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This simulation study investigated the impact of differential item 
functioning (DIF) on the Type I error rate and effect size of the independent 
samples t-test on the observed total test scores.  Five studies were 
conducted: studies one to three investigated the impact of unidirectional DIF 
(i.e., DIF amplification) on the Type I error rate and effect size of the 
independent sample t-test, studies four and five investigated the DIF 
cancellation effects on the Type I error rate, and effect size of the 
independent sample t-test. The Type I error rate and effect size were defined 
in terms of latent population means rather than observed sample means. The 
results showed that the amplification and cancellation effects among 
uniform DIF items did transfer to test level. These findings highlight the 
importance of screening DIF before conducting any further statistical 
analysis. 

 

Differential item functioning (DIF) has been widely studied in 
educational and psychological measurement. For recent reviews please see 
Camilli (2006) and Zumbo (2007). Previous research has primarily focused 
on the definitions of and the methods for detecting DIF. It is well accepted 
that the presence of DIF might degrade the validity of a test. There is 
relatively little known, however, about the impact of DIF on later statistical 
decisions when one uses the observed test scores in data analyses and 
corresponding statistical hypothesis tests. For example, let us imagine that a 
researcher is investigating whether there are gender differences on a 
language proficiency test. What is the impact of gender-based differential 
item functioning on the eventual statistical decision of whether the group 
means (male versus female) of the observed scores on the language 
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proficiency test are equal? There is remarkably little research to help one 
directly answer this question.  

DIF may be present in a test because either (a) DIF analyses have not 
been used as part of the item analyses, (b) it is there unbeknownst to the 
researcher, as an artifact of DIF detection being a statistical decision 
method, and hence true DIF items may be missed, or (c) as a result of the 
practice of leaving items flagged as DIF in a test.  Irrespective of how the 
DIF items got there, it is still unknown how such DIF items affect the 
subsequent statistical results and conclusions, particularly, the Type I error 
rate and effect size of hypothesis tests from observed score test data. 

In order to directly answer this research question of the effect of DIF 
items on the eventual statistical conclusions from the test total scores, we 
conducted five interrelated simulation studies wherein we simulated 
population test data using item response theory (IRT) with varying degrees 
of DIF -- i.e., number of items exhibiting DIF and the magnitude of DIF.  In 
order to answer the hypothetical researcher’s research question, the 
observed (number correct) scores were then subjected to a t-test to test for 
the equality of sample means. Throughout this research we focus on the 
(Type I) error rates and effect sizes of the t-test under the null hypothesis of 
equal means. We did not investigate the statistical power (i.e., the results 
under the case when the population means are not equal) due to space 
limitations and due to the fact that Type I error rates need to be established 
before one can interpret the results of statistical power. The statistical power 
study is forthcoming. 

It is important to note that the Type I error rate herein, in essence, was 
the probability of rejecting the null hypothesis when the latent means (rather 
than the observed test score means) were equal across groups. That is, using 
IRT one notes that an item response is a function of item parameters and 
examinee ability. By definition, when DIF items were retained in a test, 
these DIF items might result in differences in item responses of different 
group of examinees of comparable abilities. Accordingly, our research 
question more formally can be stated as: What is the probability of rejecting 
the null hypothesis of equal observed test score means when the latent 
means are equal but DIF is present in the test?  Likewise the effect size 
reflects those settings in which the latent variable population means are also 
equal. 

Based on tangentially related research that investigates the impact of 
DIF on person parameter estimates (i.e., the latent variable score) from IRT, 
scale scores, and predictive validity (e.g., Drasgow, 1987; Maller, 2001; 
Roznowski, 1987; Roznowski & Reith, 1999; Rupp & Zumbo, 2003, 2006; 
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Shealy & Stout, 1991, 1993; Wells, Subkoviak, & Serlin, 2002) we predict 
that the Type I error rate and effect sizes will be inflated, however, the 
extent and under what conditions it will be inflated are unknown. To answer 
the question of how much DIF effects the eventual statistical conclusions 
we are interested in two testing situations: (a) several DIF items consistently 
favor one group, and hence, of course are against the other one; (b) some of 
the DIF items favor one group and some favor the other. The first situation 
represents what we refer to as DIF amplification effects (which were the 
focuses of studies one, two, and three) whereas the second situation as DIF 
cancellation effects (which were the focuses of studies four and five). Of 
course, other test data situations may arise but given that this is the first 
study of its kind we wanted to address two fairly straightforward, but of 
course plausible, testing situations. 

Five inter-related computer simulation studies were conducted. The 
first study focused on the amplification effects of DIF on the Type I error 
rate of the hypothesis test of equality of means of the observed test scores. 
The second simulation study focused on the amplification effects of DIF on 
the effect size. The third simulation study investigated the impact of varying 
the test item parameter values on the Type I error rate of the subsequent t-
test of the observed score means. Note that in studies one and two the items 
used to generate DIF were sampled in a fixed manner. Influences of the 
different values of the item parameters on the Type I error rate were not 
considered. Therefore, study three was added to confirm the generalizability 
of the results of this study. Study four focused on the impact of DIF 
cancellation effects on Type I error rate, and finally study five focused on 
the impact of DIF cancellation effects on the effect size.  In order to 
organize the findings and convey them in a clear manner, we organized the 
five simulation studies into two sections: section one being the 
amplification effects and section two the cancellation effects. Each section 
will have a brief discussion section and then a general discussion will be 
reserved for the end.  

We focused our research on the widely used two independent sample 
case of testing the equality of observed score group means; that is, the 
conventional (pooled variances) independent samples t-test. This scenario 
reflected the all too widely observed case wherein researchers investigate 
mean differences on their test data (a) without having first studied whether 
DIF exists, or (b) when one conducts DIF analyses but decides to retain the 
items even though DIF is found. It is important to note that the DIF was 
aligned with the hypothesis test of mean differences itself (i.e., there were 
potential gender DIF items when one was investigating gender differences 
on the observed test scores). Without loss of generality to other assessment 
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and measurement approaches (such as psychological or health 
measurement), we will use educational achievement testing and gender DIF 
as our example to contextualize our research. Of course, the DIF could be 
due to test translation or adaptation, or any other situation that results in a 
lack of measurement invariance (Zumbo, 2007). 

SECTIO� O�E 

Impact of  Differential  Item  Functioning (DIF) on Statistical 

Conclusions, I: Amplification Effect 

 

Study One: Type I Error Rates 

The purpose of this first simulation study was to document the effect 
of DIF items on the eventual Type I error rates of the t-test on the observed 
(number correct) total test score data. In this study we focused on the 
amplification effect of DIF item. That is the situation where DIF items favor 
a group consistently. 

METHODS 

Simulation factors. 

The simulation factors manipulated in this study were magnitude of 
DIF, number of DIF items, and the sample size.  There are three levels of 
magnitude of DIF -- small, moderate, and large as defined by Raju’s area 
statistic of .4, .6, and .8 (Raju, 1988), four levels of number of DIF items (1, 
4, 8, and 16 items out of 38 items in the test), and four levels of sample size 
(25, 50, 125, and 250 examinees per group).  In addition, for comparison 
purposes, we investigated the no DIF condition as a baseline for the four 
sample sizes – it is expected, of course, that in this condition the observed 
Type I error rate would be at the nominal level.  Therefore, for the Type I 
error rate simulation, the resultant simulation experiment was a 3x4x4 
completely crossed factorial design; and in addition 4 no-DIF conditions 
(for the four sample sizes) resulting in a total of 52 cells in our simulation 
design. 

We focused our investigation on binary items. The data were 
generated using item response theory (IRT).  In order to examine the 
amplification effect of DIF items, we focused on unidirectional uniform 
DIF.  Unidirectional DIF (Shealy & Stout, 1991, 1993) occurs when the 
DIF items are against the same group for all levels of ability (θ).  Thus in 
this study DIF items were simulated consistently favoring the reference 
group.  In addition, we adopted Zumbo’s (2003) simulation design and 
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therefore we did not vary the test length, and we used real item parameters 
based on the TOEFL test to generate our item data for a 38 item test. 

The first factor of interest in this study was the magnitude of DIF.  
Theoretically, we expected larger magnitude of DIF would enlarge the 
differences in item responses between groups and hence the combined DIF 
effect across items might result in greater Type I error rate.  Previous 
studies (French & Maller, 2007; Narayanan & Swaminathan, 1996; Rogers 
& Swaminathan, 1993) also simulated DIF in this manner. Following these 
earlier studies, the uniform DIF items were simulated by shifting the b-
parameter in the focal group to manipulate the area between two item 
response functions.  In the situations wherein there was more than one DIF 
item, all the items in that situation had the same magnitude of DIF.  That is, 
for the ease of interpretation, we did not investigate the effect of having a 
mixed magnitude of DIF – e.g., for the situation in which more than one 
item had a DIF, all of the items had, for instance, a .40 DIF effect. 

Similarly, we expected that the Type I error rate might be affected by 
the proportion of DIF items in the test.  In the unidirectional uniform DIF 
case, the hypothesis was that the more DIF items were retained in the test 
the larger differences would be resulted in observed response data across 
groups, then the more likely that the Type I error rate would be affected.  
Note that following Zumbo (2003) we did not varying the total of number 
of items in the test – we investigated 1, 4, 8, and 16 DIF items, out of a total 
38 items.  

Sample size was another factor that might affect the Type I error rate 
in terms of latent means as the larger the sample size the more likely one is 
to reject the null hypothesis.  Sample size was set equal in both comparison 
groups.  

 

Simulation procedures. 

Following Zumbo (2003), the 38 item parameter estimates for the 
Structure and Written Expression section of Test of English as a Foreign 
Language (TOEFL) were used to simulate the data in the various 
conditions.  The means and standard deviations of item parameters in the 
reference and focal groups were presented in Table 1 and Table 2.  
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Examinee response data was generated using a three-parameter 
unidimensional logistic item response model (Birnbaum, 1968) as shown in 
equation (1),  
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where ai, bi, and ci are the item discrimination, difficulty, and guessing 
parameters of item i, respectively.  The latent variable is denoted as θ , 
whereas ( )iP θ  denotes the probability of answering item i correctly with 
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ability θ .  Five thousand replications were conducted in each cell (i.e., 
study condition) of the simulation design; therefore, each Type I error rate 
value was based on 5000 replications of the simulation experiment. 

Three steps were conducted to generate the item response data for 
Type I error rate studies.   

Step #1: In the first step we generated the reference population data. 
In this step, the ability values,θ , for the reference group were generated 
from a standard normal distribution (M = 0, SD = 1).  The probabilities,

( )iP θ , were calculated using equation (1) and the values of a, b, c, and the 

generatedθ .  Then, uniformly distributed random numbers with interval [0, 
1] were generated.  To obtain the binary item response, the item response 
probabilities, ( )iP θ , were converted to 1s when the probability was larger 

than the corresponding random number, whereas the probabilities were 
converted to 0s otherwise (Hambleton & Rovinelli, 1986).  Next, the 
observed total test scores (number correct) were computed.  And finally, 
samples with a particular sample size were randomly sampled from the 
reference population.   

Step #2: In step two we generated the focal population data using 
exactly the same procedures except that some of the item parameter values 
were changed to reflect DIF on selected items and depending on the cell of 
the simulation design.   

Step #3: In step three the generated two populations were merged into 
one file and the independent sample t-tests were conducted, and the Type I 
error rates were computed as the number of rejections of the null hypothesis 
out of the 5000 replications.  Our nominal significance level was 0.05 
throughout this study.  Therefore, empirically, the Type I error is defined as 
the proportion of times that a true null-hypothesis was falsely rejected at the 
0.05 level.   

 

Analysis of the Type I error rate simulation results. 

We used the Bradley (1978) approach to documenting the inflation in 
Type I error rate. Bradley defined three different levels of Type I error rate 
robustness which he terms as fairly stringent, moderate, and very liberal.  
Thus, for a Type I error rate of .05, the fairly stringent criterion for 
robustness requires the empirical Type I error rate lie between .045 and 
.055.  The moderate criterion requires the empirical Type I error rate lies 
between .040 and .060.  And the very liberal criterion requires the empirical 
Type I error rate lies between .025 and .075.  Please recall from the 
definition above that these proportions of rejected t-tests were the Type I 
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error rates because the population means for the latent variable, θ, were 
equal. 

In addition to Bradley’s descriptive method we also used regression 
modeling to investigate the effect of the simulation factors, treating the 
design and analysis as a type of response surface modeling (Zumbo & 
Harwell, 1999).  The dependent variable is a proportion (i.e., the empirical 
Type I error rate based on 5000 replications) therefore the logit 
transformation was applied (Cohen, Cohen, West, & Aiken, 2003, p. 240).  
The regression modeling was conducted in two steps.  In the first step a 
model was fit with main effects, and then an assessment was made whether 
the interactions statistically contributed to the model. In the second step 
graphical methods were used to describe the main effects and/or 
interactions.  

RESULTS A�D CO�CLUSIO�S 

Table 3 lists the simulation results and the description based on 
Bradley’s criteria.  The Type I error rate for different sample sizes were 
computed for the no DIF conditions to establish baselines for comparisons 
with the conditions wherein different DIF conditions were manipulated.  
Under the no DIF condition, as shown in second column of Table 3, the 
Type I error rates range, as expected, from 0.052 to 0.053 for sample size 
from 25 to 250 per group (the column labeled ‘No DIF’ in Table 3). This 
also serves as a check on our simulation methodology. 

Table 3 also displays the results of the Type I error rates for the case 
of the DIF amplification effect for the (a) different magnitudes of DIF, (b) 
number of DIF items, and (c) sample size combinations.  Please recall that 
DIF items in this study were all simulated favoring the reference group.  
The far left column of Table 3 lists the sample sizes per group and next to it 
is the baseline Type I error rates.  The remaining nine columns were divided 
into three magnitudes of DIF (i.e., Raju’s area of .40, .60, and .80).  Within 
each magnitude of DIF, the four columns represent the cases wherein there 
are 1, 4, 8, and 16 DIF items.  For example, focusing on Raju’s area of .40, 
with one uniform DIF retained in the test (column 2), the Type I error rates 
were between 0.45 and 0.56 for the sample sizes of 25 to 250 per group.  In 
this situation none of the Type I error rates were inflated for all studied 
sample sizes using Bradley’s (1978) moderate criterion.  As the sample size 
increased to 250, the Type I error rate inflated with large DIF compared 
against the moderate criterion.  In terms of categorizing the resultant Type I 
error rates:  
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• When only one of the 38 items had DIF, the Type I error rate met 
the moderate criterion, except for Raju’s area of .80 with 250 
examinees per group wherein the Type I error rate only met the 
liberal degree of robustness. 

• Irrespective of the magnitude of DIF and sample size, with 16 out 
of 38 of the items having DIF the Type I error rate was inflated.  
Likewise, for Raju’s area of .60 and .80 with 8 out of 38 of the 
items having DIF the Type I error rate was inflated, and 

• For 4 or 8 out of 38 items having DIF, the classification of the 
Type I error rates were dependent on the sample size and the 
magnitude of DIF – ranging from moderate to liberal inflated Type 
I error rates. 

These classifications of DIF are informative in terms of deciding 
whether one should treat the Type I error rate as too large and hence 
invalidating the t-test of the hypothesis of equal population observed score 
means, but these classifications do not clearly provide a description of how 
the simulation factors, as main effects or interactions, effect the Type I error 
rate of the t-test.  To address this latter question, we conducted the 
regression analysis of the simulation results treating each factor in the 
simulation (Number of DIF items, Magnitude of DIF, Sample size) and the 
interactions among them as explanatory variables in the multiple regression 
analysis (Zumbo & Harwell, 1999). In the first step of the modeling, the 
main effects were entered into the model with a resultant R-squared of 
0.782 ( F (3, 44) = 52.53, p < .0001), then the three two-way interactions 
were entered into the model for a resulting R-squared of 0.973 (R-squared 
change was statistically significant, F (3, 41) = 96.24, p < .0001), and 
finally the three-way interaction was entered into the model resulting in an 
eventual model R-squared of 0.985 (R-squared change was statistically 
significant, F (1,40) = 33.67, p < .0001).  Please note that because of the use 
of interaction terms all of the explanatory variables were first centered 
before product terms were computed for the interactions.  Clearly, the three-
way interaction was statistically significant. Upon close inspection of Table 
3, for each magnitude of DIF, it can be clearly seen that the inflation of the 
Type I error rate increases as the number of DIF items and the sample size 
increase. 

 

 

 

 



 Z. Li & B.D. Zumbo 352 

 



Impact of DIF 353

Study Two: Effect Size 

A second computer simulation study was designed to investigate the 
effect of DIF on the effect size of the independent sample t-test when DIF 
items were retained in the tests. Cohen's d is the appropriate effect size 
measure to use in the context of a t-test of independent means; d is defined 
as the difference between two means divided by the pooled standard 
deviation for those means. We compute d for both the observed total scores 
and latent variables; which allow us to index the impact of DIF on the effect 
size. For the observed score d, the means and standard deviations are 
computed from the observed total test scores, whereas for the latent variable 
d the mean and standard deviations are computed from the latent variable 
scores. 

As in study one, the observed score effect size is computed when the 
latent means (rather than the observed group test score means) were equal 
across groups. Therefore, our research question can be stated as: What is the 
effect size for the observed test score means when the latent means are 
equal but DIF is present in the test? 

METHODS 

The simulation factors manipulated in this study, as well as the 
simulation methodology, were the same as those in study one except for one 
experimental factor, sample size.  That is, we manipulated number of DIF 
items and the magnitude of DIF. As in study one, there were four levels of 
number of DIF items (1, 4, 8, and 16 items out of 38 items in the test), and 
three levels of magnitude of DIF -- small, moderate, and large as defined by 
Raju’s area statistic of .4, .6, and .8 (Raju, 1988). In addition, we 
investigated the no DIF condition as a baseline for the four sample sizes for 
comparison purposes.  This resulted in a 4x3 completely crossed factorial 
design and an additional no-DIF condition resulting in a total of 13 cells in 
our simulation design.   

Note that like Zumbo (2003) we were not interested in the sample-to-
sample variation in effect size estimates but instead focused on (the 
population analogue of) the bias in effect size. With this in mind we 
simulated 10,000 examinees in each cell of the simulation design for our 
pseudo-populations. For each cell we computed the effect size for the 
observed total test score mean difference and for the latent mean difference 
(and their corresponding standard deviations). Because both the observed 
score and latent variable effect size values are on the same metric (both 
being standardized) we were able to compute the difference between them 
as an index of how much the DIF biases the effect size. 
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RESULTS A�D CO�CLUSIO�S 

As was noted above, because the effect sizes are on the same metric 
(i.e., both are standardized), Table 4 lists differences between the effect 
sizes of the observed and the latent variable score for the three magnitudes 
of DIF and the four different number of DIF items (1, 4, 8, 16). One can see 
that when no DIF exists the effect sizes of the latent mean and observed 
mean are, as expected, equal (to the third decimal point and hence within 
sampling). Again, this serves as a check of the simulation methodology. 
However, when DIF (unidirectional uniform DIF) appeared in the test, the 
effect size differences increase. The more DIF items one has in their test 
and the larger the DIF, the greater the effect size differences with the 
observed mean differences being spuriously inflated by the presence of DIF. 

Using the same analysis methodology used in study one, the 
simulation results were analyzed using regression analysis with effect size 
differences as the dependent variable and magnitude of DIF, number of DIF 
item, and their interaction as independent variables. The model is 
statistically significant (F (3, 8) = 287.9, p < .0001) with an R-squared of 
0.991 and an adjusted R-squared of .987. All the predictors are statistically 
significant, including the interaction term. Upon close inspection of Table 4, 
it can be clearly seen that the effect size differences increase as the number 
of DIF items and the magnitude of DIF increase. 

A research question naturally arises from our findings to this point. 
Given that in studies one and two we treated the item parameter values as 
fixed values we do not know the impact of varying item difficulty, 
discrimination and guessing on the Type I error rate.  

 

Study Three: Impact of Item Parameter Values on Type I Error 

Rates 

Studies one and two investigated the impact of DIF on the Type I 
error rate and effect size; however, the items used to generate DIF were 
sampled from 38 items in a fixed form of a test. Influences of the values of 
the item parameters were, therefore, not considered in either of the first two 
studies. Study three focuses on the impact of varying item parameter values 
on the Type I error rate. In essence, study three is an empirical check as to 
whether the findings in study one are generalizable to other item parameter 
values than just the ones under investigation therein – in essence, an 
investigation into the external validity of the findings in study one.  
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In this study we investigated the impact of item properties (values of 
a-, b-, and c-parameters), magnitude of DIF (quantified by Raju’s area) and 
∆b (b-parameter differences between groups) and sample size on Type I 
error rate. This study focused on the case of one DIF item (i.e., the case in 
which the Type I error rates are protected in study one). We did not 
investigate the case of more than one DIF item because in those cases the 
Type I error rate is already inflated and hence of little practical value to 
investigate how the item parameter values may further inflate the error 
rates.   

This study is different in purpose and design than the typical 
computer simulation study in psychometric research.  The typical 
psychometric simulation study, such as studies one or two, have, in 
experimental design terms, fix experimental factors. Therefore, as is well 
known in experimental design, generalizing beyond the values of the fixed 
factors is not recommended. If one wants to investigate the generalizability 
of findings from a fixed factor (computer simulation) experiment one needs 
to randomly sample the values of the levels of the manipulated factors; 
hence, in essence, creating a random factor.  The present study does just 
that by sampling item parameter values and magnitudes of DIF to 
investigate whether the protected Type I error rate when one has only one 
item exhibiting DIF generalizes to other item parameter values than those 
used in study one. 

METHODS 

Therefore, different from study one in which item parameters for the 
item exhibiting DIF were real parameters from TOEFL, DIF item parameter 
values and the b-parameter differences between groups in this study were 
randomly generated from normal and uniform distributions.  

Let us first describe the simulation design in broad strokes with the 
details to follow. One can think of the simulation running in three large 
steps. 

Step 1:  We followed study one and used the same number of items 
and item parameters (1 DIF item out of 38 total items) and sample sizes 
(25:25, 50:50, 125:125, and 250:250).  

Step 2:  For each sample size condition we generated 50 random item 
parameter values for the DIF item – recall that the other 37 items 
parameters were the same as those in study one. This resulted, in essence, in 
50 runs for each sample size condition. For each of these runs, as in study 
one, 5000 replications were conducted using IRT to generate the data to 
computed the resultant Type I error rate for that run. Note that there are 50 
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runs for each sample size condition resulting in a total of 200 Type I error 
rates (one for each run) from the simulation. 

Step 3: The resultant Type I error rates and their respective DIF item 
parameter values for the 200 runs (50 runs for each sample size 
combination) were then read into a statistical software package for 
statistical analysis.  

Following similar approaches in the research literature (e.g., 
Hambleton & Rovinelli, 1986; Hambleton & Swaminathan, 1985; Zwick, 
Donoghue, & Grima, 1993), item parameter values were selected from 
probability distributions with specified means and variances – e.g., a-
parameters were selected from a uniform distribution.  For each run the DIF 
item a-parameter values were generated from a uniform distribution (M = 0, 
SD = 2), b-parameter values were generated from normal distribution (M = 
0, SD = 0.75), and c-parameter values were generated from uniform 
distribution (M = 0, SD = 0.50). Note that as in study one the θ values were 
generated from a normal distribution (M = 0, SD = 1) for each group; hence, 
like study one, the resultant proportion of rejected t-tests was the empirical 
Type I error rate.  

Again, as in study one, given that this study focuses on uniform DIF, 
another factor manipulated in this study is the difference in b-parameter 
values between the focal and reference groups. The difference in b-
parameters, ∆b, were generated from a normal distribution (M = 0, SD = 
0.50). With b, c and ∆b, Raju’s areas were calculated using equation (2) to 
quantify the magnitude of the uniform DIF,  

 

2 1(1 )Area c b b= − − .                           (2) 

As a descriptive summary of our simulation data, the generated values 
of the b-parameter ranged from -2.691 to 2.066 (M=-0.106, SD=0.863). 
Likewise, the a-parameter values ranged from 0.006 to 1.993 (M= 0.987, 
SD= 0.594); and c-parameters ranged from 0.002 to 0.300 (M=0.161, 
SD=0.085).  Furthermore, Raju’s area ranged from 0.004 to 1.156 
(M=0.327, SD=0.254), and the difference in b-parameters as an index of 
DIF (the delta-b) ranged from -1.068 to 1.300 (M=-0.031, SD=0.494). 
Finally, the a-, b-, and c-parameter values were not statistically significantly 
correlated with each other; ranging from -0.048 to 0.036. 

The impact of varying item parameters on Type I error rate was then 
analyzed by statistical modeling using the resultant data from above 
simulation. The dependent variable for these analyses is the Type I error 
rate whereas the explanatory variables are: a-parameter, b-parameter, c-
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parameter, ∆b, sample size, and the magnitude of DIF calculated by Raju’s 
formula in equation (2). 

RESULTS A�D CO�CLUSIO�S 

Table 5 listed the minimum and maximum values, means, standard 
deviations of the resultant Type I error rates for different sample sizes. The 
minimum and maximum values, mean, and standard deviation of the Type I 
error rate for sample size of 25 and 50 per group are almost same. As the 
sample size increases to 125 per group and above, the maximum values of 
Type I error rate tend to inflated beyond the Bradley’s moderate and liberal 
criteria. The means and the standard deviations, however, are same as those 
of small samples. 

 

 
 

 

Table 6 provided the percentage of Type I error rates, out of the 50 
runs in that cell, for each sample size that meet Bradley’s (1978) various 
criteria for acceptable Type I error rates. As an example to guide the reader 
in how to interpret Table 6, for a sample size of 25 per group the Type I 
error rate met the moderate criterion with all Type I error rates less than 
.060, and 47 of 50 meet stringent criterion with values less than .055. In 
general, from Table 6 it is clear that with increasing sample size the number 
of the Type I error rate values that meet the moderate criterion decreased – 
this is also true of the stringent criterion.  

To investigate the effect of sample size on the Type I error rate in this 
study, one-way ANOVA was conducted with sample size as the 
independent variable. The effect of sample size was not significant, 
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F(3,196) = 2.075, p = 0.105. This result indicates that the sample size effect 
was trivial in the study situation. To investigate the association among the 
dependent and explanatory variables in this study, we conducted correlation 
analyses. Table 7 provided the Pearson correlation and Spearman’s rho 
between Type I error rate and a, b, c, ∆b, and Raju’ area. The results 
indicate that the Type I error rate is only statistically significantly correlates 
with Raju’s area.   

 

 
 

It should be noted that the finding in this study, Study three, that 
sample size was not significant is not the same as the finding in Study one 
above. The difference is most likely due to the fact that in Study three we 
only investigated one DIF item, whereas in Study one we investigated from 
one to 16 DIF items. Furthermore, focusing only on the case of one DIF 
item in Study one, Table 3, findings similar to Study three can be seen – a 
trivial effect of sample size, and only in the case of large magnitude of DIF 
and number of DIF items. 

The above descriptive information indicated that in general (a) the 
magnitude of DIF (Raju’ area) is the only factor that significantly correlated 
with Type I error, and (b) a-, b-, c-parameters are not significantly related to 
Type I error rate.  It should be noted that because the Type I error rate is a 
proportion we investigated whether using logit transformation would 
change the conclusions. The transformation did not change the conclusions, 
so the analysis was reported using untransformed data. 

 



 Z. Li & B.D. Zumbo 360 

 
 

Study three was conducted to investigate the effects of varying item 
parameter (a, b, and c) values, ∆b, sample size and magnitude of DIF 
(quantified by Raju’s area) on the Type I error rate in the one DIF item 
situation. The results indicated that in this study the values of item 
parameters are not related to the inflation of Type I error rate. The only 
influential factor is the magnitude of DIF (Raju’s area). This result confirms 
what we found in study one: that the magnitude of DIF is a significant 
explanatory variable for increases in subsequent Type I error rates for the t-
test based on the observed total test score, and confirm the generalizability 
of results in study one: the Type I error may be protected with one small 
DIF item retained in the test. 

SECTIO� O�E DISCUSSIO� 

It was found, as predicted, that DIF did have an effect on the 
statistical conclusions; both the Type I error rate and effect size index of the 
observed score differences were inflated. The effect size results are 
informative for the Type I error findings because they, in essence, show that 
when one has DIF that the observed score effect sizes are non-zero (when 
they should be zero in the Type I error situation). That is, the observed 
score effect sizes are inflated by the DIF.  This highlights our earlier 
statement that our Type I error rates (and effect sizes) reflect the probability 
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of rejecting the null hypothesis of equal observed test score means when the 
latent means are equal but DIF is present in the test. The Type I error rate 
(and zero effect size) are defined relative to the latent variable in the IRT 
model, not the observed variable; hence the inflation in Type I error rate. In 
short, DIF creates mean differences in the observed scores when none exist 
on the latent variable. 

However, remarkably and not predicted from research, DIF also had 
little to no effect in some conditions. That is, if one has one DIF item out of 
38 items the Type I error rate of their subsequent hypothesis test is not 
substantially inflated above the nominal level. Furthermore, the subsequent 
effect size from the mean comparison is only inflated less than 0.03 on a 
standardized metric. In fact, this little effect of DIF also held up when there 
were 4 (out of 38) DIF items with small magnitude of DIF.  Study three 
shows that the conclusions are not restricted to the specific item parameter 
values for the DIF item.  

The first section of this paper only addresses the matter of 
amplification, unidirectional DIF. The next section moves to the question of 
what happens to the Type I error of subsequent hypothesis tests when DIF 
items show cancellation patterns. 

SECTIO� TWO 

Impact of Differential Item Functioning (DIF) on Statistical 

Conclusions, II: Cancellation Effects 

The results in Section one were based on an amplification view of 
DIF – i.e., all the DIF items were in the same direction. Section two will 
build on section one’s findings and focus on investigating potential 
cancellation effects. A cancellation effect (also called a multi-directional 
DIF) occurs when some DIF items favor one group and other DIF items 
favor the other group and the overall DIF effect cancels each other out. Of 
course, one can have partial cancellation wherein the overall DIF effect 
does not cancel out entirely but rather to some degree.  For example, if one 
imagines gender DIF then one would have cancellation if the items favoring 
boys cancelled out the items against boys (i.e., favoring girls). Of course, as 
noted above, this gender DIF cancellation effect can be to only some 
degree, and hence only partial cancellation.  

Building on the previous three studies, two computer simulation 
studies are reported below. Study four reports on the Type I error rates and 
study five on the effect sizes of subsequent statistical tests of mean 
differences when some degree of cancellation effects are present among 
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non-unidirectional DIF items. Therefore, the general simulation 
methodology is the same as the one used in studies one and two, 
respectively, for studies four and five.  

The research question addressed in this section was concerned with 
identifying under what conditions the Type I error rate of subsequent 
hypothesis tests of equality of observed score means was inflated above the 
nominal level (i.e., 0.05), and under what conditions the effect size is 
biased.  

 

Study Four: Impact of Cancellation DIF on Type I error rates 

METHOD 

Give that this is the first study of its kind, and part of a larger series of 
studies, we limited our simulation to some idealized situations in which the 
magnitude of DIF is the same for each of the items. Future studies will be 
able to build on this idealized experimental work to more generalized 
situations.  We chose to focus on the case of 16 DIF items (out of a total of 
38) because (a) research reported above shows that this number of DIF 
items substantially inflated the Type I error rate, and (b) the 16 items 
allowed us to investigate a large number of degrees of partial cancellation -- 
as compared to, for example, 4 DIF items which would only allow us to 
investigate a quarter, a half, or three quarters of the items favoring one 
group and the remaining items favoring the other group.  Therefore, for 
example, in our simulation design for a small magnitude of DIF (Raju’s 
area of 0.40), we simulated the situation in which 8 items were favoring one 
group (e.g., boys) and 8 items were favoring a second group, (e.g., girls). 
We denoted this situation as 8:8; which is the balanced DIF situation in 
which there is complete cancellation. We expect in this situation that the 
DIF effects will be balanced out.  Next we simulated the same situation 
expect for the DIF items being distributed as 7:9, 6:10, 5:11, 4:12, 3:13, 
2:14, 1:15, and 0:16 DIF items per group.  For each of these nine simulation 
conditions the same simulation procedures were conducted to generate the 
item response data for this study as in study one. Continuing with the same 
data analysis strategies, the descriptive information was presented based on 
Bradley’s (1998) criterion followed by regression analysis. 
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RESULTS A�D CO�CLUSIO�S 

Tables 8 to 10 list the Type I error rates and the robustness 
information based on Bradley’s criterion for small, moderate and large 
magnitude of DIF, respectively. One can see from these tables that when 
one has complete cancellation (i.e., 8:8) the Type I error rate is, as expected, 
not inflated. One can also see that, as in study one, as the sample size and 
magnitude of DIF increase so does the Type I error rate.  However, 
depending on the magnitude of DIF, the Type I error rate can be protected 
for some partial cancellation conditions. For example, one can see from 
Table 8 (small DIF, Raju’s area of 0.40) that for a sample size of 50 per 
group the subsequent t-test of equal means has a protected Type I error rate 
in partial cancellation of 5 DIF items favoring one group and 11 items 
favoring the other group (i.e., a six item difference in the number of DIF 
items). Furthermore, for Tables 9 and 10 (i.e., moderate and large DIF), for 
a sample size of 25 per group the t-test is protected for as much as 6 items 
favoring one group and 10 items favoring the other (i.e., a 4 item difference 
in the number of DIF items).  
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To investigate which experimental factors influence the Type I error 
rate a regression analysis was conducted with magnitude of DIF, sample 
size, and difference in the number of DIF items between the two groups as 
independent variables. The resultant model with two-way and three-way 
interactions was statistical significant, F (7, 100) = 274.1, p < 0.0001, R-
squared = 0.950. All the main effects and the three-way interaction were 
statistically significant. One can see from a careful review of the tables that 
the relationship between the difference in the number of DIF items (i.e., a 
proxy for the degree of partial cancellation) is more pronounced (i.e., a 
higher correlation) for larger magnitudes of DIF, and this relationship 
increases with increasing sample size.   

Clearly then the Type I error rate depends not only on the degree of 
partial cancellation but also on magnitude of DIF and sample size, and that 
in some cases the Type I error rate is protected even when one has partial 
cancellation.  

 

Study Five: Impact of Cancellation DIF on Effect Size 

Study five was designed to investigate the cancellation effect of DIF 
on the population effect size of the independent sample t-test. As in study 
two, Cohen's d was used as the measure of effect size and, the effect size 
difference, ∆ES, was computed as the difference between the observed 
mean effect size and latent mean effect size so that a positive difference 
means that the effect size was larger for the observed scores. Our research 
question in this study is: What is the effect size for the observed test score 
means when the latent means are equal but DIF cancellation effect is 
present in the test? 

METHODS 

The simulation factors manipulated in this study, as well as the 
simulation methodology, were the same as those in study two except for the 
experimental factor, number of DIF items.  That is, within each magnitude 
(small, moderate and large) of DIF, we manipulated number of DIF items 
(out 16 DIF items) against focal group and reference groups. As in study 
four, the simulated number (out 16 DIF items) of DIF items against 
reference and focal groups were as follows: 8:8, 7:9, 6:10, 5:11, 4:12, 3:13, 
2:14, 1:15, and 0:16. It should be noted that the 0:16 condition does, of 
course, not reflect cancellation but was included for comparison purposes.  
Three levels of magnitude of DIF -- small, moderate, and large as defined 
by Raju’s area statistic of .4, .6, and .8 (Raju, 1988) were investigated. This 
resulted in a 9x3 completely crossed factorial design resulting in a total of 
27 cells in our simulation design (including completely balanced, 8:8, and 
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completely unbalance cases, 0:16).  As in study two, we simulated 10,000 
examinees in each cell of the simulation design for our pseudo-populations. 
For each cell we computed the effect size for the observed total test score 
mean difference and for the latent mean difference (and their corresponding 
standard deviations). Because both the observed score and latent variable 
effect size values are on the same metric (both being standardized) we 
computed the difference between them (∆ES) as an index of how much the 
DIF biases the effect size. 

RESULTS A�D CO�CLUSIO�S 

Table 11 lists differences between the effect sizes of the observed and 
the latent variable score for the three magnitudes of DIF and the 9 number 
of DIF situations. One can see that when the number of DIF items present in 
each group are totally balanced (8:8), the effect sizes of the latent mean and 
observed mean are, as expected, almost equal – i.e., -0.008. However, as the 
number of DIF items against each group is not balanced, the ∆ES increase; 
the more unbalanced, and the larger the magnitude of DIF, the greater the 
∆ES – i.e., the observed mean differences being spuriously inflated by the 
presence of DIF. 

The simulation results were analyzed using regression analysis with 
∆ES as the dependent variable and magnitude of DIF, number of DIF item 
difference between groups, and their two-way interactions as independent 
variables. The model is statistically significant (F (3, 23) = 1621.08, p < 
.0001) with an R-squared of 0.995. All the predictors are statistically 
significant, including the interaction term. The interactions among 
independent variables can be seen upon careful review of Table 11. Clearly, 
∆ES increases as the imbalance in DIF and magnitude of DIF increase.  

SECTIO� TWO DISCUSSIO� 

The results confirm the hypothesis that when there is a balanced 
number of DIF items between groups and when magnitude of DIF is close 
to zero, the Type I error rate is protected and ∆ES was not biased no matter 
how large the magnitude of DIF and number of DIF items present. On the 
other hand, as the number of DIF items become more unbalanced between 
groups both the Type I error rate and the ∆ES were inflated. Furthermore, 
the effect of imbalance was even more inflated by magnitude of DIF. 
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GE�ERAL DISCUSSIO� 

As we noted in the introduction, it is not uncommon for researchers to 
either not test for DIF before comparing groups, or if they test for DIF but 
they decide to leave DIF items in the test.  Of course, DIF is a statistical 
characteristic of a sample so it is possible that DIF items are simply not 
detected during item analysis. In short, this leaves us with the question of 
the impact of DIF items on the eventual statistical tests conducted on the 
observed test (or scale) scores. To answer the above general questions we 
conducted five related simulation studies.  To our knowledge, this is the 
first of a line of research that directly answers the often heard question: 
What is the impact of having DIF on the eventual statistical conclusions 
from my test scores? It offers advice to practicing researchers about when 
and how much the presence of DIF will effect their statistical conclusions 
based on the total observed test scores.  Although, simulated in idealized 
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situations deliberately, the five related simulation studies provide 
researchers and practitioners with general guidelines. 

In the case of Section I wherein the DIF items are all in one direction 
(e.g., the test favors girls consistently, amplification DIF), as expected, DIF 
results in inflation in Type I error rates of the eventual t-test.  Likewise, of 
course, reflecting the inflation in Type I error rates, the observed score 
effect size is also inflated, sometimes substantially. The inflation of the 
effect size is important because it is now widely recommended that effect 
sizes be reported with statistical hypothesis test results.  What was not 
expected, however, was that the Type I error rate and effect sizes were not 
biased by the presence of DIF when the number of DIF items is small (i.e., 
1 DIF item out of 38 items, and even 4 DIF items out of a total of 38 items 
when the magnitude of DIF is small to moderate.  This is important, and 
comforting, to researchers who do not typically screen for DIF or ones who 
do not remove DIF items from the test.  However, what is not yet known is 
the impact of DIF, in these situations when the Type I error rate is 
protected, on the eventual statistical power. The issue of impact of DIF on 
statistical power will be investigated in forthcoming studies.  Likewise, our 
studies should not be interpreted to suggest that one need not screen items 
for DIF. In fact, our conclusions are quite to the contrary because DIF 
analyses are needed because under many situations the Type I error rate and 
effect sizes are severely biased by the presence of DIF. 

In Section II wherein one has an imbalance of DIF items, for example, 
some items favoring girls and others favoring boys, the effect of DIF 
depends on the degree of imbalance. As expected, when the DIF is balanced 
(e.g., 8 items favoring boys and 8 items favoring girls) the DIF effect 
cancels out and the Type I error rate and effect sizes are not biased by DIF.  
However the degree of imbalance and the magnitude of DIF interact to 
inflate both the Type I error rate and effect size. Again, the t-test was 
surprisingly robust in terms of Type I error rate and effect size with a small 
amount of imbalance (e.g., the t-test was not greatly effected when 6 items 
favored one group and 10 items the other). 

Overall, these findings highlight why it is important to use DIF 
screening procedures before conducting group comparisons because one 
may find themselves in the situation wherein the Type I error rate of their 
hypothesis test, and the corresponding effect size reported, are highly 
inflated declaring group differences where none exist. Likewise, retaining 
DIF items in the test may also have significant effect on other 
psychometrical procedures, such as equating results when used in concert 
with DIF detection or more broadly in the use of linking and equating.  That 
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is, several studies have investigated the effects of linking or equating 
methods on DIF detection (e.g., Candell & Drasgow, 1988; Cohen & Kim, 
1992; Hidalgo-Montesinos & Lopez-Pina, 2002; Miller & Oshima, 1992); 
however, there is a need for more research on the effect of DIF on equating 
or linking (e.g., Chu & Kamata, 2005) in its more general use in large-scale 
testing much like we do for significance testing herein.  
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