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Structural Equation Modelling of
Multiple Facet Data: Extending Models

for Multitrait-Multimethod Data

Timo M. Bechger and Gunter Maris
CITO (The Netherlands)

Abstract
This paper is about the structural equation modelling of quantitative mea-
sures that are obtained from a multiple facet design. A facet is simply a set
consisting of a finite number of elements. It is assumed that measures are
obtained by combining each element of each facet. Methods and traits are
two such facets, and a multitrait-multimethod study is a two-facet design.
We extend models that were proposed for multitrait-multimethod data by
Wothke (1984;1996) and Browne (1984, 1989, 1993), and demonstrate how
they can be fitted using standard software for structural equation modelling.
Each model is derived from the model for individual measurements in order
to clarify the first principles underlying each model.

Introduction

A Multi-Trait Multi-Method (MTMM)study is characterized by mea-

sures that are composed as combinations of traits and methods. In this paper,

we will treat a more general case where measures are composed as combi-

nations of elements of facets. Afacet is simply a set consisting of a finite
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number of elements, usually calledconditions. Facets refer to properties of

the measures or measurement conditions. Methods and traits are two such

facets, and a MTMM study is a (fully crossed) two-facet design. Facets need

not be methods or traits or anything in particular. Consider, for example, a

study that is presented by Browne (1970) and discussed in detail by Jöreskog

and S̈orbom (1996, section6.3). Persons were seated in a darkened room

and required to place a rod in vertical position by pushing buttons. The score

was the (positive or negative) angle of the rod from the vertical. Each person

had to perform the task twice in a number of different situations which where

constructed according to a two-facet design. The two facets were the posi-

tion of the chair and the initial position of the rod, each with three conditions.

The occasion of the experiment may be considered the third facet with two

conditions.

We assume that measures were constructed for each combination of the

facets and that we have data for each measure. We further assume that mea-

sures are continuous. We believe that the case of discrete data is more appro-

priately handled using item response theory models (e.g., Bechger, Verhelst

& Verstralen, 2001).

To analyze data from a multiple facet design, we extend two models

that were suggested for the MTMM design: thecovariance component model

(Wothke, 1984, 1996), and thecomposite direct product model(Browne,

1984, 1989, 1993). In doing so, we pursue e.g., Bagozzi, Yi and Nassen,

(1999), Cudeck (1988), or Browne and Strydom (1997) who suggest general-

ization of the composite direct product model to multiple facets. Our objective

is to demonstrate how researchers who know the basic principles ofstructural

equation modelling(SEM) may formulate and fit these models using the LIS-

REL (J̈oreskog & S̈orbom, 1996) or the Mx program1 (Neale, Boker, Xie, &

Maes, 2002). There are several alternative software packages but the major-

ity of these have an interface that is similar to that of LISREL or Mx. For a

general introduction to SEM we refer the reader to Bollen (1989).

1The Mx program is free-ware and can, at present, be obtained from the internet address
http://www.vcu.edu/mx/index.html
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Each model is derived from the (data) model for individual measure-

ments in order to clarify the first principles underlying each model. In the con-

text of MTMM studies, the model for the observations is of less interest since

the main objective is to establish a structure for the correlations that relates

to the Campbell and Fiske (1959) criteria for convergent and discriminant va-

lidity. However, in general multi-facet studies the data model is important as

a substantive hypothesis that guides the interpretation of the parameters. We

demonstrate how each of the models can be fitted to a correlation or covari-

ance matrix. (We refer to Cudeck (1989) for a survey of the issues concerning

the analysis of correlation matrices). As an illustration, we discuss a number

of applications to real data.

Preliminaries

Persons (or, more general,objects) are assumed to be drawnat random

from a large population and each observation is taken to be a realization of

a random vectorx of measurements made under combinations of conditions

of multiple facets. All models that are considered here are based upon the

following linear model for the observations

x = µ + η + u ,

whereµ denote the mean ofx, and the latent variableη represents true or

common scores. The components ofu represent measurement error and are

assumed to be uncorrelated with mean zero and variance matrixDu. The

common scores are uncorrelated tou; they have zero mean and covariance

matrixΣη. It follows that the data have mean vectorµ and covariance matrix

Σ = Ση + Du ,

whereDu is a diagonal matrix.

We use the following notation: In a design with multiple facets, A, B,

C, D, etc. denote the facets. Each facet has several conditions (or elements)

denoted by Ai, Bj, etc. The number of conditions in each facet is denoted
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by the lowercase of the letter that is used to denote the facet. For example,

a = 3 if facet A has three conditions. We useF to denote a generic facet. The

number of measures that can be constructed (e.g.,a× b× c if there are three

facets) will be denoted byp. The number of facets will be denoted by #F. The

sum of the conditions in each of the facets (e.g.,a + b + c) will be denoted

by #f. The symbolIa denotes an identity matrix of dimensiona and1a a

unit vector witha elements. The symbol⊗ denotes the Kronecker or direct

product operator withA⊗B = (aijB). Finally, the vectorzF denotes a vector

of random variables associated with a facet; that is,zF = (z(F1), . . ., z(Ff ))
T ,

wherez(Fj) denotes a random variable associated with the j-th condition of

facet F. UppercaseT refers to transposition.

The Covariance Component Model

Wothke (1984) suggested that theCovariance Component(CC) model

described by Bock and Bargmann (1966) be used for MTMM data. In this

section, we discuss a number of parameterizations of the CC model and

demonstrate how each is specified within the LISREL framework. Note that

the CC model is related to random effects analysis of variance (see Bock &

Bargmann, 1966, pp. 508-509) but we will not explicitly use this relationship

in our presentation of the model.

Introduction

Let ηx denote a generic element ofη; i.e., x is a measurement obtained

as the combination ofAi, Bj, . . . , Er. In the CC model,η is assumed to have

an additive structure. Specifically,

ηx = g + z(Ai) + z(Bj) + . . . + z(Er) ,

whereg denotes a within-person mean. In matrix notation:

η = Az ,

wherez =
(
g, zT

A, zT
B, . . . , zT

E

)T
, andA is ap × (1 + #f) incidence matrix;

that is, a matrix whose entries are zero or one. The rows ofA indicate all



Structural Equation Modelling of Multiple Facet Data 257

combinations of conditions of each of the facets. For two to five facets, the

structure ofA is given in Equation 1.

[1p Ia ⊗ 1b 1a ⊗ Ib]

[1p Ia ⊗ 1bc 1a ⊗ Ib ⊗ 1c 1ab ⊗ Ic] (1)

[1p Ia ⊗ 1bcd 1a ⊗ Ib ⊗ 1cd 1ab ⊗ Ic ⊗ 1d 1abc ⊗ Ic]

[1p Ia ⊗ 1bcde 1a ⊗ Ib ⊗ 1cde 1ab ⊗ Ic ⊗ 1de 1abc ⊗ Id ⊗ 1e 1abcd ⊗ Ie]

For example, if there are two facets, with two conditions each:

A =


1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

 . (2)

Note that Equation 1 was derived assuming that each subsequent facet is

nested in the preceding facet(s); e.g.,A1B1C1, A1B1C2, A1B2C1, etc. It is

easy to see the general pattern in Equation 1 and derive expressions for more

than five facets.

It is assumed thatz is multivariate normally distributed with zero mean

and covariance matrixΣz. Furthermore, each facet is assumed to have an

independent influence on the measurements so thatΣz is block-diagonal; that

is,

Σz = diag
(
σ2

g ,ΣA, · · · ,ΣE

)
=


σ2

g · · ·
ΣA · · ·

ΣB · · ·
...

...
...

...

· · · ΣE

 , (3)

whereΣF denotes a within-facet dispersion matrix. It follows that

Σ = AΣzA
T + Du . (4)

This is aconfirmatory factor analysis (CFA)model with a constant factor

loading matrix (see Bollen, 1989, chapter 7). As it stands, the model is not
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identifiable. Informally, this means that no amount of data will help to deter-

mine the true value of one or more of the parameters. We will demonstrate

this by constructing an equivalent model with less parameters.

The matrixA has1+#f columns and rank equal tor(A) = 1+#f −
#F (e.g., Equation 2). SinceA has deficient column rank, the vector of ran-

dom components that satisfiesη = Az need not be unique. Consider an ex-

ample with two facets with two conditions each. Then, ifz1 = (1, 2, 3, 4, 5)T

andz2 = (7, 0, 1, 0, 1)T , η = Az1 = Az2.

If z is a solution toη = Az we may write any other solutionz∗ as

z∗ =


g + z(A1) + z(B1)

0

z(A2)− z(A1)

0

z(B2)− z(B1)

 +


2v1 + v2 + v4

v2

2v3 − v2

v4

2v5 − v4

 (5)

wherev1 to v5 are arbitrary constants (e.g., Pringle & Rainer, 1971, p.10).

The second and fourth elements ofz∗ are arbitrary which means that the cor-

responding entries ofΣz are arbitrary and therefore not identifiable. Specif-

ically, if Σz∗ denotes the covariance matrix ofz∗, it is easily checked that

AΣz∗AT equalsAΣzA
T , whereΣz has seven parameters andΣz∗ five (see

Equation 8).

The first vector in (5) contains linear combinationsξ = Lz of the ran-

dom components that are common to all solutions. In general,L denotes a

r(A)× (1 + #f) matrix of full row rank. In the example2,

ξ =

g + z(A1) + z(B1)

z(A2)− z(A1)

z(B2)− z(B1)

 = Lz =

1 1 0 1 0

0 −1 1 0 0

0 0 0 −1 1

 z .

We will not give a general expression forL but note that, in general, the first

linear combinationξ1 is the common score of the first measurement. The

other linear combinations are within-facet deviations from the first condition.
2It is easily checked thatLz1 = Lz2 = (7, 1, 1).
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We now wish to find an equivalent expression ofη in terms ofξ. That

is, we look for a matrixΛ such thatAz = Λξ. In our example,

Az =


1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1




g

z(A1)

z(A2)

z(B1)

z(B2)



=


g + z(A1) + z(B1)

g + z(A1) + z(B2)

g + z(A2) + z(B1)

g + z(A2) + z(B2)



=


1 0 0

1 0 1

1 1 0

1 1 1


g + z(A1) + z(B1)

z(A2)− z(A1)

z(B2)− z(B1)

 = Λξ .

It is seen thatΛ is equal toA with columns corresponding to the first con-

dition in each facet deleted. In general,Λ has the same structure asA in

Equation 1 except that the first column in each of the identity matrices in (1)

is deleted; that is,If is replaced by
[
0f−1 If−1

]
.

It follows that

Σ = ΛΣξΛ
T + Du , (6)

whereΣξ = LΣzL
T denotes the dispersion matrix ofξ. This CFA model

is easily fitted with LISREL or Mx. Note thatΣξ does not inherit the block-

diagonal structure ofΣz becauseξ1 = g + z(A1) + · · · + z(E1) correlates

to each of the within-facet deviations. However, ifΣz has the postulated

block-diagonal structure, the within-facet deviations should be uncorrelated

between facets.

Alternative Parameterizations I

The matrixΛ was constructed by deleting columns fromA. Hence,Λ

may be written as the matrix productAP, whereP is an incidence matrix
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that serves to delete columns fromA. It follows that we may express a model

that is equivalent to (6) as:

Σ = AΣz∗A
T + Du , (7)

whereΣz∗ = PΣξP
T . In the example,

Σz∗ =


E [ξ2

1 ] 0 E [ξ2, ξ1] 0 E [ξ3, ξ1]

0 0 0 0 0

E [ξ2, ξ1] 0 E [ξ2
2 ] 0 0

0 0 0 0 0

E [ξ3, ξ1] 0 0 0 E [ξ2
3 ]

 . (8)

Instead of fitting the model (6), we may fit a model of the form (7) with ap-

propriate restrictions onΣz∗. In general, these restrictions are that all entries

in Σz∗ involving the first condition of any of the facets are fixed to zero, as in

(8).

Alternative Parameterizations II

Let T denote an arbitrary, non-singular matrix and defineΛ∗ = ΛT−1,

andΣξ∗ = TΣξT
T . It is not difficult to see that any model that can be written

as:

Σ = Λ∗Σξ∗Λ
∗T + Du (9)

is equivalent to (6). The matrixΣξ∗ denotes the dispersion matrix of

ξ∗ = Tξ = TLz = L∗z .

Hence, each alternative model of the form (9) implies a set of linear combi-

nations defined byL∗ = TL.
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Browne (1989) considers linear combinations of the form:

ξ∗ = L∗z =

1 1
2

1
2

1
2

1
2

0 −1
2

1
2

0 0

0 0 0 −1
2

1
2




g

z(A1)

z(A2)

z(B1)

z(B2)


=

g + 1
2
(z(A1) + z(A2)) + 1

2
(z(B1) + z(B2))

1
2
(z(A2)− z(A1))

1
2
(z(B2)− z(B1))

 .

The corresponding matrixT, is found be solvingL∗ = TL. Here,

L∗ =

1 1
2

1
2

1
2

1
2

0 −1
2

1
2

0 0

0 0 0 −1
2

1
2

 = TL =

1 1
2

1
2

0 1
2

0

0 0 1
2


1 1 0 1 0

0 −1 1 0 0

0 0 0 −1 1

 .

The correspondingΛ∗ is

Λ∗ =


1 −1 −1

1 −1 1

1 1 −1

1 1 1

 = ΛT−1 =


1 0 0

1 0 1

1 1 0

1 1 1


1 −1 −1

0 2 0

0 0 2

 .

For later reference, we call this parametrizationBrowne’s parametrization. In

general, if we use Browne’s parametrization,Λ∗ has the same structure asA

in Equation 1, except that each of the identity matricesIf in (1) is replaced

by the matrix
[
−1f−1 If−1

]T

. There is, of course, an infinite number of

alternative parameterizations, each corresponding to a non-singular matrixT

and a matrixL∗ (see e.g., Bock & Bargmann, 1966, table 6).

Browne (1989) implicitly assumes that sub-matricesΣF in (3) have

equal diagonal elements. This implies thatΣξ∗ = L∗ΣzL
∗T is block-

diagonal. For instance,

E [ξ∗1 , ξ
∗
2 ] = E

[
1

2
(z(A1) + z(A2)) ,

1

2
(z(A2)− z(A1))

]
=

1

4

(
σ2

z(A2) − σ2
z(A1)

)
,
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which is zero if and only ifσ2
z(A1) = σ2

z(A2).

Fitting the Covariance Component model to a Correlation Matrix

To fit the model to a correlation matrix we need to derive the model

for the correlation matrixP = DxΣDx, whereDx = diag−
1
2 (Σ); a diagonal

matrix with on the diagonal the inverses of the population standard-deviations

of the observed measures. That is,

P = Dx (Ση + Du)Dx = Dx

(
ΛΣξΛ

T + Du

)
Dx . (10)

This model is easily fitted with LISREL. One may, as in (10), use our first

parametrization and specify: ny = ne = p, nk= r (A), PSI= 0, LAMBDA-Y

= Dx, GAMMA = Λ, and PHI= Σξ. An example of a LISREL script is

provided in the Appendix. Only small changes are necessary to specifyΣη

as in (7) or (9). Note that (10) is a special case of the scale-free covariance

model proposed by Wiley, Schmidt, and Bramble (1973).

There is a caveat however. Wothke (1988; 1996) claims that the vari-

ance ofξ1 and covariances involvingξ1 are not identifiable. Hence, in general,

model (10) is unsuited for correlation matrices. As mentioned before, Browne

(1989) assumes that the within-facet dispersion matrices have equal diagonal

elements. Suppose that this assumption holds. Then, if Browne’s parametriza-

tion is used, and the matrixΣη in (10) is specified asΛ∗Σξ∗Λ
∗T , the matrix

Σξ∗ is block-diagonal and the model may be used for correlation matrices

provided the variance ofξ∗1 is known. Browne (1989) sets the variance of

ξ∗1 to one. This means that all variances and covariance must be interpreted

relative to the variance ofξ∗1 .

Applications of the Covariance Component
Model

To a Covariance Matrix

For illustration we apply the CC model to three-facet data gathered by

Hilton, Beaton, and Bower (1971). The data consist of2163 measurements of
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two traits (facet A), measured with two instruments (facet B) on three occa-

sions (facet C). Details can be found in Cudeck (1988). We use the covariance

matrix reported in table 4 by Cudeck (1988) to fit the CC model.

Cudeck notes that the data show large kurtosis and goodness-of-fit

statistics that are based upon the assumption that the data are normally dis-

tributed may not be trusted. Following Cudeck, we provide the normal-theory

generalized least-squares estimates of the parameters inΣξ.

Σ̂ξ =


92.54

6.78 11.94

14.22 11.38 20.02

−3.35 −1.22 −1.56 8.23

−1.44 0.22 1.93 −5.41 44.04

 .

As judged from the standardized residuals the CC model did not fit the data.

The CC model has anadjusted goodness-of-fit index (AGFI)of 0.91 and a

standardized root-mean-square residual (RMS)of 0.31. Hence, no substan-

tive conclusions should be drawn from these parameter estimates and we

merely present them to enable readers to check their results. Note that Cudeck

(1988) fitted the multiplicative model that is discussed in the next section to

the same covariance matrix and found that it fitted the data well.

To a Correlation Matrix

Guilford’s (1967) structure of intelligence model can be conceived of

as a facet design for constructing intelligence tests (Fiske, 1971, p. 128).

Guilford distinguished three facets.The operation facetrefers to the subject’s

intellectual processing of information;the content facetrefers to the content

of the information; andthe product facetto the form of the information. Using

Guilford’s facet design, Hoeks (1985) constructed eighteen tests measuring

the content element semantic abilities. He selected two out of five elements

of the operation facet: cognition and memory, and three out of five elements of

the product facet: units, systems and transformation of information. Hence,

the tests where constructed according to a2 × 3 facet design. For each of



264 T.M. Bechger and G. Maris

the combinations, Hoeks constructed three different tests. The tests may be

considered as a third facet and we treat the measures as arising from a2×3×3

facet design. The data were analyzed earlier using a standard confirmatory

factor model by Hoeks, Mellenbergh and Molenaar (1989). We fit the CC

model to the correlation matrix that they give in their report (see Appendix).

Following Hoeks, Mellenbergh, and Molenaar (1989) we used un-

weighted least-squares to fit model (10) to the correlation matrix, assuming

a block-diagonal structure forΣξ∗. The CC model reproduced the observed

correlation matrix well as judged from the residuals. Deviations correspond-

ing to the third facet (different tests) showed zero variation relative to the

combination of the first condition in each facet. Thus, we specified a model

for two facets with three measures for each combination and found a model

that fitted equally satisfactorily. This model is easily specified by deleting

the columns of the third facet from theA matrix. Finally, we found that we

could specifyΣξ∗ as a diagonal matrix without visible deterioration of the fit.

The final model has an AGFI of0.99, and a RMS of0.051, comparable to the

values found by Hoeks, et al. (1989). Other fit indices are not reported be-

cause they require normal distributions. A LISREL script for the final model

is in the Appendix. Our analysis suggests that the facet-structure suggested

by Guilford does indeed hold.

The Composite Direct Product Model

The multiplicative data model may be derived from the following mul-

tiplicative structure for the common scoreη:

ηx = z(Aj)z(Bk) · · · z(Er) . (11)

In contrast to the CC model, it is now assumed that the true score is the

product of a set of latent variables. It is clear that (11) represents a strong

hypothesis; one that will not often be deemed realistic in social science ap-

plications. As illustrated in Figure 1 for two facets, different values ofz(Ai)

give the same true score in combination with two different values ofz(Bj).
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Figure 1. A surface plot ofηx for different values ofz(Ai) andz(Bj)

Furthermore, it is seen that there is a unique point where the true score is zero.

Needles to say that, although the latent variables in the CC and inthe com-

posite direct product (CDP) modelare represented by the same symbol, their

interpretation is quite different. In matrix notation, the data model in (11) is

η = zA ⊗ zB ⊗ zC ⊗ · · · ⊗ zE . (12)

As with Equation 1, Equation 12 is derived assuming that each subsequent

facet is nested in the preceding facet(s).

The dispersion matrix of the common scoresΣη is found by expanding

E
[
ηηT

]
which gives

Ση = E
[
(zA ⊗ zB ⊗ · · · ⊗ zE) (zA ⊗ zB ⊗ · · · ⊗ zE)T

]
= E

[
(zA ⊗ zB ⊗ · · · ⊗ zE)

(
zT

A ⊗ zT
B ⊗ · · · ⊗ zT

E

)]
.

If we assume that the latent variables are normally distributed, and indepen-
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dent between facets,Ση has a multiplicative structure; that is,

Ση = E
[
zAzT

A ⊗ zBzT
B ⊗ · · · zEzT

E

]
= ΣA ⊗ΣB ⊗ · · · ⊗ΣE .

It follows that

Σ = ΣA ⊗ΣB ⊗ · · · ⊗ΣE + Du . (13)

Note that the common scores are not normally distributed under this model

since the product of normally distributed variables is not normally distributed.

There is an equivalent specification of the model with standardized

within-facet dispersion matrices. The true score dispersion matrix is stan-

dardized by pre- and post-multiplying the dispersion matrices by a diagonal

matrixDη = diag−
1
2 [Ση] that contains the inverse of the true score standard

deviations. The multiplicative structure ofΣη implies that this matrix is found

to be structured as follows:

Dη = DA ⊗DB ⊗ · · · ⊗DE ,

whereDF = diag−
1
2 (ΣF ). Hence, the correlation matrix of the common

scores,Pη, is

Pη = DηΣηDη

= (DAΣADA)⊗ (DBΣBDB)⊗ · · · ⊗ (DEΣEDE)

= PA ⊗PB · · · ⊗PE .

The symmetric matricesPF are thewithin-facet correlation matricesunder

the CDP model. It follows that

Σ = D−1
η (Pη + DηDuDη)D

−1
η = D−1

η (Pη + D∗
U)D−1

η . (14)

The elements of thep × p diagonal matrixD∗
U represent ratios of unique

variance to common score variance and one minus any diagonal element of

D∗
U equals the classical test theory reliability of the corresponding measure.

The matrixD−1
η has a multiplicative structure since

D−1
η = (DA ⊗DB ⊗ · · · ⊗DE)−1 = D−1

A ⊗D−1
B ⊗ · · · ⊗D−1

E .
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The model in (14) has the same form as (10) and may be fitted using

LISREL with appropriate (non-linear) constraints onPη. However, LISREL

requires that each of the individual constraints be specified and this is cum-

bersome if there are many of them. Alternatively, the CDP model may be

formulated as a CFA model (see Wothke & Browne, 1989) but this too is

cumbersome when the number of facets is larger than two. Fortunately, the

multiplicative model is easily fitted with the Mx program which incorporates

the Kronecker product as a model operator. The following box gives a general

scheme for an Mx script:

TITLE: multiplicative model with any number of facets

DAta NObservations=(nr. of observations)NInput= (p) NGroup=1

CM FI=(file with sample covariance or correlation matrix)

MATrices D DIagonal p p FREE

A STandardized a a FREE

B STandardized b b FREE

(etc.)

X Diagonal a a FREE

Y DIagonal b b FREE

Z DIagonal a a FREE

(etc.)

U DIagonal p p FREE

CO (X@Y@· · ·@Z)*(A@B@C@· · ·@E + U.U)*(X@Y@· · ·@Z) /

STart(starting values)

Options(here you can specify e.g., the number of iterations)

end

When we analyze the correlation matrix we need to specify a model

for the population correlation matrix. If we standardize the covariance ma-

trix, this only affects the elements ofD−1
F , which now represent the ratios of

sample standard deviations to common score standard deviations.
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An Application of the Composite Direct
Product Model

The Miller and Lutz (1966) data consist of the scores of 51 education

students on a test designed to assess teacher’s judgements about the effect of

situation and instruction factors on the facilitation of student learning. The

measures where constructed according to a facet design with three facets with

two conditions each:

1. A: Grade level of the student.A1 denotes the first grade andA2 the

sixth grade.

2. B: Teacher approach.B1 denotes a teacher-centered approach and

B2 a pupil-centered approach.

3. C: Teaching method.C1 denotes an approach where teaching con-

sisted mainly of rote learning activities.C2 denotes an approach in which the

teacher attempts to develop pupil understanding without much emphasis on

rote memorization.

The Miller-Lutz data were analyzed by Wiley, Schmidt, and Bramble (1973),

and J̈oreskog (1973) using the additive model, and detailed results can be

found there. Note that Jöreskog (1973, p. 32) used Browne’s parametrization.

The CC model shows a reasonable fit to these data;χ2(21) = 37.97, p =

0.01, and theRoot Mean Square Error of Approximation (RMSEA)equals

0.11 (see Steiger & Lind, 1980 or McDonald, 1989). The results indicate

that differences between the drill and the discovery methods of instruction

caused most variation in the responses of the education students. Differences

in teacher approach showed least variation.

We have used the covariance matrix reported by Jöreskog (1973, Ta-

ble 10) to estimate the parameters of the CDP model. The model did not fit

the data as judged from the chi-square statistic (χ2(19) = 49.4, p < 0.001,

RMSEA = 0.18) as well as the residuals. For illustration we give some of

the results here:

PA =

[
1

0.89 (0.81− 0.95) 1

]
,PB =

[
1

0.92 (0.84− 0.98) 1

]
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and

PC =

[
1

0.42 (0.19− 0.61) 1

]
Within brackets are95-percent confidence intervals (Neale & Miller, 1997).

The results confirm the conclusion that, in the view of the coming teachers,

differences in teaching method are more important than differences on any

other facet. On the other hand, there is no substantive reason to support the

CDP model for these data.

Concluding Remarks

In this paper we have extended models that were conceived for the anal-

ysis of MTMM data. We have demonstrated how the models are derived from

the model for the observations and how they can be fitted using the LISREL

or the Mx program. Note that Mx can handle all models that have been dis-

cussed. A minor disadvantage of Mx program is that it uses numerical deriva-

tives which may make the optimization algorithm less stable, sometimes.

Models that are similar to the CDP model are described by Swain

(1975) and Verhees and Wansbeek (1990) and the Mx script described above

is easily adapted to fit these models. It is possible and indeed not difficult to

formulatehybrid models combining an additive specification of some facets

and a multiplicative specification for others. Such models are not difficult to

fit using Mx. However, unless there is a strong theoretical interest in such

models, fitting them would merely be an exercise in SEM. This brings us to

an important point. To wit, although the CDP model has been found useful to

describe MTMM correlation matrices, it represents a strong hypothesis on the

data. We find it somewhat disturbing that the vast majority of the applications

of the CDP model to MTMM matricesthat we knowprovide no substantive

arguments for use of the model. An exception being, for instance, Bagozzi, Yi

and Phillips (1991). Even studies where multiplicative and additive models

are compared (e.g., Hernández Baeza & González Roḿa, 2002) focus almost

exclusively on the relative fit of the models. At most, authors (e.g., Cudeck,



270 T.M. Bechger and G. Maris

1988, p. 141) refer to the work by Campbell and O’Connell (1967; 1982)

who observed that for some MTMM correlation matrices, inter-trait correla-

tions are attenuated by a multiplicative constant (smaller in magnitude than

unity), when different methods are used.

In closing, we mention two topics for future research. First, it is nec-

essary to establish the identifiability of the (reparameterized) CC and CDP

model. Although we believe these models to be identifiable there is no general

proof available that they are identifiable for any number of facets. Second, we

would like to have ways to perform exploratory analysis on the within-facet

covariance (or correlation) matrices. A suggestion is to use a model incor-

porating principal components. Such model have been considered (for two-

facets) by Flury and Neuenschwander (1995). Dolan, Bechger, and Molenaar

(1999) suggest how these model can be fitted in a SEM framework.
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Appendix

TItle Hoeks data CC model on correlations
Da No=620 Ni=18
KM SY
1.000
0.502 1.0000
0.512 0.475 1.0000
0.419 0.313 0.419 1.000
0.457 0.457 0.430 0.385 1.000
0.481 0.401 0.479 0.431 0.405 1.000
0.568 0.519 0.530 0.501 0.553 0.497 1.000
0.456 0.396 0.494 0.512 0.491 0.449 0.637 1.000
0.527 0.470 0.444 0.453 0.490 0.491 0.680 0.675 1.000
0.485 0.433 0.418 0.373 0.415 0.361 0.544 0.425 0.533 1.000
0.426 0.388 0.392 0.384 0.407 0.339 0.445 0.413 0.436 0.441
1.000
0.293 0.282 0.306 0.259 0.262 0.253 0.290 0.222 0.271 0.273
0.243 1.000
0.573 0.508 0.577 0.487 0.482 0.516 0.642 0.555 0.558 0.516
0.404 0.303 1.000
0.516 0.389 0.465 0.390 0.420 0.436 0.517 0.456 0.461 0.434
0.348 0.286 0.582 1.000
0.497 0.398 0.410 0.445 0.452 0.483 0.616 0.572 0.598 0.552
0.401 0.247 0.601 0.494 1.000
0.160 0.101 0.212 0.151 0.093 0.256 0.152 0.196 0.156 0.186
0.117 0.137 0.166 0.119 0.159 1.000
0.206 0.106 0.140 0.162 0.204 0.239 0.131 0.103 0.073 0.170
0.178 0.333 0.215 0.288 0.207 0.106 1.000
0.251 0.168 0.226 0.233 0.250 0.378 0.248 0.229 0.221 0.250
0.169 0.272 0.293 0.267 0.276 0.440 0.290 1.000
mo ny=18 ne=18 nk=4 ps=ze,fi ly=di,fr ga=fu,fi ph=sy,fr
MA gamma
1 0 0 0 !0 0
1 0 0 0 !1 0
1 0 0 0 !0 1
1 0 0 0 !0 0
1 0 0 0 !1 0
1 0 0 0 !0 1
1 0 1 0 !0 0
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1 0 1 0 !1 0
1 0 1 0 !0 1
1 1 1 0 !0 0
1 1 1 0 !1 0
1 1 1 0 !0 1
1 1 0 1 !0 0
1 1 0 1 !1 0
1 1 0 1 !0 1
1 1 0 1 !0 0
1 1 0 1 !1 0
1 1 0 1 !0 1
pa ph
0
0 1
0 0 1
0 0 0 1
!0 0 0 0 1
!0 0 0 0 1 1
va 1 ph(1,1)
st 0.3 all
ou se rs ULS it=40000

Note that anything after a ! is ignored by LISREL. We have kept it here to illustrate
how the script was changed from the first to the final analysis.


