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Structural Equation Modelling of
Multiple Facet Data: Extending Models
for Multitrait-Multimethod Data

Timo M. Bechger and Gunter Matris
CITO (The Netherlands)

Abstract

This paper is about the structural equation modelling of quantitative mea-
sures that are obtained from a multiple facet design. A facet is simply a set
consisting of a finite number of elements. It is assumed that measures are
obtained by combining each element of each facet. Methods and traits are
two such facets, and a multitrait-multimethod study is a two-facet design.
We extend models that were proposed for multitrait-multimethod data by
Wothke (1984;1996) and Browne (1984, 1989, 1993), and demonstrate how
they can be fitted using standard software for structural equation modelling.
Each model is derived from the model for individual measurements in order
to clarify the first principles underlying each model.

Introduction

A Multi-Trait Multi-Method (MTMM) study is characterized by mea-
sures that are composed as combinations of traits and methods. In this paper,
we will treat a more general case where measures are composed as combi-
nations of elements of facets. fAcetis simply a set consisting of a finite
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number of elements, usually callednditions Facets refer to properties of
the measures or measurement conditions. Methods and traits are two such
facets, and a MTMM study is a (fully crossed) two-facet design. Facets need
not be methods or traits or anything in particular. Consider, for example, a
study that is presented by Browne (1970) and discussed in detairbgkbg

and Srbom (1996, sectiol.3). Persons were seated in a darkened room
and required to place a rod in vertical position by pushing buttons. The score
was the (positive or negative) angle of the rod from the vertical. Each person
had to perform the task twice in a number of different situations which where
constructed according to a two-facet design. The two facets were the posi-
tion of the chair and the initial position of the rod, each with three conditions.
The occasion of the experiment may be considered the third facet with two
conditions.

We assume that measures were constructed for each combination of the
facets and that we have data for each measure. We further assume that mea-
sures are continuous. We believe that the case of discrete data is more appro-
priately handled using item response theory models (e.g., Bechger, Verhelst
& Verstralen, 2001).

To analyze data from a multiple facet design, we extend two models
that were suggested for the MTMM design: ttevariance component model
(Wothke, 1984, 1996), and theomposite direct product modéBrowne,

1984, 1989, 1993). In doing so, we pursue e.g., Bagozzi, Yi and Nassen,
(1999), Cudeck (1988), or Browne and Strydom (1997) who suggest general-
ization of the composite direct product model to multiple facets. Our objective
is to demonstrate how researchers who know the basic principstsictural
equation modellingSEM) may formulate and fit these models using the LIS-
REL (Jreskog & $rbom, 1996) or the Mx progranfNeale, Boker, Xie, &
Maes, 2002). There are several alternative software packages but the major-
ity of these have an interface that is similar to that of LISREL or Mx. For a
general introduction to SEM we refer the reader to Bollen (1989).

1The Mx program is free-ware and can, at present, be obtained from the internet address
http://lwww.vcu.edu/mx/index.html
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Each model is derived from the (data) model for individual measure-
ments in order to clarify the first principles underlying each model. In the con-
text of MTMM studies, the model for the observations is of less interest since
the main objective is to establish a structure for the correlations that relates
to the Campbell and Fiske (1959) criteria for convergent and discriminant va-
lidity. However, in general multi-facet studies the data model is important as
a substantive hypothesis that guides the interpretation of the parameters. We
demonstrate how each of the models can be fitted to a correlation or covari-
ance matrix. (We refer to Cudeck (1989) for a survey of the issues concerning
the analysis of correlation matrices). As an illustration, we discuss a number
of applications to real data.

Preliminaries

Persons (or, more generabjectd are assumed to be drawhrandom
from a large population and each observation is taken to be a realization of
a random vectok of measurements made under combinations of conditions
of multiple facets. All models that are considered here are based upon the
following linear model for the observations

x=ptntu

where . denote the mean of, and the latent variablg represents true or
common scores. The componentsuwofepresent measurement error and are
assumed to be uncorrelated with mean zero and variance niajtixThe
common scores are uncorrelatecupthey have zero mean and covariance
matrix 33,,. It follows that the data have mean vectoand covariance matrix

¥-%,+D, ,

whereD,, is a diagonal matrix.

We use the following notation: In a design with multiple facets, A, B,
C, D, etc. denote the facets. Each facet has several conditions (or elements)
denoted by A B,, etc. The number of conditions in each facet is denoted
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by the lowercase of the letter that is used to denote the facet. For example,
a = 3 if facet A has three conditions. We us&to denote a generic facet. The
number of measures that can be constructed (€x9.b x c if there are three
facets) will be denoted by. The number of facets will be denoted by #F. The
sum of the conditions in each of the facets (eag+; b + ¢) will be denoted

by #f. The symboll, denotes an identity matrix of dimensianand1, a

unit vector witha elements. The symbab denotes the Kronecker or direct
product operator with @B = (a,;B). Finally, the vector denotes a vector

of random variables associated with a facet; thatjis= (2(F}), ..., 2(Fy))7T,
wherez(F}) denotes a random variable associated with the j-th condition of
facet F. Uppercasg refers to transposition.

The Covariance Component Model

Wothke (1984) suggested that tBevariance ComponefCC) model
described by Bock and Bargmann (1966) be used for MTMM data. In this
section, we discuss a number of parameterizations of the CC model and
demonstrate how each is specified within the LISREL framework. Note that
the CC model is related to random effects analysis of variance (see Bock &
Bargmann, 1966, pp. 508-509) but we will not explicitly use this relationship
in our presentation of the model.

Introduction

Letn, denote a generic element®fi.e., X is a measurement obtained
as the combination of;, B;, . . ., E,. In the CC modely is assumed to have
an additive structure. Specifically,

Ne =g+ 2(A4) +2(B)) + ...+ 2(E;)
whereg denotes a within-person mean. In matrix notation:
n=Az |,

wherez = (g,2%,2%, . .. ,zg)T, andA is ap x (1 + #f) incidence matrix;
that is, a matrix whose entries are zero or one. The rowA afdicate all
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combinations of conditions of each of the facets. For two to five facets, the
structure ofA is given in Equation 1.

1, L®l, 1,0

1, Lol L,oLel. 1,81] (1)
1, L®l 1,0L,®1g 1,010,015 1lu®I1]

1, L®Llpge 1oL, @01 1p @1 @1 1ape @Li® 1 1gpea @ L]

hS]

For example, if there are two facets, with two conditions each:

0 0

(2)

I
—_ e =
—_ O

1
0
1

[Nl

0
1
1

o

Note that Equation 1 was derived assuming that each subsequent facet is
nested in the preceding facet(s); e.d;,B:C1, A1 B1Cs, A1 B,C1, etc. ltis
easy to see the general pattern in Equation 1 and derive expressions for more
than five facets.

It is assumed that is multivariate normally distributed with zero mean
and covariance matriX,. Furthermore, each facet is assumed to have an
independent influence on the measurements s@that block-diagonal; that

2
09

YA
Ezzdiag(aj,EA,H',EE): S - . 3

X

whereX - denotes a within-facet dispersion matrix. It follows that
> =AX.AT+D, . (4)

This is aconfirmatory factor analysis (CFANodel with a constant factor
loading matrix (see Bollen, 1989, chapter 7). As it stands, the model is not



258 T.M. Bechger and G. Maris

identifiable. Informally, this means that no amount of data will help to deter-
mine the true value of one or more of the parameters. We will demonstrate
this by constructing an equivalent model with less parameters.

The matrixA hasl + # f columns and rank equal tQA) = 1+ #f —
#F (e.g., Equation 2). SincA has deficient column rank, the vector of ran-
dom components that satisfigs= Az need not be unique. Consider an ex-
ample with two facets with two conditions each. Them,if= (1,2,3,4,5)"
andz, = (7,0,1,0,1)", n = Az, = Az,.

If z is a solution tay = Az we may write any other solutiozi* as

_g + z(A;) + z(Bl)- -2v1 + vy + v4-
0 Vg
z'=| 2z2(A) —z(A1) |+ 2u3 — 9 (5)
0 o
| 2(B2) — 2(B1) | | 205 — g

wherev; to vs are arbitrary constants (e.g., Pringle & Rainer, 19711 ).
The second and fourth elementszdfare arbitrary which means that the cor-
responding entries a., are arbitrary and therefore not identifiable. Specif-
ically, if 3% denotes the covariance matrix of, it is easily checked that
AX . xAT equalsAX, AT, whereX, has seven parameters afgx five (see
Equation 8).

The first vector in (5) contains linear combinaticghs= Lz of the ran-
dom components that are common to all solutions. In genkrdkgnotes a
r(A) x (1 + #f) matrix of full row rank. In the exampte

&= 2(Ag) — 2(Aq) =Lz=1|0 -1 1 0 0|z

We will not give a general expression fhrbut note that, in general, the first

linear combinatiort; is the common score of the first measurement. The

other linear combinations are within-facet deviations from the first condition.
2Itis easily checked thdtz, = Lz, = (7,1, 1).
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We now wish to find an equivalent expressionpoih terms of¢. That
is, we look for a matrixA such thatAz = A&. In our example,

— [ g i
11010
110 0 1] P
Az =g 11 of [P
1o 1o 1| [FBY
- | 2(B2)
(g + 2(Ay) + 2(By)
_ |9+ E(A) +2(By)
g+ 2(A2) + 2(B)
g+ z(Az) + 2(Bs)
ol o s+ 3
=111 0 2(Ag) — 2(Aq) = A€
2(By) — 2(By)
111 (

It is seen thatA is equal toA with columns corresponding to the first con-
dition in each facet deleted. In generdl, has the same structure Asin
Equation 1 except that the first column in each of the identity matrices in (1)
is deleted, that isl; is replaced by{ojq If,l].
It follows that

Y =A%A"+D, , (6)
whereX; = LX.L” denotes the dispersion matrix §f This CFA model
is easily fitted with LISREL or Mx. Note thaf, does not inherit the block-
diagonal structure o, becaus€&; = g + z(A;) + --- + z(E,) correlates
to each of the within-facet deviations. However,3if has the postulated
block-diagonal structure, the within-facet deviations should be uncorrelated
between facets.

Alternative Parameterizations |

The matrixA was constructed by deleting columns fra\n Hence,A
may be written as the matrix produdtP, whereP is an incidence matrix
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that serves to delete columns fral It follows that we may express a model
that is equivalent to (6) as:

> =AX..AT+D, , 7)

whereX,. = PXPT. In the example,

E[&] 0 El&4] 0 El&,4)
0 0 0 0 0
.= |E[&&] 0 EE] 0 0 (8)
0 0 0 0 0
E6,4] 0 0 0 EI[E]

Instead of fitting the model (6), we may fit a model of the form (7) with ap-
propriate restrictions o&.-. In general, these restrictions are that all entries
in X« involving the first condition of any of the facets are fixed to zero, as in

(8).
Alternative Parameterizations Il
Let T denote an arbitrary, non-singular matrix and defiie= AT !,

andX.. = TXT7. Itis not difficult to see that any model that can be written
as:

Y= A*Zf* A*T + Du (9)
is equivalent to (6). The matriX.- denotes the dispersion matrix of
& =T¢E=TLz=L"z

Hence, each alternative model of the form (9) implies a set of linear combi-
nations defined by.* = TL.
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Browne (1989) considers linear combinations of the form:

g
L3 3 3 3| [#(4)
& = Lz={0 -1 1 0 0] [2(A)
0 0 0 —1 3| |2(B)
|2(B2)
g+ 35 (2(A1) + 2(A2)) + 5 (2(B1) + 2(B2))
= 3 (2(42) — 2(A1))

z
3 (2(B2) — 2(B1))
The corresponding matriX, is found be solvind.* = TL. Here,

1 ¢+ 3+ 1 1 12311 0 1 0
L*=10 -2 1 0 0/{=TL=1{0 4 0/|0 -1 1 0 0
0 0 0 -3 3 00 ifl0 0 0 -11
The corresponding” is
1 -1 —1 100
1 -1 1 1011_1_1
A* = = AT ! = 0 2 0
1 1 -1 110
0 0 2
1 1 1 111

For later reference, we call this parametrizat@mwne’s parametrizationin
general, if we use Browne’s parametrizatidd, has the same structure As
in Equation 1, except that each of the identity matrites (1) is replaced

by the matrix [—1f_1 If_lr. There is, of course, an infinite number of
alternative parameterizations, each corresponding to a non-singular Matrix
and a matrix.* (see e.g., Bock & Bargmann, 1966, table 6).

Browne (1989) implicitly assumes that sub-matriéés in (3) have
equal diagonal elements. This implies tH8t. = L*3,L*" is block-
diagonal. For instance,

1

Bl = E {— (+(Ay) + 2(As),

: (:(42) = 2(40))

DN | —

(03(,42) - ‘73<A1>) ,

I,
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. . o
which is zero if and only ib7 , ) = 07 4,)-
Fitting the Covariance Component model to a Correlation Matrix

To fit the model to a correlation matrix we need to derive the model
for the correlation matri = D,XD., whereD, = dz’ag‘% (X); adiagonal
matrix with on the diagonal the inverses of the population standard-deviations
of the observed measures. That is,

P=D,(%,+D,)D,=D, (AZA" +D,)D, . (10)

This model is easily fitted with LISREL. One may, as in (10), use our first
parametrization and specify: ny = ne = p~k (A), PSE 0, LAMBDA-Y

= D,, GAMMA = A, and PHI= 3,. An example of a LISREL script is
provided in the Appendix. Only small changes are necessary to s@agify

as in (7) or (9). Note that (10) is a special case of the scale-free covariance
model proposed by Wiley, Schmidt, and Bramble (1973).

There is a caveat however. Wothke (1988; 1996) claims that the vari-
ance of¢; and covariances involving are not identifiable. Hence, in general,
model (10) is unsuited for correlation matrices. As mentioned before, Browne
(1989) assumes that the within-facet dispersion matrices have equal diagonal
elements. Suppose that this assumption holds. Then, if Browne’s parametriza-
tion is used, and the matriX,, in (10) is specified asA*Ef*A*T, the matrix
3~ is block-diagonal and the model may be used for correlation matrices
provided the variance dof; is known. Browne (1989) sets the variance of
&) to one. This means that all variances and covariance must be interpreted
relative to the variance &f;.

Applications of the Covariance Component
Model

To a Covariance Matrix

For illustration we apply the CC model to three-facet data gathered by
Hilton, Beaton, and Bower (1971). The data consistief3 measurements of
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two traits (facet A), measured with two instruments (facet B) on three occa-
sions (facet C). Details can be found in Cudeck (1988). We use the covariance
matrix reported in table 4 by Cudeck (1988) to fit the CC model.

Cudeck notes that the data show large kurtosis and goodness-of-fit
statistics that are based upon the assumption that the data are normally dis-
tributed may not be trusted. Following Cudeck, we provide the normal-theory
generalized least-squares estimates of the paramet®xs in

[92.54

6.78 11.94

Se = [14.22 11.38  20.02

~335 —122 —156 823

144 022 1.93 —541 44.04

As judged from the standardized residuals the CC model did not fit the data.
The CC model has aadjusted goodness-of-fit index (AGHH) 0.91 and a
standardized root-mean-square residual (RM8).31. Hence, no substan-

tive conclusions should be drawn from these parameter estimates and we
merely present them to enable readers to check their results. Note that Cudeck
(1988) fitted the multiplicative model that is discussed in the next section to
the same covariance matrix and found that it fitted the data well.

To a Correlation Matrix

Guilford’s (1967) structure of intelligence model can be conceived of
as a facet design for constructing intelligence tests (Fiske, 1971, p. 128).
Guilford distinguished three facefEhe operation facetefers to the subject’s
intellectual processing of informatiothe content facetefers to the content
of the information; andhe product faceto the form of the information. Using
Guilford’s facet design, Hoeks (1985) constructed eighteen tests measuring
the content element semantic abilities. He selected two out of five elements
of the operation facet: cognition and memory, and three out of five elements of
the product facet: units, systems and transformation of information. Hence,
the tests where constructed according t & 3 facet design. For each of
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the combinations, Hoeks constructed three different tests. The tests may be
considered as a third facet and we treat the measures as arisingZroses
facet design. The data were analyzed earlier using a standard confirmatory
factor model by Hoeks, Mellenbergh and Molenaar (1989). We fit the CC
model to the correlation matrix that they give in their report (see Appendix).
Following Hoeks, Mellenbergh, and Molenaar (1989) we used un-
weighted least-squares to fit model (10) to the correlation matrix, assuming
a block-diagonal structure fat... The CC model reproduced the observed
correlation matrix well as judged from the residuals. Deviations correspond-
ing to the third facet (different tests) showed zero variation relative to the
combination of the first condition in each facet. Thus, we specified a model
for two facets with three measures for each combination and found a model
that fitted equally satisfactorily. This model is easily specified by deleting
the columns of the third facet from th® matrix. Finally, we found that we
could specify3l,- as a diagonal matrix without visible deterioration of the fit.
The final model has an AGFI 0£99, and a RMS 0f).051, comparable to the
values found by Hoeks, et al. (1989). Other fit indices are not reported be-
cause they require normal distributions. A LISREL script for the final model
is in the Appendix. Our analysis suggests that the facet-structure suggested
by Guilford does indeed hold.

The Composite Direct Product Model

The multiplicative data model may be derived from the following mul-
tiplicative structure for the common scane

e = 2(A5)2(By) - 2(Ey) (11)

In contrast to the CC model, it is now assumed that the true score is the
product of a set of latent variables. It is clear that (11) represents a strong
hypothesis; one that will not often be deemed realistic in social science ap-
plications. As illustrated in Figure 1 for two facets, different values(of;)
give the same true score in combination with two different values 5% ).
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2®) 2(A)

Figure 1 A surface plot ofy, for different values ok (A;) andz(B;)

Furthermore, itis seen that there is a unique point where the true score is zero.
Needles to say that, although the latent variables in the CC atitinom-
posite direct product (CDP) modate represented by the same symbol, their
interpretation is quite different. In matrix notation, the data model in (11) is

N=z2AR®ZpR2Zc @ - KXZg . 12)

As with Equation 1, Equation 12 is derived assuming that each subsequent
facet is nested in the preceding facet(s).
The dispersion matrix of the common scobesis found by expanding
E [nn™] which gives
Sy = Elaa®2p@-05p) (24020 02p)"
= E|:(ZA®ZB®"'®ZE)(Z£®Z£®"'®Zg)]

If we assume that the latent variables are normally distributed, and indepen-
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dent between facetg;, has a multiplicative structure; that is,

X, = E[zAza;@szg@---zEzﬂ

= YAa®¥p® - ®X¥g

It follows that
YX=3,03®---¥g+D, . (13)

Note that the common scores are not normally distributed under this model
since the product of normally distributed variables is not normally distributed.
There is an equivalent specification of the model with standardized
within-facet dispersion matrices. The true score dispersion matrix is stan-
dardized by pre- and post-multiplying the dispersion matrices by a diagonal
matrix D, = diag™* [%,] that contains the inverse of the true score standard
deviations. The multiplicative structure Bf, implies that this matrix is found
to be structured as follows:

Dn:DA®DB®®DE )
whereD, = dz’ag‘%(EF). Hence, the correlation matrix of the common
scorespP,, is
P, = D,%,D,
= (DaXuD4) ® (DpXpDg)® -+ ® (DpXeDg)

The symmetric matriceBP r are thewithin-facet correlation matricesnder
the CDP model. It follows that

>»=D,'(P,+D,D,D,) D' =D, (P,+D;)D," . (14)

The elements of the x p diagonal matrixD;, represent ratios of unique
variance to common score variance and one minus any diagonal element of
Dj; equals the classical test theory reliability of the corresponding measure.
The matrixD;1 has a multiplicative structure since

D,;l:(DA®DB®---®DE)71:D21®D§1®---®D;31
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The model in (14) has the same form as (10) and may be fitted using

LISREL with appropriate (non-linear) constraints Br). However, LISREL

requires that each of the individual constraints be specified and this is cum-
bersome if there are many of them. Alternatively, the CDP model may be
formulated as a CFA model (see Wothke & Browne, 1989) but this too is
cumbersome when the number of facets is larger than two. Fortunately, the
multiplicative model is easily fitted with the Mx program which incorporates
the Kronecker product as a model operator. The following box gives a general

scheme for an Mx script:

TITLE: multiplicative model with any number of facets

DAta NObservationsgar. of observationsiNinput=(p) NGroup=1
CM FlI=(file with sample covariance or correlation matrix)
MATrices D Dlagonal p p FREE

A STandardized a a FREE

B STandardized b b FREE

(etc.)

X Diagonal a a FREE

Y Dlagonal b b FREE

Z Dlagonal a a FREE

(etc.)

U Dlagonal p p FREE

COX@Y@ - @2)*(A@B@C@- - @E + UU*(X@Y@-- @Z2) /
STart(starting values)

Options(here you can specify e.g., the number of iterations)
end

When we analyze the correlation matrix we need to specify a model
for the population correlation matrix. If we standardize the covariance ma-

trix, this only affects the elements &¥.', which now represent the ratios of
sample standard deviations to common score standard deviations.
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An Application of the Composite Direct
Product Model

The Miller and Lutz (1966) data consist of the scores of 51 education
students on a test designed to assess teacher’s judgements about the effect of
situation and instruction factors on the facilitation of student learning. The
measures where constructed according to a facet design with three facets with
two conditions each:

1. A: Grade level of the studentd; denotes the first grade ant} the
sixth grade.

2. B: Teacher approachB; denotes a teacher-centered approach and
B, a pupil-centered approach.

3. C: Teaching method(C', denotes an approach where teaching con-
sisted mainly of rote learning activitie§; denotes an approach in which the
teacher attempts to develop pupil understanding without much emphasis on
rote memorization.

The Miller-Lutz data were analyzed by Wiley, Schmidt, and Bramble (1973),
and dreskog (1973) using the additive model, and detailed results can be
found there. Note thatileskog (1973, p. 32) used Browne’s parametrization.
The CC model shows a reasonable fit to these det21) = 37.97, p =

0.01, and theRoot Mean Square Error of Approximation (RMSE%uals

0.11 (see Steiger & Lind, 1980 or McDonald, 1989). The results indicate
that differences between the drill and the discovery methods of instruction
caused most variation in the responses of the education students. Differences
in teacher approach showed least variation.

We have used the covariance matrix reported dmgeskog (1973, Ta-
ble 10) to estimate the parameters of the CDP model. The model did not fit
the data as judged from the chi-square statisti¢19) = 49.4, p < 0.001,
RMSFEA = 0.18) as well as the residuals. For illustration we give some of
the results here:

1 1
PA - aPB =
0.89(0.81 —0.95) 1 0.92(0.84 —0.98) 1
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and
1

P —
7 10.42(0.19 — 0.61) 1

Within brackets aré®5-percent confidence intervals (Neale & Miller, 1997).
The results confirm the conclusion that, in the view of the coming teachers,
differences in teaching method are more important than differences on any
other facet. On the other hand, there is no substantive reason to support the
CDP model for these data.

Concluding Remarks

In this paper we have extended models that were conceived for the anal-
ysis of MTMM data. We have demonstrated how the models are derived from
the model for the observations and how they can be fitted using the LISREL
or the Mx program. Note that Mx can handle all models that have been dis-
cussed. A minor disadvantage of Mx program is that it uses numerical deriva-
tives which may make the optimization algorithm less stable, sometimes.

Models that are similar to the CDP model are described by Swain
(1975) and Verhees and Wansbeek (1990) and the Mx script described above
is easily adapted to fit these models. It is possible and indeed not difficult to
formulatehybrid models combining an additive specification of some facets
and a multiplicative specification for others. Such models are not difficult to
fit using Mx. However, unless there is a strong theoretical interest in such
models, fitting them would merely be an exercise in SEM. This brings us to
an important point. To wit, although the CDP model has been found useful to
describe MTMM correlation matrices, it represents a strong hypothesis on the
data. We find it somewhat disturbing that the vast majority of the applications
of the CDP model to MTMM matricethat we knowprovide no substantive
arguments for use of the model. An exception being, for instance, Bagozzi, Yi
and Phillips (1991). Even studies where multiplicative and additive models
are compared (e.g., He&andez Baeza & Goiddez Rona, 2002) focus almost
exclusively on the relative fit of the models. At most, authors (e.g., Cudeck,
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1988, p. 141) refer to the work by Campbell and O’Connell (1967; 1982)
who observed that for some MTMM correlation matrices, inter-trait correla-
tions are attenuated by a multiplicative constant (smaller in magnitude than
unity), when different methods are used.

In closing, we mention two topics for future research. First, it is nec-
essary to establish the identifiability of the (reparameterized) CC and CDP
model. Although we believe these models to be identifiable there is no general
proof available that they are identifiable for any number of facets. Second, we
would like to have ways to perform exploratory analysis on the within-facet
covariance (or correlation) matrices. A suggestion is to use a model incor-
porating principal components. Such model have been considered (for two-
facets) by Flury and Neuenschwander (1995). Dolan, Bechger, and Molenaar
(1999) suggest how these model can be fitted in a SEM framework.
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Appendix

Tltle Hoeks data CC model on correlations

Da No=620 Ni=18

KM SY

1.000

0.502 1.0000

0.512 0.475 1.0000

0.4190.3130.419 1.000

0.457 0.457 0.430 0.385 1.000

0.481 0.401 0.479 0.431 0.405 1.000

0.568 0.519 0.530 0.501 0.553 0.497 1.000

0.456 0.396 0.494 0.512 0.491 0.449 0.637 1.000

0.527 0.470 0.444 0.453 0.490 0.491 0.680 0.675 1.000
0.4850.4330.418 0.373 0.415 0.361 0.544 0.425 0.533 1.000
0.426 0.388 0.392 0.384 0.407 0.339 0.445 0.413 0.436 0.441
1.000

0.293 0.282 0.306 0.259 0.262 0.253 0.290 0.222 0.271 0.273
0.243 1.000

0.573 0.508 0.577 0.487 0.482 0.516 0.642 0.555 0.558 0.516
0.404 0.303 1.000

0.516 0.389 0.465 0.390 0.420 0.436 0.517 0.456 0.461 0.434
0.348 0.286 0.582 1.000

0.497 0.398 0.410 0.445 0.452 0.483 0.616 0.572 0.598 0.552
0.401 0.247 0.601 0.494 1.000

0.1600.101 0.212 0.151 0.093 0.256 0.152 0.196 0.156 0.186
0.117 0.137 0.166 0.119 0.159 1.000

0.206 0.106 0.140 0.162 0.204 0.239 0.131 0.103 0.073 0.170
0.178 0.333 0.215 0.288 0.207 0.106 1.000

0.251 0.168 0.226 0.233 0.250 0.378 0.248 0.229 0.221 0.250
0.169 0.272 0.293 0.267 0.276 0.440 0.290 1.000

mo ny=18 ne=18 nk=4 ps=ze,fi ly=di,fr ga=fu,fi ph=sy,fr

MA gamma

1000100

100010

1000101

1000!00

100010

100001

101000
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101010
101001
1110!00
111010
111001
110100
110110
110101
1101100
1101'10
110101
pa ph

0

01

001
0001
100001
1000011
va lph(1,1)
st 0.3 all
ou se rs ULS it=40000

Note that anything after a ! is ignored by LISREL. We have kept it here to illustrate
how the script was changed from the first to the final analysis.



