of classical statistics in the presence of small
departures from normality has led some statisticians (Hogg, 1977; Tukey,
1977) to warn that the routine use of classical statistics is unsafe.  They
recommend that classical estimates only be used in conjunction with
alternative methods that are robust with respect to departures from normality.
Although there is an increasing amount of statistical software that incorporates
robust methods, these methods are seldom used in applied research. This is, in
part, due to the lack of operational guidelines which inform the researcher as
to their use.

As Lind and Zumbo (1993) state, a general procedure for using robust
statistics in practice has been suggested by Hogg (1977) and Tukey (1977),
henceforth referred to as the Hogg-Tukey procedure.  This procedure involves
three steps.  The first step is to conduct the usual classical analysis of the data.
The second step is to perform an analysis of the data using robust statistics.
Finally, the results obtained from these two analyses are compared.  If the
results are similar, then Hogg and Tukey recommend reporting the results
associated with the classical analysis in the usual manner.  If the results
obtained from classical and robust methods fail to agree, then the data should
be re-examined for the presence of errors.  If obvious errors are found, they
can be corrected and the data re-analyzed.  If obvious errors are not found
then Hogg and Tukey recommend reporting the results from the anlaysis
using robust statistics.

An example of the above procedure will help in motivating the
discussion.  Let us consider the problem of computing a confidence interval
around a sample mean.  A researcher confronted with fifty observations would
compute the classical arithmetic mean, and due to reasons of optimality
(Huber, 1981; Lind & Zumbo, 1993) an M-estimator such as the bi-weight
(Beaton & Tukey, 1974).  The arithmetic mean and the bi-weight are then
compared.  Due to sampling instability, the two estimators are not necessarily
expected to be equal.  However, there are presently no available guidelines as
to how different the bi-weight and arithmetic mean should be before the
robust estimator should be used.  Unfortunately, the enormous contribution
that the development of robust statistics can make to the scientific community
is hampered by the lack of clear, practical, guidelines that can be easily
employed by the scientist.  Furthermore, one does not want to use the robust
estimator exclusively because it is less optimal than the arithmetic mean when
normality exists (Huber, 1981).  A decision-making mechanism needs to be
developed which can be easily computed from the data at hand and can be
standardized for use with any sample (i.e. it should take into account the
variability in the sample).  The contamination index (CI) proposed in this
paper may provide data analysts with an indicator of the extent of
contamination in a data set.

The CI can be easily computed using the arithmetic mean and the bi-
weight.  Both the arithmetic mean and the bi-weight are available options on
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many standard statistical packages such as SPSS or SAS.  Standardization
can be achieved by using a commonly recommended robust estimate of the
standard deviation, referred to as the median absolute deviation (MAD) and
calculated using
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where: imed  denotes the median of a sample; ix denotes a score in the

sample; and 0.6745 is the constant value required to make the meds  unbiased
(Huber, 1981).  The MAD is the median value of the deviation of each score
from the median of the sample and is easily calculated by applying a few
simple mathematical procedures to the median which is already generated by
standard statistical packages.  Because the contamination index is
standardized in this manner, a researcher can compare the index from one
sample of data to another.

The proposed contamination index (CI) is calculated using
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where: cMean denotes the classical mean; rMean denotes the robust mean;

and meds  denotes the median absolute deviation.  The numerator of this
formula is the absolute value of the difference between the classical arithmetic
mean and a robust estimate of the mean. Equation 2 represents a standardized
deviation of the robust and classical estimators, and intuitively reflects the
amount of contamination by outliers in a sample of data.  Furthermore, CI is a
data analytic measure (Mosteller & Tukey, 1977) and does not appear to have
a workable mathematical distribution theory.

Therefore, CI provides the data analyst with a single number representing
the degree of contamination present in a given data set.  The larger the
magnitude of the index of contamination the greater the degree of outlier
contamination.  Analysis of the results of this paper will show that this single
number may be a more efficient method of characterizing the nonnormality
present in a sample than the use of measures such as skewness and kurtosis.  

RESEARCH QUESTIONS

Three research questions are examined in this paper using four
dependent variables and four independent variables.  The dependent variables
are: Type I error rate (i.e. robustness of validity), and three levels of power
(i.e. robustness of efficiency) corresponding to the small, medium, and large
ESs discussed earlier.  The first three independent variables are the parameters
of the contamination model described earlier: the proportion of contamination,
the mean shift and the standard deviation of the contamination distribution.
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The values of these three variables are selected to create varying degrees of
outlier contamination.  There are three levels of each of these independent
variables.  The fourth independent variable is sample size.  Sample sizes of 8,
16, 32, 64, and 128 are included in the design.  

The first research question is: How is robustness of validity (Type I
error) affected by variations in the parameters of the contamination
distribution?   Results for the first research question are expressed using
Bradley's criterion for robustness of validity followed by fixed effects
regression modeling.  Harwell (1992) and Zumbo and Harwell  (1999)
suggest that the results of MC studies can be more readily understood by the
use of regression techniques.  They point out that numerous tables of values
are difficult to synthesize in a meaningful manner.  In addition, the use of
narrative description can result in ambiguity and misinterpretations.  Harwell
states "the problem is one of correctly modeling variation in the empirical
Type I error rates and power values as a function of study characteristics.
Educational and psychological researchers would be well served by
summaries of the effects of assumption violations for a test that would result
from such modeling" (1992, p.300).  Logistic regression has also been
suggested for the analysis of MC study results.  Harwell (1992) has shown
that logistic regression techniques provide similar results to the fixed effects
regression models.  Fixed effects regression techniques are used in this study
because they are more widely understood than logistic regression.

The second research question is: How is robustness of efficiency
(power) affected by variations in the parameters of the contamination
distribution?  The fixed effects regression models used for the analysis of the
robustness of validity are more problematic for the analysis of power.  The
reasons for this are outlined in the presentation of results.  Accordingly, the
second research question is examined using a fairly stringent criterion for
robustness of efficiency.

The third research questions is: What distributional measures (e.g.,
skewness, kurtosis, contamination index) are useful for the data analyst
confronted with potentially outlier contaminated data?  Regression modeling
techniques with skewness, kurtosis, and the contamination index (CI) as
explanatory variables are presented in this part of the study.

METHODOLOGY

Selecting Parameter Values
At the outset of this study, the values for the parameters of the

contamination distribution were selected to ensure that a range of outlier
contamination in the sample would result.  The selection process was guided
by previous studies which used contamination models.  The values selected by
Rasmussen (1985) which included a mean shift of 33, a standard deviation of
10 for the Pc and a 5% proportion of sampling from Pc were considered too
extreme to have practical application in research settings.  In contrast,
Mosteller and Tukey (1968) provide an example of a distribution which is
sampled at 1% from a contamination distribution with a mean of 0 and a
standard deviation of 3 (relative to the parent with a mean of 0 and standard
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deviation of 1).  This contamination model is used by the authors to determine
the relative efficiency of some statistical procedures.  Mosteller and Tukey
describe this contamination as 'extreme' within the context of their example.
Given this wide range of 'extreme' degrees of contamination, it was difficult to
choose the values of the parameters for this study.  Ultimately, the parameter
values used by Blair and Higgins (1981) were selected and then slightly
modified to create equal intervals between the levels of each parameter.

Three levels of each of the parameters of contamination were chosen.
For proportion of sampling from the contamination distribution, values of 1%
(.01), 8% (.08) and 15% (.15) were selected.  For mean shift, values of 0, 1.5
and 3.0 were selected. The mean shift value of 0 indicates symmetric
contamination while the other two mean shift values represent increasing
degrees of asymmetric contamination. For standard deviation of the
contamination distribution values of 0.5, 1.75 and 3.0 were chosen. The
standard deviation of 0.5 for Pc is actually less than the standard deviation of
1.0 in the parent distribution. This means that the spread of the contamination
distribution is actually less than the spread of the parent distribution. Very few
outliers are likely to occur in this situation. The standard deviations of 1.75
and 3.0 for Pc are greater than the standard deviation in the parent distribution
and have the effect of introducing increasing degrees of outlier contamination
into the distribution. The values selected for parameters of the contamination
model are shown in Table 1.

Table 1 establishes the basic design of this study.  Each numbered box in
the table represents a distinct population with a specific combination of
parameters of contamination. A total of 27 different degrees of outlier
contamination have been generated in this study.  Each population can be
described in terms of the parameters associated with that population.  For
example, population 2 is a distribution which has a proportion of sampling
from the contamination distribution of .01 or 1%. The mean shift for this cell
is zero so the contamination is symmetric. Finally, the standard deviation of
the contamination distribution is 1.75 relative to the parent distribution with a
standard deviation of 1.  In contrast, population 27 is a distribution which has
a proportion of sampling from the contamination distribution of .15 or 15%.
The mean shift for this population is 3.0 so the contamination is asymmetric.
The standard deviation of the contamination distribution is 3.0.  For each of
the 27 populations, five cells are included.  to these contaminated populations,
a normally distributed population is included in the design. Each cell
represents one of the five sample sizes in the design.  In addition.

 The performance of each of the  contaminated populations is compared
to the performance of the normal population throughout the study.  It is
important to note that when considering the paired samples t-test herein, the
simulation model is designed so that difference scores follow each of the
investigated contaminated distributions.

In our simulation design, we are not making any statement concerning the
marginal distributions of each set of scores, ie. the initial scores before the
difference is computed.
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Table 1. Parameter values and resulting population distributions in
study.

Standard Deviation of Pc
Proportion Mean Shift n 0.5 1.75 3.0

.01 0 8
16
32 1 2 3
64
128

1.5 8
16
32 4 5 6
64
128

3.0 8
16
32 7 8 9
64
128

.08 0 8
16
32 10 11 12
64
128

1.5 8
16
32 13 14 15
64
128

3.0 8
16
32 16 17 18
64
128

.15 0 8
16
32 19 20 21
64
128

1.5 8
16
32 22 23 24
64
128

3.0 8
16
32 25 26 27
64
128
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 Generation of the Data
Pseudo random numbers were generated using a well-known and

thoroughly tested prime-modulus multiplicative congruential generator
described by Lewis and Orav (1989).  The pseudo random numbers were
transformed to a normal distribution using the Box-Muller method (1958).
Evidence that the Box-Muller transformation is functioning as expected can
be found in the values obtained for the normal distribution1.  The mean,
skewness, and kurtosis values for the normal distribution in theory should be
close to zero.  The values obtained for a sample size of 15,000 in the
simulation were .0110, -.0253, and -.0119 respectively.  The expected number
of outliers for a sample size of 15,000 would be about  104.  The number of
outliers for the normal population in the simulation was 99.  Each of the 27
contaminated populations was created by applying a transformation to the
normal distribution.  This transformation applies the mean shift and standard
deviation of the specific contamination distribution to the normal distribution
for the appropriate proportion of sampling from  Pc (i.e. .01, .08, or .15).  The
accuracy of this method was tested by generating 15,000 cases for each of the
contaminated distributions and for the normal distribution.  The mean,
skewness and kurtosis values were calculated for each of the populations from
these 15,000 values.  In addition, stem and leaf diagrams were plotted using
SPSS.  The hardware which was used for the simulation was unable to
generate stem and leaf diagrams for samples greater than 15,000.
Undoubtedly even greater accuracy would be demonstrated if larger sample
sizes were used.  This procedure generates a list of outliers for each stem and
leaf diagram.  Outliers or extreme values are identified, arbitrarily, in this
program as beyond about 2.7 standard deviations from the mean.     

Evidence that the proportion of contamination was increasing as expected
in the study can be found by comparing the total number of outliers for
populations 5, 14, and 23.  Population 5 is contaminated at 1% and contains
146 outliers.  Population 14 is contaminated at 8% and contains 282 outliers.
Population 23 is contaminated at 15% and contains 443 outliers. These three
populations have the same values for all parameters except proportion of
contamination.  Thus, the number of outliers increases as the proportion of
contamination increases.  It is important to recognize that the number of
outliers contained in contaminated distributions provide only a crude
indication of this type of nonnormality.  The difficulty arises from the fact that
outliers are identified by SPSS as data points beyond 2.7 standard deviations
from the mean.  However, the standard deviation is inflated when
contaminated populations are being explored and the number of outliers is
underestimated.

                                    
1 As was pointed out by one of the reviewers Brately, Fox, and Schrage (1983, p. 210-211)
suggest that care must be taken when using the multiplicative congruential pseudo-random
number generator in conjunction with the Box-Muller method to generate normal random
deviates.  However, as also suggested by the reviewer, an exploration of pairs of normal
deviates shows that the simulation method is valid for our use and that Brately et al.’s
words of caution do not apply. The conclusion is comforting given that our simulation
methodology is standard in the discipline.
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Evidence that the mean shift parameter is functioning in the specified
manner can be found by comparing the mean values for populations 20, 23
and 26.  For population 20 the mean shift is 0 and the obtained mean is -
.0053.  For population 23 the mean shift is 1.5 and the obtained mean is
.2183.  For population 26 the mean shift is 3.0 and the obtained mean is
.4638.  Clearly, as the mean shift increases the value obtained for the mean
also increases.  Since the effect of increasing the mean shift is to create
asymmetry, the number of outliers in each tail of the distribution is another
useful method of assessing the effectiveness of the algorithm.  For population
20 the mean shift is 0 indicating symmetric contamination.  This population
has 76 outliers in the left tail and 134 in the right tail.   For population 23 the
mean shift is 1.5 and 48 outliers are found in the left tail versus 395 in the
right tail.  For population 26 the mean shift is 3.0 and 12 outliers are found in
the left tail versus 1017 in the right tail.  Populations 20, 23, and 26 are
identical for every parameter except the mean shift.  Once again, it must be
noted that the number of outliers contained in contaminated distributions is
only a rough indication of this type of nonnormality.  Despite this limitation,
increasing degrees of asymmetric contamination are evident when comparing
these three populations.  These values indicate that the method of generating
symmetric and asymmetric contamination is functioning as intended.
Additional support for the methods used to generate the contamination models
in this study is found in Tukey (1960) who demonstrated the analytical
accuracy of these models.  Having established that the method of data
generation is sound the next step in the methodology is to determine the Type
I error rates.   

Individuals interested in the computer code used in the simulation should
contact the first author.

Determining Type I Error Rates
The process of conducting the t-tests in this study is described for one

cell in the expermental design (see Table 1).  Consider population 1 with a
sample size of eight.  One sample of 8 values is drawn using the
contamination model.  A t-test is calculated to determine if the mean of this
sample differs from the population mean which is set at 0.  If the sample mean
differs significantly, then a Type I error has occurred and the counter is
incremented by one.  The critical values for the two-tailed t-test were entered
into the program for each of the five sample sizes at an alpha value of .05.  A
two-tailed test was chosen to allow the researcher to identify a significant
result in either direction.  Less information is available to the researcher with
the use of a one-tailed hypothesis test.  In addition, the use of a one-tailed test
enhances the power of the test.  While this may be desirable to a researcher
looking for significance, it is not advantageous in a simulation study. The
arguments in support of the use of two-tailed hypothesis testing are clearly
outlined by Pillemer (1991).

This process is repeated 2000 times for sample size 8 from population 1.
The total number of Type I errors on the counter after the 2000 replications
have been completed is then divided by the number of replications to provide
the probability of a Type I error.  This number is recorded as one data point
for that cell in the design.  However, each cell in the design requires more than
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one observation in order to estimate the parameters and test the fit of the
regression model.  Therefore, this process is repeated 15 times for each cell.
Thus, the Type I error rate obtained for each cell in the design is based on 15
batches of 2000 replications of the t-test. The accuracy of the simulation
program for Type I error was tested by examining the results for the normal
population.  The Type I error rate was close to the expected value of .05 in all
cases.   This indicates that the program functioned as intended.

Note that due to the type of outlier contaminatoin being modeled, for
some of the cells in the experimental design the population distribution had to
be centered to a mean of zero so that one could study the Type I error rates.
Of course, this centering was also helpful in the statistical power portion of
this project because we had control over the specified levels of effect size in
studying the statisical power of the test. Therefore, all of the populations in
Table 1 were centered to zero and then either the Type I error rate was studied
or a specified effect size was modeled to study the statistical power.

Determining Power Values
Power values were calculated for three ESs: small (d=.20), medium

(d=.50), and large (d=.80).  ESs were introduced into the program by
offsetting each sample value by the amount of the effect size.  As in the Type I
error program, a counter is created at the outset and set to zero.  The t-test is
then conducted.  A significant result indicates that the difference has been
detected and the counter is incremented by one.  The power of the test to
detect a given ES is determined by dividing the number on the counter by the
number of replications in the design.  As with the Type I error program, 15
batches of 2000 replications were conducted for each cell in the design.  

The accuracy of the simulation algorithm for power was tested using the
values obtained with the normal population.  The expected power values for
the one-sample or paired t-test were calculated using the method outlined in
Cohen (1977, pp. 46-48).  This method provides an expected power value for
each sample size at each of the three ESs being investigated assuming that the
underlying population is normally distributed.  In all cases the power value
obtained for the normal population in the simulation was within rounding
error of the expected value calculated from Cohen.  This indicates that the
power portion of the simulation algorithm functioned as intended.

Obtaining Population Values for the Contamination Index,
Skewness and Kurtosis

The previous sections of the methodology have described how the Type I
error and power values were obtained in the study.  It was also necessary to
obtain a value for the contamination index (CI) for each of the 27 populations
in the study.  These population analog values were obtained using samples of
30,000 values for each of the 27 contaminated populations as well as the
normal population.  To calculate the population analog values the median
absolute deviation was determined for each population in the design by
applying Equation 1 to the median value computed from a sample of 30,000
values.  The classical mean for each of the populations was obtained as well as
the robust mean (biweight with a weighting constant set to 4.685) using
SPSS.
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Table 2. Values for the Contamination Index, Skewness and Kurtosis
for Each Population Distribution.

Population Contamination Index Skewness Kurtosis
1 0.000899333 .0035 -.0073
2 0.005081167 -.0297 .1810
3 0.002490768 -.0709 .9547
4 0.007505417 .0255 -.0920
5 0.012909570 .1232 .4473
6 0.099360828 1.2168 6.3921
7 0.033476657 .1940 .3957
8 0.028204539 .3923 1.5040
9 0.022417496 .7682 5.4638
10 0.006383281 -.0366 .2635
11 0.000678376 .0139 .4733
12 0.006388022 .1354 5.4500
13 0.001822973 -.0214 -.2901
14 0.071743140 .5299 1.4138
15 0.093086676 1.2596 6.8248
16 0.178228205 .5610 .3626
17 0.190677675 1.2486 3.2055
18 0.197227215 2.0290 8.7864
19 0.001563411 .0037 .3052
20 0.003823077 -.0030 .8766
21 0.002680132 .0041 4.8745
22 0.015724013 -.1027 -.3556
23 0.121087101 .7088 1.5650
24 0.168975390 1.2283 5.0908
25 0.217835562 .5146 -.2602
26 0.297612716 1.2162 2.1692
27 0.341866350 1.8664 5.6331

normal 0.002831484 -.0253 -.0119

These values were then entered into the formula for the CI (Equation 2).  The
resulting CI is a single number which indicates the degree of outlier
contamination present in each of the populations.  These values are provided
as Table 2.

The accuracy of the method for calculating CI was assessed in three
ways.  First, the obtained population analog values should increase as the
degree of outlier contamination in the population is increased.  This was
found to occur.  Second, the CI was calculated for the normal distribution.
The expected value of the index for the normal distribution should be very
close to zero.  This was found to occur.  The skewness and kurtosis values
obtained for samples of 15,000 values are also shown in Table 2. Comparison
of these values with the CI also provides evidence that the program for
calculating the CI values functioned as intended.
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Table 3.  Type I Error Rates for Each Population Distribution Under
Study.

Standard Deviation of Pc
Proportion Mean Shift n 0.5 1.75 3.0

.01 0 8 .054633 .053733 .056533*
16 .051433 .051300 .048600
32 .047733 .049567 .050467
64 .050267 .049967 .050567
128 .051267 .051900 .049500

1.5 8 .054567 .052567 .052633
16 .052900 .051333 .050700
32 .047800 .051767 .047867
64 .049167 .049033 .049533
128 .051267 .051400 .047333

3.0 8 .052833 .052967 .052900
16 .050700 .052867 .047333
32 .048600 .049767 .050400
64 .047500 .051200 .049500
128 .051133 .050933 .049133

.08 0 8 .054100 .053167 .049633
16 .049400 .047967 .048467
32 .049267 .048867 .047000
64 .048933 .051200 .050167
128 .050367 .050933 .051033

1.5 8 .056033* .051400 .052967
16 .051200 .051500 .052500
32 .050000 .051700 .053733
64 .049433 .049167 .053100
128 .047733 .049100 .054933

3.0 8 .058667* .063233** .064233**
16 .056600* .063500** .068167**
32 .051433 .058400* .063800**
64 .050467 .056867* .058233*
128 .050567 .056600* .054167

.15 0 8 .053967 .051467 .044200*
16 .051200 .052333 .043700*
32 .049800 .047867 .045933
64 .049967 .050333 .051533
128 .049833 .051467 .051800

1.5 8 .054667 .057300* .054333
16 .052533 .055467* .058867*
32 .050100 .053667 .057267*
64 .050667 .053933 .055600*
128 .052800 .055100* .055067*

3.0 8 .070533** .077800*** .090467***
16 .059433* .072800** .090067***
32 .052367 .061400** .073967***
64 .052533 .058300* .064967**
128 .052367 .054867 .055533*

Note: plain type-fairly stringent ,  * -moderate ,**-very liberal ,***- beyond very liberal
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RESULTS AND CONCLUSIONS

Research Question One
To determine how robustness of validity is affected by variations in the

parameters of the contamination distribution the Type I error rates (Table 3)
are examined.  Each tabled value is the mean of the 15 data points collected
for that cell and is based on a total of 30,000 replications of the t-test (i.e. 15
batches of 2000 replications).  These results are examined initially by
applying Bradley's criterion and then using regression techniques.  Bradley's
fairly stringent criterion for
robustness of validity requires Type I error values to lie between .045 and
.055.  Values in this range are indicated in Table 3 in plain type.  Values
which satisfy the moderate criterion, between .04 and .06, but fail to satisfy the
fairly stringent criterion are indicated in Table 3 using a single asterick (*).
Values which satisfy the very liberal criterion, between .025 and .075, but fail
to satisfy the moderate criterion are indicated in the table with an asterisk
(**).  Values which fail to meet even the very liberal criterion are indicated
with a double asterisk (***).

The vast majority of Type I error values (75.5%) in Table 3 meet the
fairly stringent criterion.  An additional 14.8% of the values meet the moderate
criterion while the very liberal criterion accounts for an another 6.67% of the
Type I error values.  A small proportion of the values (2.96%) fail to meet
even the very liberal criterion.  With the exception of two borderline values for
samples of size 8, the robustness of validity of the t-test does not begin to
deviate from the fairly strict criterion until population 17 in the design.  This
population has 8% asymmetric contamination, a mean difference of 3.0  and a
standard deviation of 1.75.  Symmetric contamination at 15% results in the
fairly stringent criterion being met with the exception of sample sizes of 8 and
16 which meet the moderate criterion.  The Type I error rate does not
encounter serious inflation until the final two populations in the design.
These populations have asymmetric contamination at a rate of 15%.  The
effect is reduced for sample sizes of 64 and 128.  

These results indicate that the Type I error rate is quite stable for most of
the degrees of contamination investigated in this study.  Further, only
asymmetric contamination creates a serious change in Type I error rate.
When the Type I error rate is affected it tends to be inflated.  This is not the
'conservative' effect reported in much of the literature for the independent
samples t-test.  The use of Bradley's criterion for robustness of validity is
useful as a first step in the analysis of the results of this MC study.  However,
it is difficult to form any conclusions concerning the specific impact of each
of the parameters of the contamination model and their interactions from
Table 3.  In order to fully answer this research question regression modeling
techniques are used.

In the regression models the Type I error rate (TYPE I) is the outcome
variable and the parameters of the contamination model along with sample size
(N) are the predictor variables.  These parameters are proportion of
contamination (% CONTAM), mean shift (MEAN SHIFT) and standard
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deviation of Pc (STD DEV Pc).  The regression equations explored were of
the form:

TYPE I  = %CONTAM + MEAN SHIFT + STD DEV PC + N.  
Since the predictor variables are uncorrelated, an examination of the

correlation matrix is all that is necessary to determine the direction and
magnitude of the relationship between Type I error rate and each predictor
variable (Budescu, 1993; Thomas, Hughes, & Zumbo, 1998).  An examination
of the correlation matrix allows for the ordering of the predictor variables in
terms of their influence on Type I error rates.  

The variable which correlates most highly with Type I error rate is
MEAN SHIFT (.377).  The  positive correlation indicates that increases in
MEAN SHIFT are associated with increases in Type I error rate.  The second
largest correlation is between % CONTAM and Type I error rate (.282).  This
correlation indicates that an increase in the % CONTAM is associated with an
increase in Type I error rate.  The third most important variable is sample size
with a correlation of -.178.  The negative correlation between sample size and
Type I error rate indicates that as N increases the Type I error rate decreases.
This is the expected direction of relationship between these two variables.  The
STD DEV Pc is the least important variable among the parameters of the
contamination model (.139).

Table 4.  B-Weights and Their Standard Errors for the Regression of
the Parameters of Contamination Model on Type I Error.

Variable b-weight Standard Error
Constant .0541 .00095
MEAN SHIFT -.0018 .00046
STD DEV Pc -.0011 .00045
% CONTAM -.0241 .00918
N -.00006 .00001
N*STD DEV Pc .000025 .000006
N*% CONTAM .00053 .00012
N*MEAN SHIFT .000036 .000006
STD DEV Pc* % CONTAM -.0081 .0043
STD DEV Pc*MEAN SHIFT .00048 .00021
% CONTAM*MEAN SHIFT .0292 .0042
% CONTAM*STD DEV Pc*MEAN SHIFT .0202 .0018
N*STD DEV Pc *MEAN SHIFT -.000016 .000002
N*% CONTAM * MEAN SHIFT -.0005 .00004

In order to create a more parsimonious model, variables were selected
according to two statistical criteria.  First, those variables for which the b-
weight was not statistically significant were removed from the model.  Second,
variables which had a significant b-weight but which accounted for less than
1% of the variance in Type I error rates were also removed.  The complete
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regression model including the three parameters of contamination and sample
size accounts for 27.3% of the variance in Type I error rate.  The addition of
the six two-way interactions results in an increase of 20.8% in the variance
explained. While the addition of the four three-way interactions results in an
increase of 7.1% in the variance explained.  Since the four-way interaction
resulted in a small increase (1%) in the variance explained, the model
including the three-way interaction terms is preferred.  This model accounts
for 55.2% of the variance in Type I error rates.  

The three-way interactions were examined to determine if any were
statistically non-significant.  The t values which test the significance of each
variable in the model showed that the interaction of N*% CONTAM*STD
DEV Pc was not statistically significant and this interaction was removed from
the model.  The b-weights and their associated standard errors for this final
model are shown in Table 4.

As an indicator of the appropriateness of the model the value of the
constant is reasonably close to the expected value of .05.  It should also be
noted that the value of the b-weights is scale bound which means that the units
for each variable must be considered when interpreting these values
(Darlington, 1990).  

B-weights must be interpreted carefully when interaction terms are
included in a regression model.  A two-way interaction means that the size of
a conditional effect changes with another variable (Darlington, 1990).  A
three-way interaction means that the size of a two-way interaction changes
with another variable.  For this reason all of the two-way interactions (as well
as the main effects) must be maintained when three-way interactions are
included in the model.  A three-way interaction can also be defined as the
change in a two-way interaction associated with a 1-unit change in a third
variable.

Each of the three-way interactions in the final model are discussed
separately.  The % CONTAM* STD DEV Pc* MEAN SHIFT interaction
has a b-weight of .0202.  This b-weight indicates the extent of the change in
the two-way interaction of % CONTAM*STD DEV Pc associated with a 1-
unit change in MEAN SHIFT.  Specifically, a 1-unit increase in MEAN
SHIFT results in an increase in the effect of % CONTAM * STD DEV Pc
on the Type I error rate.  More simply, the effect of the two-way interaction of
% CONTAM * STD DEV Pc is less when the MEAN SHIFT is small than
when the MEAN SHIFT is large.  This interaction is best described by
referring to Table 3 wherein it can be seen that when the MEAN SHIFT is
zero increases in the STD DEV Pc  do not have an effect on the Type I error
rate even when the proportion of sampling from contamination increases.
However, when the MEAN SHIFT is 3.0, increases in the STD DEV Pc  do
result in an increase in the Type I error rate for the 8% and 15% proportions
of contamination.

A similar approach can be used to interpret the other two three-way
interactions. The N*STD DEV Pc *MEAN SHIFT can be interpreted to
mean that when the MEAN SHIFT is zero, increases in the STD DEV Pc do
not have an effect on Type I error rates as the sample size decreases.  When
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the mean shift is 3.0, increases in the STD DEV Pc do result in an increase in
the Type I error rate as the sample size decreases. The N*%
CONTAM*MEAN SHIFT interaction can be interpreted to mean that when
the mean shift is zero, increases in the % CONTAM do not have an effect on
Type I error rates as the sample size decreases.  When the mean shift is 3.0,
increases in the % CONTAM result in an increase in the Type I error rate as
the sample size decreases.  For example, the Type I error values from Table 3
for population 27 are more inflated for the sample size of 8 (.0905) than for
the sample size of 128 (.0555).    

The residuals from these regression models were examined using
scatterplots to determine if there was an obvious presence of asymmetry or
outliers.  The scatterplots did not reveal any trends.  This finding suggests that
the use of linear regression techniques is appropriate for this data set.
However, since the Type I error rates have been recorded as proportions, a
transformation of the data values might provide more meaningful results.  One
transformation which is appropriate for this situation is the logit
transformation (Darlington, 1990).  The utility of the logit transformation for
this data set was examined by transforming all of the Type I error values and
then running the same regression models discussed above.  While the R2
values tended to be slightly lower (approximately 1-2%) using the logit values,
the results were very similar and there was no clear evidence that the logit
transformation was advantageous.  Given that the transformed values are more
difficult to interpret, the results have been expressed using only the
untransformed values.

Research Question Two
To determine how robustness of efficiency is affected by variations in the

parameters of the contamination distribution the power values shown in
Tables 5, 6, and 7 must be analyzed.  Power values are only reported for cells
in the design which satisfy the fairly stringent criterion for robustness of
validity.  When robustness of validity is not intact, the Type I error rate is not
protected and the obtained values cannot be interpreted as true power values.
A dash (-) is used to indicate these cells in the tables.  The calculation of
regression models for power is seriously hindered by these empty cells in the
data set.  Regression models using the parameters of contamination as
predictor variables would be difficult to interpret and odd interactions might
occur as a result of the pattern of empty cells.  For these reasons, regression
models were not computed for the power results.

The analysis of power results was undertaken using a method similar to
Bradley's robustness of validity criterion.  A fairly stringent criterion for
robustness of efficiency can be devised by applying the same criterion as
Bradley suggested for the Type I error rate.  Therefore, power values which
fall beyond + or - 10% of the power values actually obtained for the normal
distribution are highlighted in Tables 5, 6, and 7.  An upward pointing arrow
symbol (⇑ ) indicates that the power value for the contaminated population
exceeded the normal value by more than 10%.  A downward pointing arrow
(⇓ ) symbol indicates the power value for the contaminated population was
below the normal value by more than 10%.
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Table 5. Power Values for Each Population Distribution Under Study
(Small Effect Size). ⇑⇑⇑⇑  - power is above normal by > 10%, ⇓⇓⇓⇓  - power is
below normal by >10%.

Standard Deviation of Pc
Proportion Mean Shift n 0.5 1.75 3.0

.01 0 8 .085333 .087367 -
16 .119400 .125233 .127900
32 .198000 .209167 .214333 ⇑⇑⇑⇑
64 .355067 .375933 .374767
128 .622433 .652233 .648667

1.5 8 .084967 .079500 .081200
16 .118067 .113733 .117300
32 .194933 .187267 .202000
64 .348933 .332800 .365900
128 .610800 .590400 .633167

3.0 8 .079733 .074933 ⇓⇓⇓⇓ .079167
16 .120500 .105200 ⇓⇓⇓⇓ .118700
32 .198700 .169333 ⇓⇓⇓⇓ .200600
64 .369033 .310700 ⇓⇓⇓⇓ .371033
128 .641733 .560033 .654100

.08 0 8 .084667 .089933 .089767
16 .111533 .131733 ⇑⇑⇑⇑ .132200 ⇑⇑⇑⇑
32 .186067 .217700 ⇑⇑⇑⇑ .213267 ⇑⇑⇑⇑
64 .329800 .396733 ⇑⇑⇑⇑ .372200
128 .584400 .668433 .614967

1.5 8 - .067733 ⇓⇓⇓⇓ .064667 ⇓⇓⇓⇓
16 .112367 .105533 ⇓⇓⇓⇓ .094800 ⇓⇓⇓⇓
32 .186633 .187267 .169667 ⇓⇓⇓⇓
64 .340833 .352600 .329533
128 .594733 .637333 .605533

3.0 8 - - -
16 - - -
32 .177833 - -
64 .355467 - -
128 .638867 - .640433
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Table 5. (continue)

Proportion Mean Shift n 0.5 1.75 3.0
.15 0 8 .086700 .082500 -

16 .121567 .120667 -
32 .200667 .189567 .199133
64 .351567 .344000 .335300

128 .614700 .598000 .573133
1.5 8 .085133 - .055300 ⇓⇓⇓⇓

16 .118033 - -
32 .194467 .158667 ⇓⇓⇓⇓ -
64 .348900 .304333 ⇓⇓⇓⇓ -

128 .605233 - -
3.0 8 - - -

16 - - -
32 .164167 ⇓⇓⇓⇓ - -
64 .326433 - -

128 .597233 .606600 -
⇑⇑⇑⇑  - power is above normal by > 10%          ⇓⇓⇓⇓  - power is below normal by >10%

An examination of Tables 5, 6, and 7 reveals a number of interesting
trends.  For the small ES (Table 5) the power of contaminated populations is
sometimes less than the power of the normal and sometimes greater than the
power of the normal (shown in Table 8).  Symmetric contamination results in
a power advantage over the normal distribution. Asymmetric contamination
results in a power loss relative to the normal distribution.  For the medium ES
(Table 6) only two cells are beyond the fairly stringent criterion for
robustness of efficiency.  This means that robustness of efficiency is greater
for medium ESs than for small ESs.  Both of the cells in the medium ES table
which do not meet the fairly stringent criterion involve symmetric
contamination and result in an increase in the power value relative to the
normal distribution.  In addition, both of these cells reflect a standard
deviation of Pc of 3.0.  The sample sizes for these cells are 8 and 16
respectively.  For the large ES (Table 7) three cells lie beyond the fairly
stringent criterion for robustness of efficiency.  All of these cells are for
sample sizes of 8 and have a standard deviation of Pc of 3.0.
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Table 6.  Power values for each population distribution under study
(Medium Effect Size) ⇑⇑⇑⇑  - power is above normal by > 10% ,⇓⇓⇓⇓  - power
is below normal by >10%.

Standard Deviation of Pc
Proportion Mean Shift n 0.5 1.75 3.0

.01 0 8 .249500 .252867 -
16 .468900 .483567 .492800
32 .784400 .797600 .796633
64 .975933 .980000 .977533

128 .999933 .999900 .999700
1.5 8 .245667 .239400 .254767

16 .465733 .458867 .486767
32 .779633 .775500 .800700
64 .974867 .975133 .979233

128 .999833 .999800 .999933
3.0 8 .240867 .236367 .255767

16 .484200 .455967 .498100
32 .792000 .778233 .815700
64 .981267 .974533 .984267

128 .999867 .999833 .999900
.08 0 8 .247100 .271033 .299867 ⇑⇑⇑⇑

16 .462400 .501967 .528567 ⇑⇑⇑⇑
32 .767533 .804100 .785033
64 .973300 .981667 .967367

128 .999867 1.00000 .999467
1.5 8 - .234433 .251500

16 .456733 .473067 .508833
32 .774133 .803967 .822600
64 .975100 .982967 .985800

128 .999967 .999933 .999867
3.0 8 - - -

16 - - -
32 .815867 - -
64 .985867 - -

128 1.00000 - 1.00000
.15 0 8 .260867 .255667 -

16 .474667 .475733 -
32 .786067 .774233 .768133
64 .976700 .972333 .961600

128 .999900 .999800 .999633
1.5 8 .238500 - .251767

16 .459200 - -
32 .776067 .798433 -
64 .975167 .983600 -

128 .999867 - -
3.0 8 - - -

16 - - -
32 .803167 - -
64 .986033 - -

128 .999967 1.00000 -
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Table 7.  Power Values for Each Population Distribution Under Study
(Large Effect Size) ⇑⇑⇑⇑  - power is above normal by > 10% ,⇓⇓⇓⇓  - power is
below normal by >10%

Standard Deviation of Pc
Proportion Mean Shift n 0.5 1.75 3.0

.01 0 8 .521733 .526967 -
16 .849400 .860900 .863900
32 .991967 .993367 .988300
64 1.00000 .999967 .999967

128 1.00000 1.00000 1.00000
1.5 8 .515600 .512233 .533467

16 .847067 .848833 .862633
32 .991467 .991767 .992500
64 .999900 1.00000 1.00000

128 1.00000 1.00000 1.00000
3.0 8 .517633 .518067 .549200

16 .867533 .854467 .881967
32 .993600 .993567 .996167
64 1.00000 1.00000 1.00000

128 1.00000 1.00000 1.00000
.08 0 8 .515700 .548900 .605367 ⇑⇑⇑⇑

16 .846100 .864467 .852867
32 .990700 .992267 .978067
64 1.00000 1.00000 .999800

128 1.00000 1.00000 1.0000
1.5 8 - .529067 .588733 ⇑⇑⇑⇑

16 .848267 .874133 .895467
32 .991600 .995500 .994400
64 1.00000 1.00000 1.00000

128 1.00000 1.00000 1.00000
3.0 8 - - -

16 - - -
32 .997300 - -
64 1.00000 - -

128 1.00000 - 1.00000
.15 0 8 .531733 .535033 -

16 .850533 .846800 -
32 .991467 .990167 .978267
64 1.00000 1.00000 .999767

128 1.00000 1.00000 1.00000
1.5 8 .504833 - .610100 ⇑⇑⇑⇑

16 .843500 - -
32 .992100 .996167 -
64 1.00000 1.00000 -

128 1.00000 - -
3.0 8 - - -

16 - - -
32 .998100 - -
64 1.00000 - -

128 1.00000 1.00000 -
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Table 8 . Type I Error and Power Values for  the Normal Distribution

N Type I Error Power - Small Power - Medium Power - Large
8 .054900 .083033 .246567 .519067
16 .051067 .118600 .474567 .853233
32 .050167 .193567 .780767 .992067
64 .049900 .351200 .975867 1.00000

128 .048700 .614467 .999867 1.00000

The results in Tables 4, 5, and 6 can be summarized with a few general
statements.  The robustness of efficiency of the t-test decreases as the effect
size becomes smaller.  At small ESs asymmetric contamination results in a
power loss.  Paradoxically, symmetric contamination results in a power
advantage.  For the medium and large ESs power differences are only noted
for small samples sizes (i.e.. 8 and 16).  For these sample sizes the power of
the contaminated distributions exceeded the normal.  Therefore, researchers
should be aware that power differences for contaminated distributions will be
most noticeable at small effect sizes or when small sample sizes are being
used for medium and large effect sizes.    

A second form of analysis was applied to the power data in order to
better understand the results.  The power values were converted into power
curves using the program MacCurveFit (Raner, 1993).  A second order
polynomial curve was fit to the data values using the equation Y= ax2 + bx +
c, where Y denotes the power and x the effect size.  A power curve for each
cell was plotted on one graph together with the normal power curve for the
same sample size, facilitating an immediate comparison of power under
normal and contaminated populations.2

In only one cell, population 12 with a sample size of 8, was a power
advantage greater than 10% noticed.   Most of the remaining cells had
differences of less than + or - 2%.  The limitation inherent in the use of power
curves to analyze robustness of efficiency lies in the fact that the importance
of effect size as a variable cannot be determined because the ES is, in essence,
integrated over or averaged out.  The examination of power curves allows only
a rough visual examination of the power differences at each ES.  This is
unsatisfactory given the importance of ES for the data analyst.  For this
reason the analysis of the power values through tabulation of the results and
application of the fairly stringent criterion is preferable.

Research Question Three
The final research question concerns the utility of distributional measures

(i.e. skewness, kurtosis, contamination index) for data analysts confronted
with data containing outliers.  The regression models reported earlier are of
little pragmatic use for data analysts as they would have no means of
determining the parameters of contamination in a data set.  For this reason,

                                    
2Examples of these power curves can be obtained from the authors.
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two additional regression models have been created for the data analyst.  The
first model uses skewness and kurtosis values as the predictor variables and
the second model uses the CI. Given that skewness and kurtosis are readily
available on statistics packages, these distributional measures provide one
method for the data analyst to characterize the shape of the population
distribution.  Comparison of the first model with the results for the
contamination index model is also a useful metric for this proposed index.

In the first model, both skewness and kurtosis are included.  Horswell
and Looney (1993) show that skewness and kurtosis coefficients when used
jointly may provide a better method of assessing normality than skewness
alone.  The use of skewness tests alone is problematic and the authors show
that these tests do not possess good specific diagnostic properties.  They
summarize research from a number of sources which demonstrate that some
skewness coefficients have a high probablility of misdiagnosing non-skewed
distributions as skewed.  In addition to skewness and kurtosis, the first model
includes sample size (N).  Sample size was included in the model both
because of the demonstrated correlation between N and Type I error rate (as
shown in Table 4), and because it has conceptual importance to the data
analyst.

The first model accounting for 35.93% of the variance in Type I error
rates is expressed conceptually and with b-weights as follows.  The standard
error associated with each b-weight is shown in brackets below each variable.

TYPE I = CONSTANT + SKEW + KURT + N

TYPE I = .0526 + .0107*SKEW -.0011*KURT -.000035*N
  (.00027)  (.00036)     (.000087)          (.000003)  

The two-way interactions for this model have also been examined.  The
omnibus model including skewness, kurtosis, sample size and the three two-
way interactions which result from these variables accounts for 43.1% of the
variance in Type I error rates.  The interaction terms account for an increase of
7.2% in variance explained.  The t-test of these interactions indicates that the
SKEW*KURT interaction is not significant so this interaction was dropped
from the model.  The N*KURT interaction was shown to account for less
than 1% of the variance and was also dropped from the model.  Only the
interaction of N*SKEW need be included in the model as it accounts for
about 5% of the total variance.  It should be noted that the three-way
interaction of N*SKEW*KURT resulted in an R2 change of less than 0.5%
of the variance in Type I error; therefore the three-way interaction was not
included in the model.  

The final model is shown conceptually and with b-weights as follows.
The standard error of the b-weights is shown in brackets below each variable.
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TYPE I = CONSTANT + SKEW + KURT + N + N*SKEW

TYPE I = .0509 + .0142*SKEW - .0011*KURT - .0000004*N - .00007(N*SKEW)
    (.0003)  (.0004)  (.00008)        (.000004)         (.000005)

Once again, the b-weights must be interpreted with care when interaction
terms are included in the model.  The b-weight for skewness (.0142) indicates
the estimated conditional effect of skewness on Type I error rates when all
other regressors are zero.  The b-weight for the interaction of N*SKEW (-
.00007) indicates that the conditional effect of skewness on Type I error rates
changes with changing levels of sample size.  Specifically, decreasing the
sample size increases the effect of skewness on Type I error rates.  This
model, including the two-way interaction term accounts for approximately
41% of the variance.  

The second model which was computed for the data analyst used the
contamination index (CI) value as a predictor variable along with the sample
size.  This model is expressed as TYPE I = CONSTANT + N + CI.  Since
the values of CI and N are uncorrelated the magnitude of the b-weights can be
used directly to indicate the variable ordering (Darlington, 1990).  The model
which results is expressed as

TYPE I = .0512 -.00003*N + .0530*CI
       (.00025)  (.000003)    (.0015)  

The R
2
 value which results from this equation is .4042.  Therefore, this

third set of models using the contamination index accounts for about 40% of
the variance in Type I error rate.  It should also be noted that the value of the
constant at .0512 is the value which would be expected for Type I error given
a contamination index of 0.  This is close to the nominal value of .05 given a
normal distribution and provides further evidence that the simulation
algorithm and population analog values for the CI are functioning as intended.

As with the skewness and kurtosis model, the interaction of the CI and N
variables was examined. This two-way interaction results in an R

2
 change of

.0822 over the model with no interaction term.  Since this value indicates that
over 8% additional variance is accounted for by the interaction between
sample size and CI, the interaction term should be included in any model used
by data analysts. The use of the contamination index accounts for a greater
amount of variance in Type I error rates (48%) than does the use of skewness
and kurtosis model (41%).

The b-weights and associated standard errors for the CI model are shown
as follows,

TYPE I = .0489 + .00001*N + .0813*CI - .00057(N*CI)
         (.0003)    (.000004)     (.0021)     (.00003)    
 

These b-weights are interpreted in the same manner as for the previous
model.  For example the b-weight .0813 for CI indicates the estimated
conditional effect of the contamination index on Type I error rate when all the
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other regressors are zero.  The interaction term N*CI has a b-weight of -
.00057.  This indicates that the conditional effect of CI on Type I error rate
changes with changing levels of sample size.  Specifically, the effect of CI on
Type I error rate increases as the sample size decreases.

DISCUSSION
Three aspects of this study which contribute to its comprehensive nature

were highlighted in the introduction.  The results concerning the robustness of
validity and efficiency of the t-test are discussed within the framework of
these three aspects.  First, the systematic range of 'essentially normal with
outliers' populations which were generated using a contamination model was
effective.  These models provide an excellent method for investigating
robustness in MC studies for a number of reasons.  Previous researchers
typically used methods of data generation which are more relevant to
investigations of truly nonnormal underlying population distributions (i.e.
standard probability densities such as the exponential or Cauchy).  The use of
a contamination model allows for a much more panoramic view of the factors
which influence the robustness of the t-test to outlier contamination.  For
example, both symmetric and asymmetric contamination of varying degrees
can be readily simulated.  This is an important asset in light of the results
observed for the paired samples t-test in this study.  That is, both robustness
of validity and robustness of efficiency functioned differently under
conditions of symmetric versus asymmetric contamination.  MC studies of
robustness should strive to investigate both symmetric and asymmetric
conditions and the use of a contamination model makes this feasible.  In
addition, the parameters of the contamination model can be useful in the
identification of complex interactions among the factors which may influence
robustness.  These interactions can be identified using regression techniques
This advantage is more thoroughly explored in the discussion of the
regression techniques which follows.  One final advantage to the use of
contamination models should be mentioned; these models facilitate the
replication of MC studies and provide a framework for future research.
Specifically, the expansion of the parameters of the contamination model
would permit a researcher to examine different degrees of outlier
contamination.

It should also be noted that in future simulation studies that for the
present study the results of the simulation for the t-test under conditions of
true normality are used in order to validate to validate the simulation program
and act as a baseline comparison. However, under adequate simulation design,
these simulation results may also be used as a variance reduction technique as
“control variates” in order to obtain  even more accurate estimates of the
Type I error rates and power.

The second aspect of this study which contributes to the comprehensive
nature of the study is that both robustness of validity and efficiency were
examined and a method of quantifying the degree of robustness of efficiency
is suggested.  Specifically, the results indicated that the paired samples or one-
sample t-test satisfies a fairly stringent criterion for robustness of validity for
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most of the degrees of contamination examined in this study.  Robustness of
validity is only seriously compromised when contamination is asymmetric and
the proportion of contamination is 15%.  The effect of contamination on
robustness of validity in this study is to increase the Type I error rates.  This
finding is contrary to the conservative effect noted by Boneau (1960),
Rasmussen (1985), and others, for the independent samples t -test.  Bradley
(1980a, 1980b, 1980c) found the Type I error rates were sometimes far
greater and sometimes far less than the nominal rates for the t test when
sampling from the L-shaped distribution.  The results from the present study
indicate that an inflation of Type I error occurs quite consistently when
contamination is asymmetric and the proportion of contamination is 15%.  

With reference to robustness of efficiency, the results of this study
indicate that when robustness of validity is inflated, the power of the t-test
cannot be determined.  This observation highlights the need to consider both
types of robustness within one study.  If robustness of validity is intact then
power values are maintained when medium and large ESs are examined.  This
means that given protected Type I error rates, the power values are also
reasonably close to the expected normal values for medium and large ESs.
For these ESs power differences are noted only for sample sizes of 8 and 16.
However, when small ESs are being investigated, the power values are not as
expected.  Specifically, at small ESs, asymmetric contamination results in a
power loss.  Again, paradoxically, symmetric contamination results in a power
advantage over the normal distribution for these small ESs.  These effects are
exacerbated when sample sizes are small.  These results differ from the
reduced power noted by Rasmussen (1985) and Zimmerman and Zumbo
(1993) for the independent samples t-test.  Both of these studies showed that
power is improved when outliers are removed from the data set.  Clearly, the
inclusion of effect sizes in MC studies of robustness of efficiency is an
important factor in developing a full understanding of these relationships.   

Since no method of quantifying robustness of efficiency was evident in
the literature, a criterion for robustness of efficiency similar to the Bradley
criterion for robustness of validity is proposed in this paper.  This criterion
provided the most useful method of summarizing the power results in this
study.  The fairly stringent criterion for robustness of efficiency proposed in
this paper requires the power difference between the contaminated population
and the normal population to be within + or - 10% of the normal value.  The
application of this criterion to the tabled power values permitted a quick
identification of contaminated populations which seriously affected the power
of the t test.

The third important aspect of this paper is the examination of results
through regression modeling.  Regression modeling was particularly useful in
examining  the robustness of validity results in this study.  The criterion for
robustness of validity introduced by Bradley provides a useful starting point
for examining the Type I error rates.  However, this criterion cannot be used
to investigate the complex interactions among the variables which influence
Type I error rates.  Regression models of the parameters of contamination
indicate that mean shift and proportion of contamination account for the
greatest portion of variance in Type I error rate.  Sample size is negatively
correlated with Type I error rate.  As the sample size decreases the Type I
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error rate increases.  The real benefit of applying regression techniques to this
study is that the models guided our interpretation of Type I error rates.  The
three-way interactions which became evident through modeling were not
readily discernible from the tabled values and their narrative description.

Some limitations of the use of regression models for the analysis of Type
I error results must be discussed.  The use of R2 values as a method of
assessing these models is somewhat problematic for two reasons.  First, the
R2 values have a slight positive bias (Darlington, 1990).  The second
difficulty with the use of these R2 values is that there is little variance in the
results of this study.  This may be true in other MC studies. When very little
variability exists in the results a large proportion of the variability may be due
to sampling variability and not to any of the variables under investigation.
When regression modeling is used for these results most of the variance is
due to sampling or error variability and the R2 value is attenuated.  Therefore
it is difficult to assess the appropriateness of these models.  Finally,
regression modeling is of no use in the analysis of robustness of efficiency
because of the existence of a large number of empty cells in the design.
These empty cells are the result of inflated Type I error rates.  If regression
modeling is attempted with these empty cells included in the design, the
results are difficult to interpret.  One avenue of future research is to find a
means of using regression techniques in the analysis of robustness of
efficiency.

The regression model which resulted from this process is informative for
statisticians and methodologists seeking a better understanding of the
performance of the paired samples and one-sample t- test.  Unfortunately, this
model is of little use to data analysts confronted with outlier contaminated data
because the parameters of contamination cannot be determined.  A set of
models which would be of practical use for data analysts were created as part
of the third research question.  These models use a proposed 'contamination
index' which can be readily computed by a data analyst using a standard
statistics package.  That is, the use of the contamination index (CI) enables a
data analyst confronted with outlier contaminated data to quantify the degree
of contamination present.  In addition, the robustness of validity of the t-test
can be modeled effectively using this index.   The use of the CI together with
sample size accounted for about 40% of the variance in Type I error rates.
The addition of the CI*N interaction results in a total of about 48% of the
variance being accounted for.  The CI model has three advantages over the
model using skewness and kurtosis.  First, a greater proportion of variance in
Type I error rate is accounted for using the CI.  Second, since the CI and
sample size are uncorrelated the model can be more easily interpreted than the
skewness and kurtosis model.  The third advantage is that the CI is
conceptually linked to the presence of outliers.  Skewness and kurtosis are
more appropriate when true nonnormality is being considered.  The
advantages of the CI model lend support for the continued investigation of
this proposed method for quantifying contamination.  

For the researcher the results of the robustness of validity portion of this
study indicate that a data set with a CI beyond about 0.20 will result in an
unacceptable inflation in the Type I error rate.  This effect is most serious



B.D. Zumbo & M.J. Jennings448

when small samples (i.e.. n < 16) are being used.  This observation can be
clearly demonstrated by inserting the values for the CI located in Table 2 into
the regression model.  For example, the CI value for population 1 is 0.0009.
Given the equation TYPE I = .0489 + .00001*N + .0813*CI -
.00057(N*CI) and a sample size of 8, the Type I error for this cell would be
.0490.  In comparison, for population 27 the CI is .3419 and the Type I error
rate which would be associated with this degree of contamination for a sample
size of 8, according to the model would be .0752.  Interestingly, for this
sample size and a CI value of 0.20 the resulting Type I error rate predicted by
the model is .0714.  The considerable inflation in Type I error rates for values
beyond a CI of 0.20 is unacceptable because it can result in false claims of
statistical significance.  The values from the regression model using CI are
intuitively correct.  That is, population 1 is characterized by 1% symmetric
contamination and results in little change in Type I error rate.  By contrast,
population 27 is characterized by 15% asymmetric contamination and results
in a serious inflation of Type I error rate.  This consistency in the results
lends further support for the continued development of the CI as a useful
measure of contamination.  In this study population values of the CI were
used in the regression modeling.  Future research needs to investigate the use
of sample CI values as a diagnostic for performance of the t-test.

In summary, this study provides further support for the apparent
sensitivity of normal theory tests to the asymmetry of distributions.  Harwell
and Serlin (1989) state that there is a difficulty in checking the normality
assumption of normal theory tests.  The methodology used in this MC study
provides one possible solution to this problem.  The related samples t-test was
chosen for this study because it is a logical starting point for a systematic
empirical investigation of robustness.  The issues of unequal sample sizes and
variances are not relevant for this test and in this sense the related samples t-
test is the simplest case.  However, this methodology could be readily applied
to other frequently used statistical tests to gain a better understanding of the
impact of outliers on the performance of parametric procedures.
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